Common Expression Language in Rust

Alex Snaps, Red Hat

What's CEL ?

Il Common Expression Language aka CEL

+ Fast

+ Portable

+ Extensible
+ Safe

£ Came out of Google ~2017

£ Used embedded in "another program" written in

« Go

+ Java

o C++

+ but also JS, ... Rust as community efforts

2/ 26

CEL

B strongly typed

g Core types
* String, Int, Double, Boolean
+ UInt, Bytes, Timestamp, duration
+ Map, List

g Protocol Buffer natively supported
+ Struct

& JSON interop

& Spec'ed

With a conformance test suite

3/ 26

A familiar syntax

. CEL's Syntax

4/ 26

CEL optional syntax

values[?2].?field.orValue(@) > 100

57/ 26

How we got started with CEL

B Use case(s)

& Kubernetes

Validation rules without webhooks

& Kuadrant

Predicates and other data retrieval expressions
+ Evaluated on the data plane

* Across multiple runtimes

> Go and...

> Rust, possibly within a Wasm runtime

6 / 26

Using CEL in Rust

7/ 26

Using CEL in Rust

let program
let context

Program::compile("1 == 1").unwrap();
Context: :default();

let value = program.execute(&context).unwrap();
assert_eq! (value, true.into());

8 / 26

Using CEL in Rust

let program = Program::compile("foo * 2").unwrap();
let mut context = Context::default();
context.add_variable("foo", 10).unwrap();

let value = program.execute(&context).unwrap();
assert_eq! (value, 20.into());

9/ 26

Using CEL in Rust

let program = Program::compile("add (10, 10)").unwrap();
let mut context = Context::default();
context.add_function("add", |a: i64, b: i64| a + b);
let value = program.execute(&context).unwrap();
assert_eq! (value, 20.into());

10 / 26

Using CEL in Rust

11 / 26

Using CEL in Rust

12 / 26

Alex, this cel-rust. cel-rust, this is

Alex!

B 2024

& CEL Rust introduced in Kuadrant

§ First bug fixes

Added missing macros on Stxing, Timestamp,

Fixed some function dispatch code

B 2025

& Let's fix that parser impedence mismatch
Revamp antlr=xust

Rewrite the entire parser

Adapt the interpreter to this new AST

13 / 26

What? Wait... Why?!

14 / 26

Remember, what's CEL ?

Il Common Expression Language aka CEL

Fast
Portable
Extensible
Safe

15 / 26

Remember, what's CEL ?

Il Common Expression Language aka CEL

Fast
Portable
Extensible
Safe

B Yuch of which is actually achieved through the AST

£ Let's start with

FAST!

16 / 26

A day in the life of a CEL expression

Administer

Evaluate

17 / 26

Informed by the golang implementation

B Just reuse the official GEBMG4 ANTLR4 grammar

. tho ANTLR has no rust target

§ antlr-rust project existed

. but abandonned and had to fork to fix and improve to work at least support

£ Community ftw! We now have an @ntlrdrust working Rust target for ANTLR4

18 / 26

With a conformant parser, we are good now,
yes?

[l Holidays 2025
£ Opened up the interpreter to be type agnostic

& Just a quick refactoring...

. of a ¥258050=555 PR!

f Cowsdyn'Val® all the things

19 / 26

Do you even know what you are doing?

20 / 26

Overloads

21 / 26

Confidence in being able to evaluate
always

‘ Config { Control Plane

Dataplane [INBinal (FNEVAI
Store
Data plane [Bind) [FTEvaIl

Data plane [IBiAd I [FNEGINTN

22 / 26

The ©heck phase

let program = Program::compile("[1, 2].size() == 2.size()").unwrap
QF
let value = program.execute(&Context: :default());

let parser: Parser = Parser::default();

let result: Result<IdedExpr, ParseErrors> = parser
.parse("[1, 2].size() == 2.size()");

let expr = result.unwrap();

let context = Context::default();

let value: ResolveResult = Value::resolve(&expr, &context);

let result: Result<CheckedAst, Error> = check(expr, &context);
let value = Value::resolve(&result.unwrap().expr, &context);

23 / 26

The road ahead

Il Roadmap
& Current

Wrap up the overloads

B Next

Type checking

& And this too btw

Performance work

& .. and this too

Protobuf & WKT support

24 / 26

Legal-disclaimer mentions

Il None of this would exist without these people
£ github.com/cel-rust

* @clarkmcc // Clark McCauley

+ @oxf // Tom Forbes

+ @adam-cattermole // Adam Cattermole
* @howardjohn // John Howard

+ ... and the many contributors

& github.com/antlr4rust
* @rrevenantt // Konstantin

*+ @kaby76 // Ken Domino
* @cyqw

Special thanks for this presentation to
+ @mfontanini from https://github.com/mfontanini/presenterm

25 / 26

Il Thanks!
& Links

https://github.com/cel-rust/cel-rust

https://kuadrant.io

& Questions?

26 / 26

