
Common Expression Language in Rust

Alex Snaps, Red Hat

What's CEL ?

██ Common Expression Language aka CEL

 • Fast
 • Portable
 • Extensible
 • Safe

▓▓▓ Came out of Google ~2017

▓▓▓ Used embedded in "another program" written in

 • Go
 • Java
 • C++
 • but also JS, ... Rust as community efforts

2 / 26

CEL

██ Strongly typed

▓▓▓ Core types

 • String, Int, Double, Boolean
 • UInt, Bytes, Timestamp, duration
 • Map, List

▓▓▓ Protocol Buffer natively supported

 • Struct

▓▓▓ JSON interop

▓▓▓ Spec'ed

▒▒▒▒ With a conformance test suite

3 / 26

A familiar syntax

██ CEL's Syntax

 // Check whether a resource name starts with a group name.
resource.name.startsWith("/groups/" + auth.claims.group)

 // Determine whether the request is in the permitted time window.
request.time - resource.age < duration("24h")

 // Check whether all resource names in a list match a given
filter.
auth.claims.email_verified
 && resources.all(r, r.startsWith(auth.claims.email))

4 / 26

CEL optional syntax

values[?2].?field.orValue(0) > 100

5 / 26

How we got started with CEL

██ Use case(s)

▓▓▓ Kubernetes

 • Validation rules without webhooks

▓▓▓ Kuadrant

 • Predicates and other data retrieval expressions
 • Evaluated on the data plane
 • Across multiple runtimes
 ◦ Go and...
 ◦ Rust, possibly within a Wasm runtime

6 / 26

Using CEL in Rust

cargo add cel

7 / 26

Using CEL in Rust

let program = Program::compile("1 == 1").unwrap();
let context = Context::default();

let value = program.execute(&context).unwrap();
assert_eq!(value, true.into());

8 / 26

Using CEL in Rust

let program = Program::compile("foo * 2").unwrap();
let mut context = Context::default();
context.add_variable("foo", 10).unwrap();
let value = program.execute(&context).unwrap();
assert_eq!(value, 20.into());

9 / 26

Using CEL in Rust

let program = Program::compile("add(10, 10)").unwrap();
let mut context = Context::default();
context.add_function("add", |a: i64, b: i64| a + b);
let value = program.execute(&context).unwrap();
assert_eq!(value, 20.into());

10 / 26

Using CEL in Rust

context.add_function("isEmpty", is_empty);

fn is_empty(This(s): This<Arc<String>>) -> bool {
 s.is_empty()
}

myString.isEmpty()

11 / 26

Using CEL in Rust

fn fail(ftx: &FunctionContext) -> ResolveResult {
 ftx.error("This function always fails").into()
}

pub struct FunctionContext<'context, 'call: 'context> {
pub name: &'call str,
pub this: Option<Value>,
pub ptx: &'context Context<'context>,
pub args: &'call [Expression],
pub arg_idx: usize,

}

pub type ResolveResult = Result<Value, ExecutionError>;

12 / 26

Alex, this cel-rust. cel-rust, this is
Alex!

██ 2024

▓▓▓ CEL Rust introduced in Kuadrant

▓▓▓ First bug fixes

▒▒▒▒ Added missing macros on String, Timestamp, ...

▒▒▒▒ Fixed some function dispatch code

██ 2025

▓▓▓ Let's fix that parser impedence mismatch

▒▒▒▒ Revamp antlr-rust

▒▒▒▒ Rewrite the entire parser

▒▒▒▒ Adapt the interpreter to this new AST 13 / 26

What? Wait... Why?!

14 / 26

Remember, what's CEL ?

██ Common Expression Language aka CEL

 • Fast
 • Portable
 • Extensible
 • Safe

15 / 26

Remember, what's CEL ?

██ Common Expression Language aka CEL

 • Fast
 • Portable
 • Extensible
 • Safe

██ Much of which is actually achieved through the AST

▓▓▓ Let's start with

▒▒▒▒ FAST!

16 / 26

A day in the life of a CEL expression

17 / 26

Informed by the golang implementation

██ Just reuse the official CEL.g4 ANTLR4 grammar

▒▒▒▒ ... tho ANTLR has no rust target 😭

▓▓▓ antlr-rust project existed 🙌

▒▒▒▒ ... but abandonned and had to fork to fix and improve to work at least support
CEL 😢

▓▓▓ Community ftw! We now have an antlr4rust working Rust target for ANTLR4 🎉

18 / 26

With a conformant parser, we are good now,
yes?

██ Holidays 2025

▓▓▓ Opened up the interpreter to be type agnostic

▓▓▓ Just a quick refactoring...

▒▒▒▒ ... of a +2,805 −555 PR!

▓▓▓ Cow<dyn Val> all the things

19 / 26

Do you even know what you are doing?

20 / 26

Overloads

fn main() {
let program = Program::compile("[1, 2].size() == 2.size()").

unwrap();
let mut context = Context::default();

 context.add_function("size", my_size);
let value = program.execute(&context);

 assert_eq!(value, Ok(true.into()));
}

pub fn my_size(_ftx: &FunctionContext, This(this): This<i64>)
 -> Result<i64, ExecutionError>
{
 Ok(this)
}

21 / 26

Confidence in being able to evaluate
always

22 / 26

The check phase

let program = Program::compile("[1, 2].size() == 2.size()").unwrap
();
let value = program.execute(&Context::default());

let parser: Parser = Parser::default();
let result: Result<IdedExpr, ParseErrors> = parser
 .parse("[1, 2].size() == 2.size()");
let expr = result.unwrap();
let context = Context::default();
let value: ResolveResult = Value::resolve(&expr, &context);

let result: Result<CheckedAst, Error> = check(expr, &context);
let value = Value::resolve(&result.unwrap().expr, &context);

23 / 26

The road ahead

██ Roadmap

▓▓▓ Current

▒▒▒▒ Wrap up the overloads

▓▓▓ Next

▒▒▒▒ Type checking

▓▓▓ And this too btw

▒▒▒▒ Performance work

▓▓▓ ... and this too

▒▒▒▒ Protobuf & WKT support

24 / 26

Legal disclaimer ❤️ mentions

██ None of this would exist without these people

▓▓▓ github.com/cel-rust

 • @clarkmcc // Clark McCauley
 • @orf // Tom Forbes
 • @adam-cattermole // Adam Cattermole
 • @howardjohn // John Howard
 • ... and the many contributors

▓▓▓ github.com/antlr4rust

 • @rrevenantt // Konstantin
 • @kaby76 // Ken Domino
 • @cyqw

▒▒▒▒ Special thanks for this presentation to

 • @mfontanini from https://github.com/mfontanini/presenterm

25 / 26

██ Thanks!

▓▓▓ Links

▒▒▒▒ https://github.com/cel-rust/cel-rust

▒▒▒▒ https://kuadrant.io

▓▓▓ Questions?

26 / 26

