How To Make Package
Managers €ry Scream

Kenneth Hoste

FOSDEM 2026 Main Track | https://fosdem.org
https://youtu.be/PBIDHIFnzGo

Email: kenneth.hoste@ugent.be
GitHub: @boegel
BlueSky: @boegel.bsky.social
Fediverse/Mastodon: @boegel@mast.hpc.social
https://linkedin.com/in/kenneth-hoste

https://youtu.be/PBlDHlFnzGo

whoami

Supercomputer sysadmin @ Ghent University (Belgium) since 2010

Open source software enthusiast for ~20 years (yes, I'm old)
I also like family, (loud) gigs, beer (but I'm picky), stickers, dad jokes, ...
FOSDEM attendee since 2012, (co-)organising HPC devroom since 2014

Lead developer of EasyBuild, core contributor o EESSTI, ...

EasyBuiLp & EESSI

EEEEEEEEEEEEEEEEEEEEEE

https://easybuild.io
https://eessi.io

1000, years ago, at FOSDEM 2018

~25 min talk in Package Management devroom:

"How to Make Package Managers Cry"

Devroom got a bit crowded during my talk &'
Some people liked it!

It even reached HackerNews (well, kind of)

o RandomCSGeek also posted it in
"Ask HN: What is your favourite tech talk?” thread
(April 2018) @

Q "how to make package managers cry"

Stories v Popularity v | | All time v

How to Make Package Managers Cry [video] (https://www.

https://www.youtube.com/watch?v=NSemlYagjIU e e T
https://archive.fosdem.org/2018/schedule/event/how to make package managers cry 3

https://news.ycombinator.com/item?id=16838460
https://www.youtube.com/watch?v=NSemlYagjIU
https://archive.fosdem.org/2018/schedule/event/how_to_make_package_managers_cry

Today at FOSDEM 2026: the sequel |

Initially submitted to Package Management devroom
Got promoted to FOSDEM Main Track \o/
More of the same, but also kinda different...

We live in a (very) different world compared to 2018

I expect some heckling throughout the talk.
Make it happen. Do your part! =

i

This talk is a little biased (again)

My main experience is with installing scientific software on supercomputers
Supercomputers @ Linux (Windows, macOS or BSD: a lot less so...)

We often need to build software from source code (it's fun, really!)
Software developed by scientists can be particularly... interesting

I generally focus on central installations on multi-tenant systems

A lot of what T'll cover should also translate well to other communities...

Package managers are people too

In this talk, package managers are the people who package software,
so it can be installed/used easily (by themselves or others)

If you "install” software for others, I consider you a package manager (ymmv)
"First line responders”: they're exposed early on to new software releases
Package managers don't give up easily, they like solving puzzles...

They have seen a lot, but there are more of us, and we're a creative bunch!

Who is this talk for?

e You like working with computers, coding, making them dance as you want them to

e You like showing your work to the world as open source software

e You don't like dealing with people who are using your software, or trying to use it....

©)

©)

©)

They try to install your software in weird environments
They ask annoying questions, and expect you fo have the answers
They report problems and "bugs” that you probably don't care much about

They even request additional changes, improvements, features, ...

Why do we want to make package managers ery scream?!?

Package managers make it easier for people to install & use your software

We don't want that, since it eventually only results in more work for us

We want package managers to give up on packaging your software

If that doesn't work, we at least want to frustrate them, slow them down, ...

This talk includes a bunch of techniques & tricks you can use
0

Any package managers in the room?

o If you're sitting next to a package manager, distract them!

Spoiler: Topics we'll be covering in this talk

o LLMs

e Naming is hard
e Terminology

e Code structure
e Documentation
e Hosting

e Self "packaging”

And some examples along the way...

Dependencies (surprisel)

"V Prizes (huh?!)

Hidden tricks

Build tools (and then some)
Testing

Programming languages
Compilers

Versioning

10

May contain traces of

This talk is meant to be an eye-opener regarding

bad practices in software installation procedures.

Please do NOT interpret the given 'advice' as genuine.

| do NOT want to insult particular people or projects.

What caused explosion of publications on LLMs starting 2018?

4.5
lg(counts per year+1)
4
3.5
3
2.5
"How to Make Package Managers Cry”
2
talk at FOSDEM 2018
1.5
1
0.5
0
1995 2000 2005 2010 2015 2020 2025
e —e—Books Book Chapter
Reviews Orignal Journal Articles
—o—Letters & Notes —e—Conference Papers

—e—ConfRev+Editorials+ShortSurv —e—Patent Families (source: W,'k,'ped,'a)

12

LLMs can help us make package managers ery scream

Let's get this out of the way, shall we...

No need to learn a lot about the tools & techniques you will hear in this talk \o/
If somebody complains, blame it on hallucinations of the LLM you used

Tell package managers that they should let LLMs install the software instead

Proposal for install.md standard to tell LLMs how to install your software

https://www.mintlify.com/blog/install-md-standard-for-lim-executable-installation

o Please don't use this, may lead to better docs for package managers!
13

https://www.mintlify.com/blog/install-md-standard-for-llm-executable-installation

Choose the name of your project wisely

Make sure it's hard to search for

Aim for maximum confusion with other things/projects (animals! mythology!)
Your project name should imply something that's totally false

Use “funny” characters: special ASCII characters, Unicode (trademark signl), ...
Come up with ways to trigger frequent typos

Be as inconsistent as you can, do what you can to encourage others to do the same

14

Some examples of haming done well

Rust is a well-known programming language, but also a color, a popular game,

a chemical process, a movie, ... 2

Single-letter names like € and R are hard to use in search engines /&

EasyBuild has over 250 configuration options (wasn't this supposed to be easy?!)
"Ask in the Spack Slack for help to install Spark in a stack using a spec.”
Python packages on PyPI being forced to use _instead of - in filenames

Open|SpeedShop (a pipe!), LaTeX (max. camel-case), 2mega (¥ Unicode), ...

15

Particular example of well-chosen project name: PRRTE

PRRTE is a key dependency of Open MPT (for distributed computing workloads)
Short for "PMIx Reference Runtime Environment”

PMIx is a standard, short for "Process Management Interface - Exascale”

Both are kind of hard to pronounce (prrrrr-tee? pretty? pee-em-ai-ex? pim-ex?) /&
Inconsistent naming across docs, GitHub, API, configuration, commands, ...

The project is formally referred to in documentation by “PRRTE”, and the GitHub repository is

prrte .

We have found that most users do not like typing the two consecutive r letters in the name.
Hence, all of the internal APl symbols, environment variables, MCA frameworks, and CLI

510 8111d S00p//.SANy

executables all use the abbreviated prte (one r , not two) for convenience.

16

https://docs.prrte.org

Names you should consider for your next project

Phoenix (or derivatives like Feniks, Fenix, ...) - "rise from the ashes”

Hydra - the "multiple heads” can mean many things (parallelism, ...)

Anything else from Greek/Roman mythology: Thor, Helix, Titan, Orion, Zeus, ...
Some play on snakes, to join the club: Python, Conda, Mamba, Cobra, Viper, ...
Open<something> - especially if some aspect of the project is not open at all

Alpha<something> - interesting if you want to win a Nobel Prize

17

Terminology

Don't use standard terminology for things, invent your own (like "crates” in Rust)
Use tools that have their own custom terminology

Overload commonly used terminology even more by also using it;

"modules” is a particularly good one: Linux kernel modules, Fortran modules,

CMake modules, Python modules, Ansible modules, environment modules, ... &

Try to distort well established terminology by giving your own spin o it:
"In my project, interface actually means something slightly different...”

18

Code structure & where stuff is located

It's up to you how you structure your project, it's your project!

It does not need to make sense to others (only to you, sort of)

Distribute your source code across lots of different (deep) subdirectories
Configuration & build tools look in standard places, so hide your stuff well

You don't need to install binaries intfo <prefix>/bin, and nobody can make you

Likewise for libraries in 1ib (64), header files in include, etc.

19

Documentation

e You heed to have some docs, you can't get away with not having any at all

e That doesn't it mean it can't be helpful to make package managers ery scream...

e Your documentation can be:

©)

©)

©)

Minimal
Incomplete
Out of date
Confusing

Long and boring

@)

Scattered across many different places
Barely searchable

Only a research paper, nothing more

Only available in an annoying format (like PDF)

Only (comments in) the source code

20

Hosting (code, website, releases)

Host your project “"somewhere else”, not on the usual platforms
o Force package managers to have an account everywhere, just to ask questions
o Make them learn the slightly different (and constantly changing) interface

o Self-hosted GitLab is an interesting option (especially in a walled garden)

Don't use Git, there are many several alternatives (check out CVS!)

Be inconsistent, scatter releases: tag versions (some as release), mirror with

infrequent sync, only upload some releases to PyPI, have an outdated website, ...

Include source tarballs or zip files in a 6iF repository (yes, it is allowed)

Split your project across (many) different repositories (cfr. AMD ROCM™)

21

"Packaging” things yourself
Take matters into your own hands, beat package managers at their own game

Only provide instructions to do system-wide installation on Ubuntu (for example)

o Some people will think that Ubuntu a hard requirement for your software...
o Multiple cases of "I tried to run sudo apt install example, but it didn't work”

from researchers using a supercomputer running a RHEL-based distro...

Only provide a Docker file as installation instructions

Release your software only as a Jupyter notebook (no other source filesl!)
Hat tip: "I don't like notebooks" talk: https://youtu.be/7jiPeIFXb6U?si

Consider creating your very own package manager (cfr. AMD's TheRockTM)

22

https://youtu.be/7jiPeIFXb6U?si

Dependencies

More dependencies is better. Always.
Choose them well, aim for maximum likelihood of trouble
Look for obscure dependencies in particular

Adopt newly emerging libraries ASAP

ALL MODERN DIGTAL T his can

INFRASTRUCTURE

be youl!

T,

A PROTECT SOME
RANDOM PERSON
IN NEBRASKA HAS
BEEN THANKLESSLY

MANTAINING
SINCE 2003

https.//xkcd.com/2347

You don't need to actually use all those dependencies in your code, be reasonable

o Just make your configuration tool require them, error out if they're missing

o Add include statements in your code, but don't use any of the provided functions

o If somebody complains, just state that you're "future-looking”

23

https://xkcd.com/2347

Can you win prizes with making package managers ery scream?

Yes, you can!

AlphaFold (https://github.com/google-deepmind/alphafold)

Tool to predict how proteins fold based on its sequence by Google DeepMind

pﬁq}pm BUJO |SOIBYIMDIQ T SBIDID SUIOS ME
il

Installation and running your first prediction

You will need a machine running Linux, AlphaFold does not support other operating systems. Full installation
requires up to 3 TB of disk space to keep genetic databases (SSD storage is recommended) and a modern
NVIDIA GPU (GPUs with more memory can predict larger protein structures).

Please follow these steps:

1. Install Docker.

o Install NVIDIA Container Toolkit for GPU support.

o Setup running Docker as a non-root user.

2. Clone this repository and cd into it.

git clone https://github.com/deepmind/alphafold.git
cd ./alphafold

24

https://github.com/google-deepmind/alphafold

Can you win prizes with making package managers ery scream?
e Yes, you canl

e AlphaFold (https://github.com/google-deepmind/alphafold)

e Tool to predict how proteins fold based on its sequence by Google DeepMind

5. Build the Docker image:
docker build -f docker/Dockerfile -t alphafold .

If you encounter the following error:

W: GPG error: https://developer.download.nvidia.com/compute/cuda/repos'ubuntul8e4/«86_64 I =

E: The repository 'https://developer.download.nvidia.com/compute/cuda/repus;uvunitul804/x86,

use the workaround described in #463 (comment).

25

https://github.com/google-deepmind/alphafold

Can you win prizes with making package managers ery scream?
e Yes, you can!

e AlphaFold (https://github.com/google-deepmind/alphafold)

e Tool to predict how proteins fold based on its sequence by Google DeepMind

o 'V Prize? THE NOBEL PRIZE
IN CHEMISI RY 2024

26

https://github.com/google-deepmind/alphafold

Hidden tricks

e You may need to take some measures to keep yourself sane...
e Implement undocumented knobs and features to make things easier for you

e Put stuff behind environment variables that nobody knows about

o Make sure they are hard to find SR ¢ oeuts

skip_flaky_tests = os.getenv('EXAMPLE_SKIP_FLAKY_TESTS')

o Do not use project name as prefix |eilsdienti

run_tests()

o Use magic required values!

good example!
PROJ_PREF = 'EX'
o Example code in Python: key_parts = ['sk' + 'ip', 'fla' + 'ky’, 'te' + 'sts']

env_var_name = PROJ_PREF + '_' + '_'.join(key_parts).upper()

s = os.getenv(env_var_name)
if s != 'YeS_Sklp_em':
run_tests()

27

Build tools

Choose your build tools wisely... Aim for maximum damage

CMake is always a good choice, it confuses and annoys everyone

o For inspiration:

m hitps://xallt.github.io/posts/cmake-is-a-pain-in-the-ass
m hitps://twdev.blog/2021/08/cmake

o From https://news.ycombinator.com/item?id=34589687:

A girvo on Jan 31, 2023 | parent | prev | next [—]

I would give up my firstborn to never have to deal with CMake again.

) CMake

Cross-platform Make

28

https://xallt.github.io/posts/cmake-is-a-pain-in-the-ass
https://twdev.blog/2021/08/cmake
https://news.ycombinator.com/item?id=34589687

Build tools (part deux)

You should combine multiple build tools, there's no reason to stick to just one

o Call cmake , make, .. from setup.py (sure you can)

o Use a script named configure.py, implement it in Perl '

Have all of these in your repository for your Python project:

setup.py, setup.cfg, requirements. txt, pyproject.toml, environment.yml

Guess what: build tools have dependencies too! \o/
It doesn't stop with choosing one (or more), it's also about how you use them
Think outside the box: use CMake as a runtime dependency in your software!

If CMake is not enough for you, use Bazel instead (guaranteed success) v Bazel

29

Build tools (yes, there's more)

e Do not read the docs of the tools you're using, or only use the outdated stuff

e Do not use well established tools according to best practices

O

O

O

O

Look up classic CMake vs modern CMake, use the former (well duhl)
Do still require that the very latest CMake version is used!

With a bit of luck, someone will hit some unexpected "regression” in CMake...

Pro tip: get alerts for new CMake releases via https://newreleases.io

e Beast mode: deliberately use hard to spot "typos” in filenames and commands

O

O

Example: . /nnake -f CMakeLitst.txt > pyproject.toml

Some day a package manager will fall for it and waste their weekend!

30

https://newreleases.io

Testing
Package managers like to be able to test the installation of your software
They often lack domain knowledge for doing so well, use that to your benefit
Aim for a test suite that takes forever fo run
Flaky tests are your friend (you know which ones to ignore)

Don't pass on requiring extra dependencies to run your tests!

o Package managers really hate having to do even more work just to run your tests

31

Particular example of test suites done well: O PyTorch

PyTorch has a massive test suite...
More than 250,000 tests, takes ~36h to run on a single (recent, beefy) system
Significant changes to the structure of the test suite every PyTorch release \o/

Example test suite result for PyTorch 2.7.1 (as produced by EasyBuild):

WARNING: 52 test failures, 0 test errors (out of 261883):
distributed/ composable/fsdp/test fully shard state dict (1 failed, 1 passed, 4 skipped, 0 errors)
distributed/test store (1 failed, 32 passed, 0 skipped, 0 errors)
dynamo/test compiler bisector (1 failed, 6 passed, 0 skipped, 0 errors)
higher order ops/test invoke quant (1 failed, 13 passed, 0 skipped, 0 errors)
higher order ops/test invoke subgraph (1 failed, 19 passed, 1 skipped, 0 errors)
inductor/test aot inductor (2 failed, 313 passed, 102 skipped, 0 errors)

®)

-
O

52 failing tests out of 261k => 99.98% of tests passing, is that good enough? =

A package manager person would be very tempted to try and reach 100%... .

Live poll
I will count to 3, and then you all SCREAM what you think is the correct answer
Here comes the question...

No screaming yet! Wait for the countdownl!

Which programming language is most likely to make package managers scream?

Think about it first, no screaming yet!

Are you ready for the countdown?

33

Live poll: programming language to make ‘em SCREAM?

34

Live poll: programming language to make ‘em SCREAM?

35

Live poll: programming language to make ‘em SCREAM?

36

Live poll: programming language to make ‘'em SCREAM?

SCREAM

(some programming language, not just something random)

37

a010/0 0010

THE programming language to make ‘em SCREAM

Pfft, where do we begin...

C++ standard library is a gem

Error messages produced by C++ compilers are... waaaauw
Templates in C++

Metaprogramming, what a concept (run the code at compile timel)
Both Linus Torvalds and the FBI recommend you shouldn't use C++. So use it!
Bonus points for the name...

Don't take my word for it, see "The worst programming language of all time”
https://www.youtube.com/watch?v=7fGB-hjc2Gc (rant of 2 hours 9 minl)

Random quote: "If you like C++, then you don't know it well enough”

39

https://www.youtube.com/watch?v=7fGB-hjc2Gc

Other programming languages you should consider using

Python: the installation tools! setuptools! Condal Python 4 on the horizon?!
Rust: different enough to make your head spin, lots of custom terminology
FORTRAN: since 1956, still in use (scientific software), #12 in TTOBE Index
C#: just in case C++ isn't enough...

JavaScript: the inconsistencies! Npm!

6o weird: OCaml, Haskell, Prolog (wTF?!), Erlang, F#, Lisp, Bash, Scheme, Ada, ...

There's a new programming language born every day, adopt them early on!

40

Compilers

A.k.a. how to make C++ even worse than it already is...
They're huge, complex, and impossible to avoid for any serious work
Screenfilling cryptic error messages with C++ (it's worth repeating, admit it)

Defaults change frequently (cfr. https://gcc.gnu.org/gcc-15/porting to.html)

Compilers have dependencies tool They even depend on each otherl!!l
Embrace the diversity, explore alternatives, don't stick to GCC

Try to make sure that 6CC can not be used for some reason,

and force package managers to use another set of compilers...
41

https://gcc.gnu.org/gcc-15/porting_to.html

TensorFlow

Implemented in C++ \o/

Only generic pre-built binaries available on PyPI (don't look up WheelNext!)

+ cmd.append('//tensorflow/tools/pip_package:build_pip_package')

Still uses Bazel as configuration & build tool \o/

)] damianam on 8 Dec 2017 Member

| am not sure what this does, but | going to guess that the double slash is a typo.

Clang compiler is now preferred over GCC

Magic environment variables everywhere, but nowhere to be found in docs
o They all start with $TF_ (not $TENSORFLOW) = T TensorFlow

Search results

No Results

Q Search for TF_NEED_CLANG on Google 42

Versioning
Don't waste the opportunity to confuse people through software versions
Suggest that you're using semantic versioning, but violate it (cfr. Python, Lug, ...)

Start with calendar versioning (20260131), release 1.0, then switch to zerover (0.x)

o Let package managers figure out what the latest release is...

HDF5
o Stable releases have even minor number (1.8, 1.10)
o Development "releases” (?!) have an odd minor number (like 1.9, 1.11)
o No more since HDF5 2.0, since they adopted semantic versioning (but, why?!)
O https://support.hdfgroup.org/documentation/hdf5/latest/ r e | v e r s i o nhiml

Encourage forks, especially without changing the name (see OpenFOAM!)

43

https://support.hdfgroup.org/documentation/hdf5/latest/_r_e_l_v_e_r_s_i_o_n.html

Things we did not get to cover (in detail)

Python installation tools. Oh boy... (pro tip: stay away from uv !)
Containers: build your own messy world, and get others to use it willingly somehow
Downloading stuff during building/testing (yes cargo, I'm looking at you...)

Misleading error messages, errors that are really just warnings (or vice versa),

error messages that go out of there way to hide the actual problem (pipl), etc.

Recent and upcoming CPU families (for scientific computing): Arm, RISC-V

It's about to get a whole lot worse very soon! \o/

What else?! Come talk to me, I'll be here all FOSDEM, let's have a !

44

How To Make Package
Managers €ry Scream

Kenneth Hoste

FOSDEM 2026 Main Track | https://fosdem.org
https://youtu.be/PBIDHIFnzGo

Email: kenneth.hoste@ugent.be
GitHub: @boegel
BlueSky: @boegel.bsky.social
Fediverse/Mastodon: @boegel@mast.hpc.social
https://linkedin.com/in/kenneth-hoste

https://youtu.be/PBlDHlFnzGo

