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1 Introduction

Snapper 2.0 (henceforth known as just Snapper) is a snapshot mechanism
for capturing the state of a set of components (e.g. virtual memory pages).
It uses the a logging �le system (e.g. ext4) to ensure that �le operations
(e.g. modi�cation or deletion) are resistant to OS crashes mid-way through
the operation.

A vital property of Snapper is that it needs to be disk space e�cient
in order not to bloat the �le system. This is done by utilizing a mapping
from the component identi�er to a �le containing the component's state at
the time of the snapshot. Thus if a component's state remains unchanged
the mapping will point to a �le from a previous snapshot, hence no new �le
needs to be created.

2 The Problems Snapper Solves

Snapper is trying to build upon previous attempts to create a snapshot
mechanism for PhantomOS. Snapper is speci�cally designed for it to be able
to be implemented in Genode1. Here are the problems faced by previous
snapshot mechanisms and how Snapper solves them:

2.1 Disk-Space E�ciency for Multiple Snapshots

Snapper only stores new data in its snapshots. If a page has not changed,
its state will be recovered from previous snapshots. This reduces disk usage
when compared with a "superblock" mechanism, where the entire snapshot
data is bundled in one large object.

2.2 Handling of Snapshot Files

A previous idea to hold on to old, but still in-use, snapshot �les was to use
hardlinks. A hardlink would be created from the old snapshot directory to
the current snapshot directory if a �le had not changed.

Unfortunately, Genode does not provide support for hardlinks2 and I
was unsuccessful in patching hardlinks in. Snapper solves this by via a table
that maps the virtual pages to the path of the �le currently containing their
content. Additionally, a reference count will be kept for each �le. This tracks

1https://genode.org/
2See discussion: https://lists.genode.org/mailman3/hyperkitty/list/users@

lists.genode.org/thread/TKLOW3SZLHVOGW453TM5G2AQTXQWEMLF/
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how many generations (i.e. snapshots) require this �le. Once the reference
count reaches 0, the �le will be deleted.

2.3 File Integrity

Snapper should be resilient towards �lesystem failures (such as bad unmount)
as it utilizes ext4 and thus utilities like fsck can be used to recover the
�lesystem state.

In addition to this, Snapper provides integrity checks for individual �les
in the form of a hash representing the data stored in the �le. This is used
to track whether or not the saved virtual page contents have been modi�ed
before being recovered. See the Con�guration section on how to control the
policy for failed integrity checks.

Another use case of the hash is that it provides a way to know when a
new �le needs to be created for a snapshot (i.e. when the virtual page has
changed since the last snapshot).

2.4 Redundancy

The more redundancy there is between snapshots, the more robust the snap-
shot mechanism is. In order to achieve said redundancy, once a backing �le
has too many snapshots that depend on it (i.e. its reference count is greater
or equal to Snapper::Config::redundancy) Snapper will create a copy of
the �le and map all future snapshots with the copy and the original.

By con�guring Snapper::Config::redundancy, the system administra-
tor can control how often redundant �le copies are made, leaving them to
decide the right balance between robustness and storage usage.
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3 Comparison of Snapper 2.0 and Prior Snapshot
Mechanisms

Feature Superblock Squid Snapper 1.0 Snapper 2.0

Redundancy x x

Multiple Generations x x

Integrity Checks x x

File Cleanup x x x

Genode Compatibility x x x

Makes Use of Ext4 x x x

6



3.1 Snapper 2.0 vs Superblock

Feature Superblock Snapper 2.0

Redundancy makes two copies of the data and
stores them in two regions

makes copies of �les that are used in
many generations

Multiple Genera-
tions

n/a links identical �les from a previous
snapshot

Integrity Checks checksum cyclic redundancy checks

File Cleanup old superblocks are removed �les with a reference count of 0 are
removed

Genode Compati-
bility

compatible compatible

Makes Use of
Ext4

n/a uses ext4's journaling capabilities

While Superblock has a fair amount of redundancy, a system adminis-
trator does not have the same level of control as with Snapper 2.0. Once a
superblock is created a copy of it is saved in another location on disk. In
contrast, Snapper 2.0 supports multiple copies of the same �le. The system
administrator can decide how often these copies are made by setting the
constant Snapper::Config::redundancy.

A limitation of the Superblock implementation is that it has no sup-
port for multiple generations of snapshots. The mechanism only keeps a
superblock of the current system state along with a redundant copy of it.
While this serves the primary use case for a snapshot (that being restoring
the system state after a crash), it lacks the �exibility of Snapper 2.0 when it
comes to multiple versions of the system.
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3.2 Snapper 2.0 vs Squid

Feature Squid Snapper 2.0

Redundancy n/a makes copies of �les that are used in
many generations

Multiple Genera-
tions

links identical �les from a previous
snapshot

links identical �les from a previous
snapshot

Integrity Checks n/a cyclic redundancy checks

File Cleanup when the last link of a �le is gone, it
is removed

�les with a reference count of 0 are
removed

Genode Compati-
bility

incompatible (Genode does not sup-
port hardlinks)

compatible

Makes Use of
Ext4

uses ext4's journaling capabilities uses ext4's journaling capabilities

The Squid Snapshot mechanism sought to improve on the Superblock
mechanism by saving each snapshot in its own directory and using hardlinks
for the virtual pages whose contents had not changed since the previous
snapshot. This would solve the issue of unnecessary duplication of data
while also providing the functionality of multiple generations of snapshots.

I could not get this approach to work, however, as Genode does not
support hardlinks and, after failing to add them to the virtual �lesystem, I
decided to give up on this approach.

Snapper 2.0 is most similar to Squid in terms of the underlying mecha-
nism. Snapper 2.0 uses a mapping from virtual page number to �le path to
keep track of where the data is stored and to avoid duplication. Additionally,
each �le keeps track of how many generations it appears in, and when that
number reaches 0 Snapper 2.0 knows that this �le can be removed. This
is done to replicate hardlink functionality without actually implementing
hardlinks in the virtual �lesystem.
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3.3 Snapper 2.0 vs Snapper 1.0

Feature Snapper 1.0 Snapper 2.0

Redundancy n/a makes copies of �les that appear in
many generations

Multiple Genera-
tions

n/a (only latest snapshot can be re-
covered from)

links identical �les from a previous
snapshot

Integrity Checks n/a cyclic redundancy checks

File Cleanup possibility of a leak in disk storage �les with a reference count of 0 are
removed

Genode Compati-
bility

compatible compatible

Makes Use of
Ext4

uses ext4's journaling capabilities uses ext4's journaling capabilities

The �rst version of Snapper kept track of which virtual page was backed
by which �le via mappings in the singleton SnapTable and a mapping from
�le to virtual page managed by the singleton ReverseTable. Snapper 1.0
required both tables so that �les in-use can be identi�ed and all other un-
necessary �les could be removed.

The shortcoming of Snapper 1.0 was that it used singletons to manage
the mappings. This meant that only one version of the system state could
be had at a given time. Consequently, if the �le that stored SnapTable and
ReverseTable were to be corrupted, not only would there be no consistent
state which the system could recover, but information about which �le was
in-use would be lost, leading to "zombie" �les which the mechanism would
never delete as it would have lost information on their existence.

Another (minor) issue with Snapper 1.0 was that Genode's Dictionary
implementation is unsuitable for the use cases of the mechanism (e.g. no
support for iterating over entries) and thus a Dictionary would need to be
implemented which adds more complexity to the mechanism. Snapper 2.0,
on the other hand, uses arrays for the mappings to avoid this complexity.
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As for the major pitfalls of Snapper 1.0, Snapper 2.0 uses an archive �le
for each snapshot generation. This archive �le contains the mapping for the
current generation, meaning that any generation could be recovered if it has
a valid archive �le. Moreover, the hash of the archive �le is saved alongside
the data to ensure that any modi�cations are detected and the system can
react as dictated by the policy. Unlike its predecessor, Snapper 2.0 supports
an arbitrary number of prior snapshot generations and it provides integrity
checks for all �les.

4 De�nitions and Notations

4.1 Snapper

Snapper is the name of the snapshot mechanism.

4.2 Component

A discretionary object with a state. The set of all components will henceforth
be denoted by P.

4.3 Backlink

A �le path leading to a �le that contains the data for a component in a given
generation. A component may have multiple backlinks in a generation for
redundancy. The set of all backlinks for a page in a given snapshot will be
denoted by B.

4.4 Snapshot

Structure that contains partial or complete information about the states of
the components at a particular point in time.

4.5 Generation

A generation is a completed snapshot, meaning it can restore the component
space P.

4.6 Zombie

A �le with a reference count greater than one, which is not needed in any
generation.
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4.7 Dead Snapshot

An invalid generation that contains backlinks, needed for other generations,
and possibly zombie �les.

4.8 Snapshot Files

The set of all �les that contain data on the pages from di�erent snapshots
will be denoted by H.

4.9 Archiver

The mechanism that maps P → B, if a component pi has its current or past
contents saved in a �le hi ∈ B.

4.10 Snapper Root

Denoted by <snapper-root> it contains the directories which hold the infor-
mation for the various snapshots.

4.11 Snapshot Root

A directory containing H' ⊆ H, where H' is the set of all snapshot �les that
were created for the current snapshot (i.e. indicating that a page's value has
changed since the last snapshot).
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5 The Snapper Components

5.1 The Snapper Root

+-----------------+

| snapper-root |

+--------+--------+

|

|

+---------------------+--------------------+

| | |

| | |

+---+---+ ... +---+---+

| t_1 | | t_n |

+---+---+ +---+---+

| |

| |

+---------+--------+ ...

| |

| |

archive +------+-----+

| snapshot |

+------+-----+

|

|

+--------------+---------------+

| | |

| | |

f_0 ... +----+-----+

| ext |

+----+-----+

|

|

+--------------+-------------

| |

| |

f_0 ...

12



� ti := RTC timestamp of when the i-th generation was �nalized

� archive := �le that stores the mapping from a page to a �le storing its
contents for this snapshot

� fi := snapshot �les, named through an incrementing counter (in hex)
which is reset for each new sub-level in the hierarchy

� ext := extender directory contains the next level of �les

5.2 The Archive File

The archive �le contains keeps track of which �le is storing the contents
of a given component in the current generation. The archive �le is a key
component of a generation. Without it, a generation is invalid / dead
(i.e. the system cannot recover the state of the generation). Note, that a
generation can be invalid but still be needed for Snapper, as other generations
might have a need of �les contained within it.

The mapping itself is stored as a Genode dictionary, with the key cor-
responding to the page number and value contents being a Genode FIFO
queue which stores the backlink �le paths (relative to <snapper-root>).

For example:

Snapper::Archiver[i] = [ "/t_1/snapshot/ext/ext/00cd" ]

stores the contents of component pi in a �le found in the generation t1.
Notice how the �le path is relative to the <snapper-root>.

Note that the mapping can include multiple backlinks, each of which is
a redundant copy of the component's data. If one backlink is missing or has
an invalid hash, Snapper will try to recover the next backlink until it either
succeeds or it runs out of backlinks.

An example of a mapping entry with multiple backlinks:

Snapper::Archiver[i] = [ "/t_1/snapshot/ext/ext/00cd", "/t_0/snapshot/ext/ext/0054" ]

where the �rst �le (base name of "00cd") is an identical copy of the second
�le (base name of "0054") and they are store the contents of component pi.

The above examples showcase how the backlinks are stored in memory
during the lifetime of the Snapper object. When it comes to storing the
backlinks in the actual archive �le, the FIFO queue is expanded such that
each backlink is written to the archive �le as an individual mapping. Then,
when Snapper reads the archive �le, it aggregates all mappings with identical
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keys into a FIFO queue and that is what constitutes a Snapper::Archiver

entry.
Example3 of an archive �le's data section corresponding to the multi-

backlink example from above:

| KEY | VALUE |

|-------+------------------------------|

| i | "/t_1/snapshot/ext/ext/00cd" |

| i + 1 | "/t_0/snapshot/ext/ext/0054" |

| ... | ... |

| i + j | ... |

The archive �le has the following structure:

+----+----------------+--------------------------------+---------...

| v | hash | n | data

+----+----------------+--------------------------------+---------...

Symbol Size Description

v 1 byte Snapper version

hash 4 bytes integrity check for the data

n 8 bytes number of entries in the data

data as required key-value map that contains snapshot �les' paths

The archive �le contains information of how many entries comprise the
data in order to prevent a while(true) loop when reading the data. Note,
that the hash applies only to the data which is su�cient as modifying the
n (i.e. the number of entries) and appending false entries to the data will
result in the overall data segment having a di�erent hash than the original.

Also note, that if entries are appended to the data outside of the snapshot
mechanism (i.e. from a malicious third party), when reading the archive �le,
the snapshot mechanism will read the data up to n entries. All other entries
will be disregarded.

3In Snapper's implementation the archive �le will contain binary data. The example
uses plaintext for demonstration purposes.
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5.3 The Snapshot File

The snapshot �le primarily stores the binary data of an arbitrary page from a
given snapshot. Additionally, a snapshot �le has a reference counter. The �le
will be deleted if the reference count were to reach 0. The �le also contains
a hash which is used for integrity checking and for comparison operations.

The structure of the snapshot �le is as follows:

+----+----------------+----+---------...

| v | hash | rc | data

+----+----------------+----+---------...

Symbol Size Description

v 1 byte Snapper version

hash 4 bytes integrity for the data

rc 1 byte reference count (unsigned)

data as required the snapshot content

5.4 The Extender Directory

The extender directory is used to reduce the load on the �lesystem. Since
performance can be impacted if too many �les are in the same directory,
after a certain number (Snapper::Config::threshold), a sub-directory will
be created called ext and subsequent snapshot �les will be stored within it,
instead of the current one. Important to note is that the incremental counter
used to name the snapshot �les resets within the extender directory.

5.5 The Snapshot Directory

This directory is organized as a radix trie containing all snapshot �les of
components that have changed since the last generation. Files are added in
the extender directories. The extender directories are removed if their last
entity (�le or sub-directory) gets removed.
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5.6 The Generation Directory

The generation directory contains the archive �le and the snapshot directory.
The directory is uses an RTC timestamp as its name, which is generated at
the time of the directory's creation.

The generation directory makes up a complete snapshot. As long as the
archive �le is present and its hash is valid, the generation should be able to
be recovered.

The generation directory is removed when both the snapshot directory
and the archive �le have been removed.

6 The Snapper Mechanism

6.1 Snapshot Step

The rationale behind this step is to use a �le (the archive �le) to keep track
of the snapshot �le(s) (a.k.a backlinks) of the components. This allows for
a single source of truth. If the archive �le is corrupted it must be replaced
with a backup version of the �le.

Each snapshot �le must keep a reference count which keep track of the
number of generations that need this �le. Should the reference count exceed
Snapper::Config::redundancy a new snapshot �le will be created to store
the data. Both the new �le and the old �le will be stored as backlinks for
later snapshots.

The snapshot process has been designed to allow the snapshot of indi-
vidual components to be done at an arbitrary time. For example, the user
can snapshot the �rst n-components, then do some computations, and then
snapshot the rest of the components. This is not recommended as the state
could have changed for the �rst n-components before the rest are saved in
the snapshot, hence leading to an inconsistent system state. It is up to the
user to determine if it is more desirable to "pause" the snapshot process, or
do it all in one go.

In order to support this �exibility, the Snapper initiate the snapshot
procedure. Once this procedure is active the only Snapper operation allowed
is the taking of snapshots (i.e. recovering and purging are disallowed). Once
all components have been captured in the snapshot, the generation will be
committed and Snapper will be returned to its dormant state.

In terms of performance, the taking of snapshots is cheap as it comprises
a dictionary lookup, and in the worst case (the page's contents do not appear
in a prior generation): a write to a �le. The true cost comes when commit-
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ting the generation. The Snapper::Archiver is written to the generation's
archive �le, which means iterating over all the entries.

As an optimizations, reference counts are updated during the taking of
the snapshot (as opposed to the commit step) in order to prevent opening all
the �les again at the commit stage. Unfortunately, this could lead to zombie
�les if the system crashes before the generation is committed (and the archive
�le is written). If no archive �le has any mention of a snapshot �le, then
that �le will never be deleted as its reference count falsely indicates that the
�le is still being needed. To clean up zombie �le please refer to Purge Step
(Zombies).

1. If the latest generation does not have a valid archive �le, delete it (the
generation is incomplete).

2. Initialize a new generation directory with an RTC timestamp as the
name.

3. Within the generation directory create the archive �le and the snapshot
directory.

4. Check if there is a valid prior generation (based on the timestamps).
If there is, load the archive �le's data into the Snapper::Archiver.

5. Let hi := Snapper::Archiver[i]. If Snapper::Archiver[i] contains
backlinks, use the �rst backlink (i.e. the earliest backlink).

6. For each pi ∈ P where the hash of the �le hi does not match the hash
of pi (or hi does not exist):

(a) Create new �le, hj, and save the binary contents of pi into this
new �le.

(b) Initialize the snapshot �le with the new hash of the data, a refer-
ence count of 1, and the binary data of pi.

(c) Update Snapper::Archiver[i] ← path( hj ), there path() is the
path relative to <snapper-root>.

7. For each pi ∈ P where hash of the �le hi matches the hash of pi:

(a) If the �le hi has a reference count greater than or equal to Snapper::Config::redundancy:

i. Create a new �le hj as outlined in Step 6.

ii. Increment the reference count for all �les in Snapper::Archiver[i].

iii. Enqueue path( hj ) to Snapper::Archiver[i].
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(b) If the �le hi has a reference count lower than Snapper::Config::redundancy,
increment the reference count of it and all other redundant �les
in Snapper::Archiver[i].

8. Save Snapper::Archiver into the archive �le and calculate the hash
of the entries.
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6.2 Recovery Step

This step uses the archive �le to e�ciently lookup the data belonging to a
page. The recovery process is �exible enough to allow partial recovery, i.e.
the user recovers only the pages that they need. The pages can be recovered
at any time while the recovery procedure is active. Throughout the recovery
process all other Snapper procedures are disallowed.

Entry lookups happen in logarithmic time due to Genode's Dictionary
use of AVL-trees. Additionally, in the case that an archive entry's backlinks
are invalid a linear search through a queue is used until a valid backlink is
found or the queue is exhausted.

A downside to the lookup table being loaded in memory is that more
information (i.e. entries and backlinks) result in heavier RAM usage.

1. Choose a generation to boot from (by default the latest one).

2. Check if the generation is valid (i.e. has an archive �le with a valid
hash). If not, recovery is not possible.

3. Load the archive �le of the latest valid generation into Snapper::Archiver.

4. For each h ∈ Snapper::Archiver and for each backlink, hi ∈ h:

(a) Check the hash with the stored data.

(b) If hi does not exist or there is a mismatch with the hash, try the
next backlink.

(c) If there are no more backlinks to check, respond according to the
con�gured policy.

(d) If the hash matches hi, load the data of hi into the corresponding
page pi.

6.3 Purge Step

To purge a generation, the archive �le is loaded into memory and each back-
link's reference count is decremented. When a �le's reference count is decre-
mented to 0, the �le is removed. If a directory becomes empty as a result, it
is removed. This ensures that all �les needed by other generations are kept
in the same place, and everything else is properly cleaned up.

The worst case of this approach would be that a snapshot �le could be
many sub-directories deep and while it is needed all those sub-directories will
remain. This cost is minimal and necessary as the alternative would be to
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move the �le higher in the directory structure, then search for all references
to that �le in all of the other archive �les and update the path, a much more
costly endeavor.

1. Make sure the generation is valid (i.e. it has an archive �le with a valid
hash).

2. If the archive �le has an invalid hash:

(a) If Snapper::Config::integrity is set to true, crash the system
and ask the system administrator to replace the generation's cor-
rupted archive �le with a backup copy.

Note, that if no backup copy exists it is highly recommended
to manually remove the current generation as well as all subse-
quent generations. Snapper can continue to function without the
removal, but the broken generation and its �les will never be re-
moved. Alternatively, the administrator could manually remove
the broken generation and set Snapper::Config::integrity to
false. That way any snapshots that relied on the broken gener-
ation will only output warnings but will not crash the system if
they are unable to recover a �le.

(b) Otherwise, log an error message and boot the system into a clean
state.

3. If the archive �le has a valid hash:

(a) Load the archive �le into Snapper::Archiver.

(b) For each entry h ∈ Snapper::Archiver and for each �le hi ∈ h:
decrement the �le hi's reference count.

(c) Delete the archive �le.

6.4 Purge Step (Zombies)

There is a possibility of �les which are no longer in need by any generation
(aka zombie �les) to occur as a result of a system crash during the Snapshot
Step or the Purge Step when the reference counts of �les are updated. The
system crash would create an inconsistency between the �le reference count
and the amount of generations that the �le is needed by. By design, this
inconsistency would always result in the �le reference count being lower
than the actual �le references. Thus, when all the generations referencing
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the �le have been purged, the �le itself will not be purged as its reference
count incorrectly states that it is still in need.

To remove all zombie �les from the system we use the following algorithm.
Note that this algorithm is very slow (especially for large component sets and
many snapshots) hence it should be used rarely. To achieve its e�ect run it
at most once per Purge Step (the only time when zombies may appear).

1. For each dead snapshot:

(a) For each �le:

i. Check if the �le is needed in any of the generations (requires
linear search).

ii. If the �le is needed by at least one, keep it.

iii. Otherwise delete it.

7 Snapper's Time and Space Complexity

The following complexity analysis uses the following assumptions:

� let P be the set of all components, and let p = |P|

� let H be the set of all entries in the mapping stored in an archive �le,
and let h = |H|

� let B be the set of all backlinks present in an archive �le, and let b =
|B|

� let S be the set of all generations, and let s = |S|

� let Z be the set of all �les in dead snapshots, and let z = |Z|

NOTE: Since Genode's Dictionary uses an AVL-tree, all Dictio-
nary lookups are O(log(n)).

Use-Case Time Complexity Space Complexity Regularity

Continued on next page
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Continued from previous page

Use-Case Time Complexity Space Complexity Regularity

Begin snapshot procedure. O(1) O(1) Determined by the

con�gured policy.

Take a snapshot. O(log(h)) O(1) Every time a component
needs

needs to be backed-up.

Commit generation. O(b) O(b)4 When snapshot process

is completed.

Begin recovery procedure. O(b) O(b) When the system boots.

Recover a component. O(log(h)) O(1) For each component
that

needs to be recovered.

Finish recovery. O(1) O(1) When all components
have

been recovered.

Purge a generation. O(b) O(b) Determined by the

con�gured policy.

Purge zombies. O(z * s * p) O(1) At most once per purge.

4O(b) because the entire Snapper::Archive, which contains all the backlinks, needs to
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be written to the archive �le.
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8 Remarks on the Implementation of Snapper

Snapper should be able to be implemented via the Genode's API and pro-
vided data structures and the lwext4 library5. I was unable to get Genode's
libc to work with PhantomOS so unfortunately libc is not viable for Snapper.
Having this constraint in mind, here are what Snapper was optimized for:

8.1 Fast Insertion of Data

Insertion of new data during the snapshot procedure is relatively fast. All
that is needed is to compute the hash of the data and to write both the data
and its hash into a �le.

8.2 Flexible Data Redundancy

Snapper allows the set of the data redundancy by allowing a �le to have
redundant copies (i.e. backlinks) after its reference count meets or exceeds
Snapper::Config::redundancy. The archive �le then links the virtual com-
ponent to a comma separated list of �les from older generations that store
identical data. This redundancy comes at the cost of the following:

� slower insertions (due to additional string manipulations)

� higher disk usage (due to archive entries having longer strings)

It is important to note, however, that these costs are minimal and fur-
thermore there are no costs pertaining to recovering data, as the Recovery
Step tries to use the �rst �le path provided by the archive entry. It accesses
subsequent backlinks only if the �rst �le was corrupted.

8.3 Fast Recovery of Generations

Recovery of entire generations comprises reading all �les needed by the gen-
eration and loading the data into the address space. By using an array to
keep track of where a component's �le is located, Snapper can e�ciently
retrieve the data.

5https://codeberg.org/jws/genode-wundertuete/src/branch/sculpt-24.

04-2024-04-19
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8.4 Manageable Directory Sizes

Since each component on the address space needs a snapshot �le, the perfor-
mance would be be hampered severely if all those �les in the same directory.
By using a radix trie with a dynamic height, the �les are distributed in a
manageable way along the di�erent directory levels, thus reducing the strain
on the �lesystem.

8.5 File and Generation Integrity

By utilizing hash, Snapper can detect when a snapshot �le or archive has
been tampered with. The admin of the system can then decide what to do
with that knowledge through con�guration of the policy.

8.6 Transient Files

Snapshot �les that are relevant for more than one generation are not du-
plicated. Instead, the archive �le keeps track of which �les are needed for
the generation, even if some of those �les could be from other generations.
Each �le's reference count makes sure that a �le is not removed while it is
still needed by a valid generation. Similarly, �les and directories that are
no longer needed can easily be identi�ed and removed, ensuring that storage
space remains uncluttered.

8.7 Partial Snapshot Recovery

A generation with a valid archive, can be indexed to load a particular ver-
sion of a component without having to restore the entire system to that
generation.

9 The Snapper Object

The following section explains the usage of the main interfaces of the Snapper
object. For using Snapper in an actual project, see

The code in this section requires the snapper.h header. Error
handling has been omitted for brevity.

9.1 Initializing Snapper

This step is required to use any functionality of Snapper. You can initialize
the global object with:
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Snapper::Main snapper(env);

Here env is the Genode::Env& object created at the start of the Genode
program.

9.2 Creating A Snapshot

Make sure Snapper is initialized.

1. Prepare the Snapper object for the snapshot procedure.

snapper.init_snapshot(); // OPTIONAL pass in specific generation

2. For each component's data that should be saved in the snapshot.

int payload = 5;

Genode::size_t size = sizeof(payload);

Genode::uint64_t identifier = 4;

snapper.take_snapshot(&payload, size, identifier);

3. Finally save mark the snapshot as complete and cleanup.

snapper.commit_snapshot();

9.3 Restoring A Snapshot

Make sure Snapper is initialized.

1. Begin restoration procedure.

If no generation is provided to this method, the latest gen-
eration will be used for the restoration. If Snapper is to
restore a speci�c generation, the caller should provide the
RTC timestamp of the generation as a string.

snapper.open_generation(); // OPTIONAL pass in specific generation

2. Restore each desired component (ideniti�ed by its identi�er).

The caller is responsible for providing a bu�er su�cient for
the data to be restored to.
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Genode::size_t size = 5;

char data[size];

Genode::uint64_t identifier = 5;

snapper.restore(&data, size, identifier);

3. Cleanup the restoration process.

snapper.close_generation();

9.4 Purging A Snapshot

Make sure Snapper is initialized.

1. Purge a desired generation.

Provide a RTC timestamp as a string to delete a speci�c
generation. By default the oldest generation is removed.

snapper.purge(); // OPTIONAL pass in specific generation

2. Purge expired generations

The expiration for generations can be set in Con�guration.

snapper.purge_expired();

3. Purge zombie �les

snapper.purge_zombies();

10 Snapper User Stories (i.e Using Snapper in Projects)

Snapper is designed with Genode's RTC server-client paradigm in mind. You
can �nd a demo con�guration of the server in /run/snapper-common.inc. For
con�guring the server, see Con�guration.

For the using the client (you can �nd an example in /src/test/snapper/main.cc),
you need:
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#include "snapper_session/connection.h"

void

Component::construct (Genode::Env &env)

{

Snapper::Connection snapper (env); // establishes connection to the server

}

You can then use snapper as explained in The Snapper Object.

11 Handling of Fail Points

Here's how Snapper will handle the following failure points:

11.1 Improper Unmount of the File System

If the system were to crash then the �lesystem would not be properly un-
mounted. This is already handled by the lwext4 library. On mount, it �rst
tries to �x the �lesystem. If that is unsuccessful it prints out a message that
the fsck Linux utility should be used.

11.2 Incomplete Snapshot

In the case when the system crashes midway through a snapshot, the latest
generation directory will still not contain an archive �le. Thus when the
system reboots the incomplete generation will be deleted and a prior valid
generation will be used, if such exists.

11.3 Low Disk Space

If the system detects that disk space is running low, it will run the Purge
algorithm on the oldest generation until either disk usage is back to a ac-
ceptable level.

12 Backups

Although Snapper can detect when snapshot �les or archive �les have been
corrupted, it only supports redundancy when it comes to snapshot �les (see
the Data Redundancy section for more details). However, archive �les can
be corrupted as well. Snapper does not concern itself with providing
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redundancy for the archive �les. The reason for this decision is that
there are many variables that a system administrator might want to tweak
when backing up �les that govern how a generation is to be recovered.

For instance, should the backup archive �les be saved on a di�erent disk?
Should archive backup �les from di�erent systems be stored together? How
should the backup �les be named to di�erentiate them from one another?

With so many options and use cases, it is easier to leave the system
administrator in charge of ensuring that the archive �les are backed-up.
If an archive �le was deemed to have failed its hash, Snapper will notify
the system administrator that the generation could not be recovered. All
the system administrator has to do then is to simply replace the corrupted
archive �le with a backed-up copy.

It is highly recommended to backup archive �les! If an archive
�le were to be corrupted, disk storage would leak as some �les
will still have non-zero reference counts, even though there are
no references to them from any valid archive �les.
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13 Con�guration of Snapper

Snapper should be con�gurable through Genode's XML. The con�guration
options are stored in Snapper::Config:

OPTION TYPE DEFAULT DESCRIPTION

verbose bool false Whether to print verbose output.

threshold unsigned int 100 The maximum number of �les in a
snapshot sub-directory.

integrity bool true If true, crash the system on failed integrity
checks,

otherwise log a warning.

redundancy unsigned int 3 After reaching this reference count, a re-
dundant �le

copy will be created for subsequent snap-
shot.

max_snapshots unsigned int 0 The maximum number of complete snap-
shots inside

<snapper-root>.

min_snapshots unsigned int 0 The minimum number of generations that
need to be present

for a purge to be possible.

expiration unsigned int 0 How many seconds a generation should be
kept.

(seconds)

Continued on next page
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Continued from previous page

OPTION TYPE DEFAULT DESCRIPTION

bufsize size_t 1024 * 1024 The size of the dataspace which will trans-
fer the payload

(bytes) to the snapper component.
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13.1 Verbose Output

Snapper::Config::verbose (default = false) toggles verbose output.

13.2 Directory Load

Snapper::Config::threshold (default = 100) can be set to determine the
maximum number of snapshot �les within a snapshot sub-directory. After
the number of �les exceeds this threshold, an extender directory will be
created and all subsequent �les will be placed within said directory.

13.3 Integrity Checks

Snapper::Config::integrity (default = true), when true, will crash the
system during the Recovery Step if a mapping in the archive �le does not
provide a single valid snapshot �le. On false, Snapper will just log an error
and ignore the restoration of that page.

Likewise when an archive �le fails its hash check, the system will crash
if Snapper::Config::integrity is set to true. Otherwise, an error will be
logged and the system will boot without recovering that generation.

13.4 Redundancy Level

Snapper::Config::redundancy (default = 3) determines the maximum num-
ber of generations that a snapshot �le appears in before another backlink is
created.

13.5 Retention Policy

Snapper's retention policy will determine which completed generations are
kept and which are purged.

13.5.1 Limit by Number

The number of completed generations kept will be limited to Snapper::Config::max_snapshots.
This retention policy is disabled if that number is 0 (default). Conversely, the
Purge Step will fail if the number of generations is lower than Snapper::Config::min_snapshots
(default = 0).
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13.5.2 Limit by Expiration

If a generation is older than Snapper::Config::expiration seconds it will
be purged. This can be disabled by setting Snapper::Config::expiration

to 0 (the default).

13.6 Payload Size

Snapper::Config::bufsize can be set according to the payload size ex-
pected for calls to Snapper::take_snapshot(). Be aware that calling
Snapper::take_snapshot() with a payload larger than Snapper::Config::bufsize
will result in a crash!

14 Conclusion

Snapper 2.0 e�ciently manages PhantomOS snapshots by storing only changed
data, reducing disk usage, and ensuring data integrity with ext4's logging
features. It overcomes previous limitations with a robust mapping strat-
egy and reference counting for �le management. The dynamic directory
structure enhances performance, while con�gurable retention policies and
fail-safe mechanisms improve system resilience. Despite some challenges,
Snapper provides a strong foundation for e�ective snapshot management in
PhantomOS.
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