
Kenneth Hoste
FOSDEM 2026 Main Track | https://fosdem.org

https://youtu.be/PBlDHlFnzGo

Email: kenneth.hoste@ugent.be
GitHub: @boegel

BlueSky: @boegel.bsky.social
Fediverse/Mastodon: @boegel@mast.hpc.social

https://linkedin.com/in/kenneth-hoste

How To Make Package
Managers Cry Scream

Yes, that font is Comic Sans.
No, that’s not by accident…

https://youtu.be/PBlDHlFnzGo

● Supercomputer sysadmin @ Ghent University (Belgium) since 2010

● Open source software enthusiast for ~20 years (yes, I’m old)

● I also like family, (loud) gigs, beer (but I’m picky), stickers, dad jokes, ...

● FOSDEM attendee since 2012, (co-)organising HPC devroom since 2014

● Lead developer of EasyBuild, core contributor to EESSI, …

whoami

2

https://easybuild.io
https://eessi.io

● ~25 min talk in Package Management devroom:

“How to Make Package Managers Cry”

● Devroom got a bit crowded during my talk 😅
● Some people liked it!

● It even reached HackerNews (well, kind of)
○ RandomCSGeek also posted it in

“Ask HN: What is your favourite tech talk?” thread
(April 2018) ❤

https://www.youtube.com/watch?v=NSemlYagjIU

https://archive.fosdem.org/2018/schedule/event/how_to_make_package_managers_cry 3

10002 years ago, at FOSDEM 2018

https://news.ycombinator.com/item?id=16838460
https://www.youtube.com/watch?v=NSemlYagjIU
https://archive.fosdem.org/2018/schedule/event/how_to_make_package_managers_cry

● Initially submitted to Package Management devroom

● Got promoted to FOSDEM Main Track \o/

● More of the same, but also kinda different…

● We live in a (very) different world compared to 2018

4

Today at FOSDEM 2026: the sequel !

I expect some heckling throughout the talk.

Make it happen. Do your part! 🍺

● My main experience is with installing scientific software on supercomputers

● Supercomputers ❤ Linux (Windows, macOS or BSD: a lot less so…)

● We often need to build software from source code (it’s fun, really!)

● Software developed by scientists can be particularly... interesting

● I generally focus on central installations on multi-tenant systems

● A lot of what I’ll cover should also translate well to other communities...

5

This talk is a little biased (again)

● In this talk, package managers are the people who package software,
so it can be installed/used easily (by themselves or others)

● If you “install” software for others, I consider you a package manager (ymmv)

● “First line responders”: they’re exposed early on to new software releases

● Package managers don’t give up easily, they like solving puzzles…

● They have seen a lot, but there are more of us, and we’re a creative bunch!

Package managers are people too

6

● You like working with computers, coding, making them dance as you want them to

● You like showing your work to the world as open source software

● You don’t like dealing with people who are using your software, or trying to use it.…

○ They try to install your software in weird environments

○ They ask annoying questions, and expect you to have the answers

○ They report problems and “bugs” that you probably don’t care much about

○ They even request additional changes, improvements, features, ...

Who is this talk for?

7

● Package managers make it easier for people to install & use your software

● We don’t want that, since it eventually only results in more work for us

● We want package managers to give up on packaging your software

● If that doesn’t work, we at least want to frustrate them, slow them down, …

● This talk includes a bunch of techniques & tricks you can use

● Any package managers in the room?

○ If you’re sitting next to a package manager, distract them!

Why do we want to make package managers cry scream?!?

8

Goals

9

● LLMs

● Naming is hard

● Terminology

● Code structure

● Documentation

● Hosting

● Self ”packaging”

● Dependencies (surprise!)

10

● 🏆 Prizes (huh?!)

● Hidden tricks

● Build tools (and then some)

● Testing

● Programming languages

● Compilers

● Versioning

Spoiler: Topics we’ll be covering in this talk

And some examples along the way…

May contain traces of SARCASM

This talk is meant to be an eye-opener regarding

bad practices in software installation procedures.

Please do NOT interpret the given 'advice' as genuine.

I do NOT want to insult particular people or projects.

WARNING

12

What caused explosion of publications on LLMs starting 2018?

“How to Make Package Managers Cry”
talk at FOSDEM 2018

(source: Wikipedia)

● Let’s get this out of the way, shall we…

● No need to learn a lot about the tools & techniques you will hear in this talk \o/

● If somebody complains, blame it on hallucinations of the LLM you used

● Tell package managers that they should let LLMs install the software instead

● Proposal for install.md standard to tell LLMs how to install your software
https://www.mintlify.com/blog/install-md-standard-for-llm-executable-installation

○ Please don’t use this, may lead to better docs for package managers!
13

LLMs can help us make package managers cry scream

https://www.mintlify.com/blog/install-md-standard-for-llm-executable-installation

● Make sure it’s hard to search for

● Aim for maximum confusion with other things/projects (animals! mythology!)

● Your project name should imply something that’s totally false

● Use “funny” characters: special ASCII characters, Unicode (trademark sign!), ...

● Come up with ways to trigger frequent typos

● Be as inconsistent as you can, do what you can to encourage others to do the same

14

Choose the name of your project wisely

● Rust is a well-known programming language, but also a color, a popular game,

a chemical process, a movie, … 󰷺
● Single-letter names like C and R are hard to use in search engines 👍

● EasyBuild has over 250 configuration options (wasn’t this supposed to be easy?!)

● “Ask in the Spack Slack for help to install Spark in a stack using a spec.”

● Python packages on PyPI being forced to use _ instead of - in filenames

● Open|SpeedShop (a pipe!), LaTeX (max. camel-case), Ωmega (❤ Unicode), …

Some examples of naming done well

15

● PRRTE is a key dependency of Open MPI (for distributed computing workloads)

● Short for “PMIx Reference Runtime Environment”

● PMIx is a standard, short for “Process Management Interface - Exascale”

● Both are kind of hard to pronounce (prrrrr-tee? pretty? pee-em-ai-ex? pim-ex?) 👍
● Inconsistent naming across docs, GitHub, API, configuration, commands, …

16

https://docs.prrte.org

Particular example of well-chosen project name: PRRTE

https://docs.prrte.org

● Phoenix (or derivatives like Feniks, Fenix, …) - “rise from the ashes”

● Hydra - the “multiple heads” can mean many things (parallelism, …)

● Anything else from Greek/Roman mythology: Thor, Helix, Titan, Orion, Zeus, …

● Some play on snakes, to join the club: Python, Conda, Mamba, Cobra, Viper, …

● Open<something> - especially if some aspect of the project is not open at all

● Alpha<something> - interesting if you want to win a Nobel Prize

17

Names you should consider for your next project

● Don’t use standard terminology for things, invent your own (like “crates” in Rust)

● Use tools that have their own custom terminology

● Overload commonly used terminology even more by also using it;

“modules” is a particularly good one: Linux kernel modules, Fortran modules,

CMake modules, Python modules, Ansible modules, environment modules, … 🫠

● Try to distort well established terminology by giving your own spin to it:

“In my project, interface actually means something slightly different…”

18

Terminology

● It’s up to you how you structure your project, it’s your project!

● It does not need to make sense to others (only to you, sort of)

● Distribute your source code across lots of different (deep) subdirectories

● Configuration & build tools look in standard places, so hide your stuff well

● You don’t need to install binaries into <prefix>/bin, and nobody can make you

● Likewise for libraries in lib(64), header files in include, etc.

19

Code structure & where stuff is located

● You need to have some docs, you can’t get away with not having any at all

● That doesn’t it mean it can’t be helpful to make package managers cry scream…

● Your documentation can be:

○ Minimal

○ Incomplete

○ Out of date

○ Confusing

○ Long and boring

20

Documentation

○ Scattered across many different places

○ Barely searchable

○ Only a research paper, nothing more

○ Only available in an annoying format (like PDF)

○ Only (comments in) the source code

● Host your project “somewhere else”, not on the usual platforms
○ Force package managers to have an account everywhere, just to ask questions

○ Make them learn the slightly different (and constantly changing) interface

○ Self-hosted GitLab is an interesting option (especially in a walled garden)

● Don’t use Git, there are many several alternatives (check out CVS!)

● Be inconsistent, scatter releases: tag versions (some as release), mirror with

infrequent sync, only upload some releases to PyPI, have an outdated website, …

● Include source tarballs or zip files in a Git repository (yes, it is allowed)

● Split your project across (many) different repositories (cfr. AMD ROCm)
21

Hosting (code, website, releases)

TM

● Take matters into your own hands, beat package managers at their own game

● Only provide instructions to do system-wide installation on Ubuntu (for example)
○ Some people will think that Ubuntu a hard requirement for your software…

○ Multiple cases of “I tried to run sudo apt install example, but it didn’t work”

from researchers using a supercomputer running a RHEL-based distro...

● Only provide a Docker file as installation instructions

● Release your software only as a Jupyter notebook (no other source files!)
Hat tip: "I don't like notebooks" talk: https://youtu.be/7jiPeIFXb6U?si

● Consider creating your very own package manager (cfr. AMD’s TheRock)
22

“Packaging” things yourself

TM

https://youtu.be/7jiPeIFXb6U?si

● More dependencies is better. Always.

● Choose them well, aim for maximum likelihood of trouble

● Look for obscure dependencies in particular

● Adopt newly emerging libraries ASAP

● You don’t need to actually use all those dependencies in your code, be reasonable

○ Just make your configuration tool require them, error out if they’re missing

○ Add include statements in your code, but don’t use any of the provided functions

○ If somebody complains, just state that you’re “future-looking”

23

Dependencies

https://xkcd.com/2347

This can
be you!

https://xkcd.com/2347

24

● Yes, you can!

● AlphaFold (https://github.com/google-deepmind/alphafold)

● Tool to predict how proteins fold based on its sequence by Google DeepMind

Can you win prizes with making package managers cry scream?

https://github.com/google-deepmind/alphafold

25

Can you win prizes with making package managers cry scream?

● Yes, you can!

● AlphaFold (https://github.com/google-deepmind/alphafold)

● Tool to predict how proteins fold based on its sequence by Google DeepMind

https://github.com/google-deepmind/alphafold

26

Can you win prizes with making package managers cry scream?

● Yes, you can!

● AlphaFold (https://github.com/google-deepmind/alphafold)

● Tool to predict how proteins fold based on its sequence by Google DeepMind

● 🏆 Prize?

https://github.com/google-deepmind/alphafold

● You may need to take some measures to keep yourself sane…

● Implement undocumented knobs and features to make things easier for you

● Put stuff behind environment variables that nobody knows about

○ Make sure they are hard to find

○ Do not use project name as prefix

○ Use magic required values!

○ Example code in Python:

27

Hidden tricks

● Choose your build tools wisely… Aim for maximum damage

● CMake is always a good choice, it confuses and annoys everyone
○ For inspiration:

■ https://xallt.github.io/posts/cmake-is-a-pain-in-the-ass

■ https://twdev.blog/2021/08/cmake

○ From https://news.ycombinator.com/item?id=34589687:

28

Build tools

https://xallt.github.io/posts/cmake-is-a-pain-in-the-ass
https://twdev.blog/2021/08/cmake
https://news.ycombinator.com/item?id=34589687

● You should combine multiple build tools, there’s no reason to stick to just one

○ Call cmake , make, … from setup.py (sure you can)

○ Use a script named configure.py, implement it in Perl 😈
● Have all of these in your repository for your Python project:

setup.py, setup.cfg, requirements.txt, pyproject.toml, environment.yml

● Guess what: build tools have dependencies too! \o/

● It doesn’t stop with choosing one (or more), it’s also about how you use them

● Think outside the box: use CMake as a runtime dependency in your software!

● If CMake is not enough for you, use Bazel instead (guaranteed success)
29

Build tools (part deux)

● Do not read the docs of the tools you’re using, or only use the outdated stuff

● Do not use well established tools according to best practices
○ Look up classic CMake vs modern CMake, use the former (well duh!)

○ Do still require that the very latest CMake version is used!

○ With a bit of luck, someone will hit some unexpected “regression” in CMake…

○ Pro tip: get alerts for new CMake releases via https://newreleases.io

● Beast mode: deliberately use hard to spot “typos” in filenames and commands
○ Example: ./nnake -f CMakeLitst.txt > pyproject.toml

○ Some day a package manager will fall for it and waste their weekend!
30

Build tools (yes, there’s more)

https://newreleases.io

● Package managers like to be able to test the installation of your software

● They often lack domain knowledge for doing so well, use that to your benefit

● Aim for a test suite that takes forever to run

● Flaky tests are your friend (you know which ones to ignore)

● Don’t pass on requiring extra dependencies to run your tests!
○ Package managers really hate having to do even more work just to run your tests

31

Testing

● PyTorch has a massive test suite...

● More than 250,000 tests, takes ~36h to run on a single (recent, beefy) system

● Significant changes to the structure of the test suite every PyTorch release \o/

● Example test suite result for PyTorch 2.7.1 (as produced by EasyBuild):
WARNING: 52 test failures, 0 test errors (out of 261883):
 distributed/_composable/fsdp/test_fully_shard_state_dict (1 failed, 1 passed, 4 skipped, 0 errors)
 distributed/test_store (1 failed, 32 passed, 0 skipped, 0 errors)
 dynamo/test_compiler_bisector (1 failed, 6 passed, 0 skipped, 0 errors)
 higher_order_ops/test_invoke_quant (1 failed, 13 passed, 0 skipped, 0 errors)
 higher_order_ops/test_invoke_subgraph (1 failed, 19 passed, 1 skipped, 0 errors)
 inductor/test_aot_inductor (2 failed, 313 passed, 102 skipped, 0 errors)
 ...

52 failing tests out of 261k => 99.98% of tests passing, is that good enough? 🤔
● A package manager person would be very tempted to try and reach 100%...

32

Particular example of test suites done well: PyTorch

● I will count to 3, and then you all SCREAM what you think is the correct answer

● Here comes the question…

● No screaming yet! Wait for the countdown!

● Which programming language is most likely to make package managers scream?

● Think about it first, no screaming yet!

● Are you ready for the countdown?

33

Live poll

1
34

Live poll: programming language to make ‘em SCREAM?

2
35

Live poll: programming language to make ‘em SCREAM?

3
36

Live poll: programming language to make ‘em SCREAM?

SCREAM
(some programming language, not just something random)

37

Live poll: programming language to make ‘em SCREAM?

● Pfft, where do we begin…

● C++ standard library is a gem

● Error messages produced by C++ compilers are… waaaauw

● Templates in C++

● Metaprogramming, what a concept (run the code at compile time!)

● Both Linus Torvalds and the FBI recommend you shouldn’t use C++. So use it!

● Bonus points for the name...

● Don’t take my word for it, see “The worst programming language of all time”

https://www.youtube.com/watch?v=7fGB-hjc2Gc (rant of 2 hours 9 min!)

Random quote: “If you like C++, then you don't know it well enough”
39

THE programming language to make ‘em SCREAM

https://www.youtube.com/watch?v=7fGB-hjc2Gc

● Python: the installation tools! setuptools! Conda! Python 4 on the horizon?!

● Rust: different enough to make your head spin, lots of custom terminology

● FORTRAN: since 1956, still in use (scientific software), #12 in TIOBE Index

● C#: just in case C++ isn’t enough…

● JavaScript: the inconsistencies! Npm!

● Go weird: OCaml, Haskell, Prolog (WTF?!), Erlang, F#, Lisp, Bash, Scheme, Ada, ...

● There’s a new programming language born every day, adopt them early on!

40

Other programming languages you should consider using

● A.k.a. how to make C++ even worse than it already is...

● They’re huge, complex, and impossible to avoid for any serious work

● Screenfilling cryptic error messages with C++ (it’s worth repeating, admit it)

● Defaults change frequently (cfr. https://gcc.gnu.org/gcc-15/porting_to.html)

● Compilers have dependencies too! They even depend on each other!!!

● Embrace the diversity, explore alternatives, don’t stick to GCC

● Try to make sure that GCC can not be used for some reason,

and force package managers to use another set of compilers…
41

Compilers

https://gcc.gnu.org/gcc-15/porting_to.html

● Implemented in C++ \o/

● Only generic pre-built binaries available on PyPI (don’t look up WheelNext!)

● Still uses Bazel as configuration & build tool \o/

● Clang compiler is now preferred over GCC

● Magic environment variables everywhere, but nowhere to be found in docs
○ They all start with $TF_ (not $TENSORFLOW_)

42

43

● Don’t waste the opportunity to confuse people through software versions

● Suggest that you’re using semantic versioning, but violate it (cfr. Python, Lua, ...)

● Start with calendar versioning (20260131), release 1.0, then switch to zerover (0.x)

○ Let package managers figure out what the latest release is…

● HDF5

○ Stable releases have even minor number (1.8, 1.10)

○ Development “releases” (?!) have an odd minor number (like 1.9, 1.11)

○ No more since HDF5 2.0, since they adopted semantic versioning (but, why?!)

○ https://support.hdfgroup.org/documentation/hdf5/latest/_r_e_l_v_e_r_s_i_o_n.html

● Encourage forks, especially without changing the name (see OpenFOAM!)

Versioning

https://support.hdfgroup.org/documentation/hdf5/latest/_r_e_l_v_e_r_s_i_o_n.html

● Python installation tools. Oh boy… (pro tip: stay away from uv !)

● Containers: build your own messy world, and get others to use it willingly somehow

● Downloading stuff during building/testing (yes cargo, I’m looking at you...)

● Misleading error messages, errors that are really just warnings (or vice versa),

error messages that go out of there way to hide the actual problem (pip!), etc.

● Recent and upcoming CPU families (for scientific computing): Arm, RISC-V

It’s about to get a whole lot worse very soon! \o/

● What else?! Come talk to me, I’ll be here all FOSDEM, let’s have a 🍺 !
44

Things we did not get to cover (in detail)

Kenneth Hoste
FOSDEM 2026 Main Track | https://fosdem.org

https://youtu.be/PBlDHlFnzGo

Email: kenneth.hoste@ugent.be
GitHub: @boegel

BlueSky: @boegel.bsky.social
Fediverse/Mastodon: @boegel@mast.hpc.social

https://linkedin.com/in/kenneth-hoste

How To Make Package
Managers Cry Scream

Yes, that font is Comic Sans.
No, that’s not by accident…

https://youtu.be/PBlDHlFnzGo

