
Going Full IPv6 in
Kubernetes:

No Limits, Just 128 bits!

whoami
Ole Mathias Heggem

Redpill Linpro
Norway

● First Golden Kubestronaut in Norway
○ All CNCF certifications

● Loves all kind of tech, from
microcontrollers to rockets

● Used IPv6 at home since 2013-ish
● Have my own ASN and a /29 block with

IPv6 (and a /24 with IPv4)

Legacy IP (IPv4)

● Core networking protocol in today's internet
● Standardized in RFC 791 - 1981
● Each packet contains a sender and a receiver address

○ Dot-decimal notation, example 10.13.37.1
○ 32-bit
○ Problem: 232 is only 4 294 967 296 addresses

■ Less than the current world population
● Workaround is Source Network Address Translation (NAT / SNAT)

○ It can “hide” multiple users behind a single IP
○ But brings complexity and has limitations

Why IPv6 now?

● Cloud Providers like AWS is (2023) charging for public IPv4 addresses
● Many ISPs are resorting to Carrier-Grade NAT (CGNAT) for its end users

○ Multiple layers of NAT = more complexity and issues
○ A lot of end-users behind same external IP

● Services can have rate-limit per IP
○ docker.io: 100 pulls per IPv4 address or IPv6 /64 subnet

Why IPv6 now?
RIPE IPv4 waiting list: https://www.ripe.net/manage-ips-and-asns/ipv4/ipv4-waiting-list/

Why IPv6 now?
RIPE IPv4 waiting list: https://www.ripe.net/manage-ips-and-asns/ipv4/ipv4-waiting-list/

The fix

● IPv6
● First draft in RFC 2460 - 1998
● Larger address space

○ 128-bit

340 282 366 920 938 463 463 374 607 431 768 211 456

4 294 967 296
 8 273 033 546

https://blog.apnic.net/2024/12/20/visualizing-the-scale-differences-of-ipv4-and-ipv6/

IPv6

● First draft in RFC 2460 - 1998
● Larger address space - IPv6

○ 128-bit
○ 2128 = 340 282 366 920 938 463 463 374 607 431 768 211 456
○ Hexadecimal notation - 8 groups of 16 bits each

■ 2a02:d140:c012:0003:0000:0000:0000:0122
■ 2a02:d140:c012:3::122
■ 2606:4700:4700::1111

● No need for NAT to extend address space

IPv6 status

Google is close to 50%
adaptation

So end-users are
getting there

Source: https://www.google.com/intl/en/ipv6/statistics.html

Source: https://www.google.com/intl/en/ipv6/statistics.html

Source: https://whynoipv6.com

Dual-Stack

● Dual Stack enabled hosts supporting both protocols
○ They have both IPv4 and IPv6 addresses
○ Can use either IPv4 / IPv6 if supported by the destination

■ Need IPv4 and/or IPv6 in DNS records
○ Modern operating systems prefer IPv6 over IPv4, but not guaranteed

● Adds complexity
○ You now have two stacks
○ Need to secure both stacks
○ Troubleshooting can be harder

Dual-Stack ?

● For clients this is mostly still needed (for now)
● For services exposed to end-users, this is still needed
● For servers that mostly talk to each other, why have two stacks?

IPv6 support in Kubernetes

● IPv6-only Clusters
○ Since K8s 1.9
○ Pods & services only have IPv6 addresses

● Dual-Stack Kubernetes clusters
○ GA since K8s 1.23
○ Every pod has an IP address from each family
○ K8s services can be declared as single-stack or dual-stack

● Each pod can have a public IPv6 Address
○ Like in IPv4 you will need to think about security
○ No need for NAT

K8s IPv6 support in Cloud Providers

● AWS EKS: Dual-stack
○ Each VPC get a /56

● GCP GKE: Dual-stack
● Azure AKS: Dual-stack

○ Uses NAT66 for IPv6
● Expect mixed maturity across providers

Public or Private Prefix

● Public:
○ Needs to be allocated from service provider
○ Probably needs BGP to route to your cluster
○ No NAT!

● Private:
○ Unique Local Addresses

■ Like RFC1918 in IPv4
○ Need NAT66 to reach the internet

Enabling IPv6 with a public prefix

● Request/allocate IPv6 prefix from ISP or cloud provider
● Example:

○ Service: /108
○ Pod subnets: /60

■ Each node gets its own /64
■ /60 you can have max 16 nodes

● Route the subnets to the nodes
○ BGP

● Security: “open” by default
○ Must harden access controls with ACLs

■ You should do this with IPv4 too

Enabling IPv6 with a private prefix

● Useful for isolated clusters (local, labs, dev, CI/CD)
○ Avoid dependency on public IPv6 allocations

● Use of Unique Local Addresses (ULA): fc00::/7
○ Like RFC1918 in IPv4

● No global reachability
○ Must use NAT66 or proxies for external access

Enabling Dual-Stack

● Nodes needs IPv4 and IPv6 addresses
○ Must be supported by the cloud platform

● kube-apiserver
○ –service-cluster-ip-range=<IPv4 CIDR>,<IPv6 CIDR>

● kube-controller-manager
○ –service-cluster-ip-range=<IPv4 CIDR>,<IPv6 CIDR>
○ –cluster-cidr=<IPv4 CIDR>,<IPv6 CIDR>
○ –node-cidr-mask-size-ipv4 & –node-cidr-mask-size-ipv6

● kube-proxy
○ –cluster-cidr=<IPv4 CIDR>,<IPv6 CIDR>

● kubelet
○ –node-ip=<IPv4>,<IPv6>

● CNI needs support and to be configured

Kubernetes CNI (Container Network Interface)

● Standard for container networking in Kubernetes
● Defines how Pods get IP addresses and connectivity
● Determines IPv6 feature availability in clusters

Cilium for IPv6?

● Supports IPv6-only and dual-stack clusters
● IPv6-aware load balancing (ClusterIP, NodePort, External)
● Hubble provides flow visibility, including IPv6 traffic

Dual-Stack Kubernets Services

● Since K8s 1.21, each service spec has new fields:
● .spec.ipFamilies:

○ [“IPv4”]
○ [“IPv6”]
○ [“IPv4”, “IPv4”]

● .spec.ipFamilyPolicy:
○ SingleStack (default)
○ PreferDualStack
○ RequireDualStack

Exploring IPv6-Only Deployments

● Escape IPv4 & NAT complexity
○ With a public IPv6 prefix

● Simplify addressing: every Pod gets a globally unique IP
● End-to-end connectivity without translation layers (to other IPv6 services)

Enabling IPv6-only in Cilium

● From Cilium 1.18 IPv6 underlay is supported

K3s & Cilium IPv6-only
curl -sfL https://get.k3s.io | INSTALL_K3S_EXEC='--flannel-backend=none --disable-network-policy

--cluster-cidr=fd77:19f3:99c2::/60 --service-cidr=fd96:4a16:c0ea::/112' sh -

ipam:

 mode: kubernetes

operator:

 replicas: 1

ipv4:

 enabled: false

ipv6:

 enabled: true

underlayProtocol: ipv6

enableIPv4Masquerade: false

enableIPv6Masquerade: true

kubeProxyReplacement: false

Cilium Helm Values

Talking to IPv4-only services from a IPv6-only cluster

● Use a web proxy or a registry as a pull through cache
● NAT64

○ Translation mechanism: IPv6 -> IPv4
○ Allows IPv6-only clients (Pods) to access IPv4 resources
○ Works together with DNS64 or CLAT for hostname resolution

Challenges

● Getting the rest of the organization onboard
● For many IPv6 is still new and unknown

Challenges

● Many apps & libraries still assume a IPv4 address
● Some managed services (LBs, storage, monitoring) only support IPv4
● Tooling may lag behind in IPv6 support

