Snapper (v2) - A PhantomOS Snapshot
Mechanism

Rumen Mitov

2025-06-04

Contents

(1__Introductionl 4
The Problems Snapper Solves| 4
[2.1 Disk-Space Efficiency tor Multiple Snapshots|] 4
[2.2 Handling of Snapshot Files| 4
2.3 File Integrity|] oL 5
2.4 Redundancy|. 5
Comparison of Snapper 2.0 and Prior Snapshot Mechanisms| 6
[3.1 Snapper 2.0 vs Superblock|o o0 7
[3.2 Snapper 2.0 vs Squid| 8
[3.3 Snapper 2.0 vs Snapper 1.0] 9

I Defnih N ons 10
4.1 Snapper] 10
[4.2 Component| 10
M3 BacklinKl 10
4.4 Snapshot|. 10
45 Generationl 10
6 Zomblel. 10
(4.7 Dead Snapshot| oo 11
[4.8 Snapshot Files) oo o 11
B9 Archiver] oo 11
[4.10 Snapper Root|o 11
[4.11 Snapshot Root| 11

The Snapper Components|

B.I

The Snapper Root|

H.2

The Archive Filel

.3

The Snapshot File| 000

B4

The Extender Directory|

[0.9

The Snapshot Directory|

5.6

The Generation Directory|

The Snapper Mechanism|

6.1

Snapshot Step|. L o

6.2

Recovery Step|o oo

6.3

Purge Step|o

6.4

Purge Step (Zombies)| oo

Snapper’s Time and Space Complexity|

Remarks on the Implementation of Snapper|

82

Flexible Data Redundancy|.

R3

Fast Recovery of Generations|

The Snapper Object|

0.1

Initializing Snapper|.o

0.2

Creating A Snapshot| L

0.3

Restoring A Snapshot|o

0.4

Purging A Snapshot|o o000

(10 Snapper User Stories (i.e Using Snapper in Projects)|

11 Handling of Fail Points|

[11.1 Improper Unmount of the File System|

(11.2 Incomplete Snapshot|

[11.3 Low Disk Space|

12
12
13
15
15
15
16

16
16
19
19
20

21

24
24
24
24
25
25
25
25

25
25
26
26
27

27

28
28
28
28

28

[13 Configuration of Snapper| 30

(13.1 Verbose Output|. 32
[13.2 Directory Load| 32
(13.3 Integrity Checks| 32
(13.4 Redundancy Level| 32
[13.5 Retention Policy] 32
(13.5.1 Limit by Number|. 32

[13.5.2 Limit by Expiration|, 33

(13.6 Payload Sizel. oL 33
14 Conclusion| 33

1 Introduction

Snapper 2.0 (henceforth known as just Snapper) is a snapshot mechanism
for capturing the state of a set of components (e.g. virtual memory pages).
It uses the a logging file system (e.g. ext4) to ensure that file operations
(e.g. modification or deletion) are resistant to OS crashes mid-way through
the operation.

A vital property of Snapper is that it needs to be disk space efficient
in order not to bloat the file system. This is done by utilizing a mapping
from the component identifier to a file containing the component’s state at
the time of the snapshot. Thus if a component’s state remains unchanged
the mapping will point to a file from a previous snapshot, hence no new file
needs to be created.

2 The Problems Snapper Solves

Snapper is trying to build upon previous attempts to create a snapshot
mechanism for PhantomOS. Snapper is specifically designed for it to be able
to be implemented in Genode{ﬂ Here are the problems faced by previous
snapshot mechanisms and how Snapper solves them:

2.1 Disk-Space Efficiency for Multiple Snapshots

Snapper only stores new data in its snapshots. If a page has not changed,
its state will be recovered from previous snapshots. This reduces disk usage
when compared with a "superblock" mechanism, where the entire snapshot
data is bundled in one large object.

2.2 Handling of Snapshot Files

A previous idea to hold on to old, but still in-use, snapshot files was to use
hardlinks. A hardlink would be created from the old snapshot directory to
the current snapshot directory if a file had not changed.

Unfortunately, Genode does not provide support for hardlinksﬂ and I
was unsuccessful in patching hardlinks in. Snapper solves this by via a table
that maps the virtual pages to the path of the file currently containing their
content. Additionally, a reference count will be kept for each file. This tracks

"https://genode.org/
ZSee discussion: https://lists.genode.org/mailman3/hyperkitty/list/users@
lists.genode.org/thread/TKLOW3SZLHVOGW453TM5G2AQTXQWEMLF/

https://genode.org/
https://lists.genode.org/mailman3/hyperkitty/list/users@lists.genode.org/thread/TKLOW3SZLHVOGW453TM5G2AQTXQWEMLF/
https://lists.genode.org/mailman3/hyperkitty/list/users@lists.genode.org/thread/TKLOW3SZLHVOGW453TM5G2AQTXQWEMLF/

how many generations (i.e. snapshots) require this file. Once the reference
count reaches 0, the file will be deleted.

2.3 File Integrity

Snapper should be resilient towards filesystem failures (such as bad unmount)
as it utilizes ext4 and thus utilities like fsck can be used to recover the
filesystem state.

In addition to this, Snapper provides integrity checks for individual files
in the form of a hash representing the data stored in the file. This is used
to track whether or not the saved virtual page contents have been modified
before being recovered. See the section on how to control the
policy for failed integrity checks.

Another use case of the hash is that it provides a way to know when a
new file needs to be created for a snapshot (i.e. when the virtual page has
changed since the last snapshot).

2.4 Redundancy

The more redundancy there is between snapshots, the more robust the snap-
shot mechanism is. In order to achieve said redundancy, once a backing file
has too many snapshots that depend on it (i.e. its reference count is greater
or equal to Snapper::Config: :redundancy) Snapper will create a copy of
the file and map all future snapshots with the copy and the original.

By configuring Snapper: :Config: :redundancy, the system administra-
tor can control how often redundant file copies are made, leaving them to
decide the right balance between robustness and storage usage.

3 Comparison of Snapper 2.0 and Prior Snapshot

Mechanisms
Feature Superblock Squid Snapper 1.0 Snapper 2.0
Redundancy X X
Multiple Generations X X
Integrity Checks X b
File Cleanup X X X
Genode Compatibility X X X
Makes Use of Ext4 X X X

3.1 Snapper 2.0 vs Superblock
Feature Superblock Snapper 2.0
Redundancy makes two copies of the data and | makes copies of files that are used in

Multiple Genera-
tions

Integrity Checks
File Cleanup
Genode Compati-
bility

Makes
Ext4

Use of

stores them in two regions

n/a

checksum

old superblocks are removed

compatible

n/a

many generations

links identical files from a previous
snapshot

cyclic redundancy checks

files with a reference count of 0 are
removed

compatible

uses ext4’s journaling capabilities

While Superblock has a fair amount of redundancy, a system adminis-
trator does not have the same level of control as with Snapper 2.0. Once a
superblock is created a copy of it is saved in another location on digsk. In
contrast, Snapper 2.0 supports multiple copies of the same file. The system
administrator can decide how often these copies are made by setting the
constant Snapper: :Config: :redundancy.

A limitation of the Superblock implementation is that it has no sup-
port for multiple generations of snapshots. The mechanism only keeps a
superblock of the current system state along with a redundant copy of it.
While this serves the primary use case for a snapshot (that being restoring
the system state after a crash), it lacks the flexibility of Snapper 2.0 when it
comes to multiple versions of the system.

3.2 Snapper 2.0 vs Squid

Feature Squid Snapper 2.0

Redundancy n/a makes copies of files that are used in
many generations

Multiple Genera- | links identical files from a previous | links identical files from a previous

tions snapshot snapshot

Integrity Checks | n/a cyclic redundancy checks

File Cleanup when the last link of a file is gone, it | files with a reference count of 0 are
is removed removed

Genode Compati- | incompatible (Genode does not sup- | compatible

bility port hardlinks)
Makes Use of | uses ext4’s journaling capabilities uses ext4’s journaling capabilities
Ext4

The Squid Snapshot mechanism sought to improve on the Superblock
mechanism by saving each snapshot in its own directory and using hardlinks
for the virtual pages whose contents had not changed since the previous
snapshot. This would solve the issue of unnecessary duplication of data
while also providing the functionality of multiple generations of snapshots.

I could not get this approach to work, however, as Genode does not
support hardlinks and, after failing to add them to the virtual filesystem, I
decided to give up on this approach.

Snapper 2.0 is most similar to Squid in terms of the underlying mecha-
nism. Snapper 2.0 uses a mapping from virtual page number to file path to
keep track of where the data is stored and to avoid duplication. Additionally,
each file keeps track of how many generations it appears in, and when that
number reaches 0 Snapper 2.0 knows that this file can be removed. This
is done to replicate hardlink functionality without actually implementing
hardlinks in the virtual filesystem.

3.3 Snapper 2.0 vs Snapper 1.0

Feature Snapper 1.0 Snapper 2.0

Redundancy n/a makes copies of files that appear in
many generations

Multiple Genera- | n/a (only latest snapshot can be re- | links identical files from a previous

tions covered from) snapshot

Integrity Checks | n/a cyclic redundancy checks

File Cleanup possibility of a leak in disk storage | files with a reference count of 0 are
removed

Genode Compati- | compatible compatible

bility

Makes Use of | uses ext4’s journaling capabilities uses ext4’s journaling capabilities

Ext4

The first version of Snapper kept track of which virtual page was backed
by which file via mappings in the singleton SnapTable and a mapping from
file to virtual page managed by the singleton ReverseTable. Snapper 1.0
required both tables so that files in-use can be identified and all other un-
necessary files could be removed.

The shortcoming of Snapper 1.0 was that it used singletons to manage
the mappings. This meant that only one version of the system state could
be had at a given time. Consequently, if the file that stored SnapTable and
ReverseTable were to be corrupted, not only would there be no consistent
state which the system could recover, but information about which file was
in-use would be lost, leading to "zombie" files which the mechanism would
never delete as it would have lost information on their existence.

Another (minor) issue with Snapper 1.0 was that Genode’s Dictionary
implementation is unsuitable for the use cases of the mechanism (e.g. no
support for iterating over entries) and thus a Dictionary would need to be
implemented which adds more complexity to the mechanism. Snapper 2.0,
on the other hand, uses arrays for the mappings to avoid this complexity.

As for the major pitfalls of Snapper 1.0, Snapper 2.0 uses an archive file
for each snapshot generation. This archive file contains the mapping for the
current generation, meaning that any generation could be recovered if it has
a valid archive file. Moreover, the hash of the archive file is saved alongside
the data to ensure that any modifications are detected and the system can
react as dictated by the Unlike its predecessor, Snapper 2.0 supports
an arbitrary number of prior snapshot generations and it provides integrity
checks for all files.

4 Definitions and Notations

4.1 Snapper

Snapper is the name of the snapshot mechanism.

4.2 Component

A discretionary object with a state. The set of all components will henceforth
be denoted by P.

4.3 Backlink

A file path leading to a file that contains the data for a component in a given
generation. A component may have multiple backlinks in a generation for
redundancy. The set of all backlinks for a page in a given snapshot will be
denoted by B.

4.4 Snapshot

Structure that contains partial or complete information about the states of
the components at a particular point in time.

4.5 Generation

A generation is a completed snapshot, meaning it can restore the component
space P.

4.6 Zombie

A file with a reference count greater than one, which is not needed in any
generation.

10

4.7 Dead Snapshot

An invalid generation that contains backlinks, needed for other generations,
and possibly zombie files.

4.8 Snapshot Files

The set of all files that contain data on the pages from different snapshots
will be denoted by H.

4.9 Archiver

The mechanism that maps P — B, if a component p; has its current or past
contents saved in a file h; € B.

4.10 Snapper Root

Denoted by <snapper-root> it contains the directories which hold the infor-
mation for the various snapshots.

4.11 Snapshot Root

A directory containing H’ C H, where H’ is the set of all snapshot files that
were created for the current snapshot (i.e. indicating that a page’s value has
changed since the last snapshot).

11

5 The Snapper Components

5.1 The Snapper Root

S +
| snapper-root |
S S R +
|
|
Ry R +
| | |
| | |
tommtom—t tommtommt
(I | t_n |
R S R S
| |
| |
Fommmmmmeo R +
| |
| |
archive e +o-o—- +
| snapshot |
Ep——— S p— +
|
|
R — SO +
| | |
| | |
£f_0 S R +
| ext |
Fommmdome oo +
|
|
Fommmm oo oo
| |
| |
£ 0

12

e t; := RTC timestamp of when the i-th generation was finalized

e archive := file that stores the mapping from a page to a file storing its
contents for this snapshot

e f; := snapshot files, named through an incrementing counter (in hex)
which is reset for each new sub-level in the hierarchy

e ext := extender directory contains the next level of files

5.2 The Archive File

The archive file contains keeps track of which file is storing the contents
of a given component in the current generation. The archive file is a key
component of a generation. Without it, a generation is invalid / dead
(i.e. the system cannot recover the state of the generation). Note, that a
generation can be invalid but still be needed for Snapper, as other generations
might have a need of files contained within it.

The mapping itself is stored as a |Genode dictionary, with the key cor-
responding to the page number and value contents being a |Genode FIFO
queue which stores the backlink file paths (relative to <snapper-root>).

For example:

Snapper: :Archiver[i] = ["/t_1/snapshot/ext/ext/00cd"]

stores the contents of component p; in a file found in the generation t;.
Notice how the file path is relative to the <snapper-root>.

Note that the mapping can include multiple backlinks, each of which is
a redundant copy of the component’s data. If one backlink is missing or has
an invalid hash, Snapper will try to recover the next backlink until it either
succeeds or it runs out of backlinks.

An example of a mapping entry with multiple backlinks:

Snapper: :Archiver[i] = ["/t_1/snapshot/ext/ext/00cd", "/t_0/snapshot/ext/ext/0054"]

where the first file (base name of "00cd") is an identical copy of the second
file (base name of "0054") and they are store the contents of component p;.

The above examples showcase how the backlinks are stored in memory
during the lifetime of the Snapper object. When it comes to storing the
backlinks in the actual archive file, the FIFO queue is expanded such that
each backlink is written to the archive file as an individual mapping. Then,
when Snapper reads the archive file, it aggregates all mappings with identical

13

https://github.com/genodelabs/genode/blob/master/repos/base/include/util/dictionary.h
https://github.com/genodelabs/genode/blob/master/repos/base/include/util/fifo.h
https://github.com/genodelabs/genode/blob/master/repos/base/include/util/fifo.h

keys into a FIFO queue and that is what constitutes a Snapper: :Archiver
entry.

Exampleﬁ] of an archive file’s data section corresponding to the multi-
backlink example from above:

| KEY | VALUE I
[------- e |
| i | "/t_1/snapshot/ext/ext/00cd" |
| i + 1 | "/t_0/snapshot/ext/ext/0054" |
..] . |
1+ 3| |

R S S oo
| v | hash | n | data
oo S oo

Symbol Size Description

v 1 byte Snapper version

hash 4 bytes integrity check for the data

n 8 bytes number of entries in the data

data as required key-value map that contains snapshot files’ paths

The archive file contains information of how many entries comprise the
data in order to prevent a while(true) loop when reading the data. Note,
that the hash applies only to the data which is sufficient as modifying the
n (i.e. the number of entries) and appending false entries to the data will
result in the overall data segment having a different hash than the original.

Also note, that if entries are appended to the data outside of the snapshot
mechanism (i.e. from a malicious third party), when reading the archive file,
the snapshot mechanism will read the data up to n entries. All other entries
will be disregarded.

3In Snapper’s implementation the archive file will contain binary data. The example
uses plaintext for demonstration purposes.

14

5.3 The Snapshot File

The snapshot file primarily stores the binary data of an arbitrary page from a

given snapshot. Additionally, a snapshot file has a reference counter. The file

will be deleted if the reference count were to reach 0. The file also contains

a hash which is used for integrity checking and for comparison operations.
The structure of the snapshot file is as follows:

P S
| v | hash | rc | data
S N S
Symbol Size Description
v 1 byte Snapper version
hash 4 bytes integrity for the data
rc 1 byte reference count (unsigned)
data as required the snapshot content

5.4 The Extender Directory

The extender directory is used to reduce the load on the filesystem. Since
performance can be impacted if too many files are in the same directory,
after a certain number (Snapper: :Config: :threshold), a sub-directory will
be created called ext and subsequent snapshot files will be stored within it,
instead of the current one. Important to note is that the incremental counter
used to name the snapshot files resets within the extender directory.

5.5 The Snapshot Directory

This directory is organized as a radix trie containing all snapshot files of
components that have changed since the last generation. Files are added in
the extender directories. The extender directories are removed if their last
entity (file or sub-directory) gets removed.

15

5.6 The Generation Directory

The generation directory contains the archive file and the snapshot directory.
The directory is uses an RTC timestamp as its name, which is generated at
the time of the directory’s creation.

The generation directory makes up a complete snapshot. As long as the
archive file is present and its hash is valid, the generation should be able to
be recovered.

The generation directory is removed when both the snapshot directory
and the archive file have been removed.

6 The Snapper Mechanism

6.1 Snapshot Step

The rationale behind this step is to use a file (the archive file) to keep track
of the snapshot file(s) (a.k.a backlinks) of the components. This allows for
a single source of truth. If the archive file is corrupted it must be replaced
with a version of the file.

Each snapshot file must keep a reference count which keep track of the
number of generations that need this file. Should the reference count exceed
Snapper: :Config: :redundancy a new snapshot file will be created to store
the data. Both the new file and the old file will be stored as backlinks for
later snapshots.

The snapshot process has been designed to allow the snapshot of indi-
vidual components to be done at an arbitrary time. For example, the user
can snapshot the first n-components, then do some computations, and then
snapshot the rest of the components. This is not recommended as the state
could have changed for the first n-components before the rest are saved in
the snapshot, hence leading to an inconsistent system state. It is up to the
user to determine if it is more desirable to "pause" the snapshot process, or
do it all in one go.

In order to support this flexibility, the Snapper initiate the snapshot
procedure. Once this procedure is active the only Snapper operation allowed
is the taking of snapshots (i.e. recovering and purging are disallowed). Once
all components have been captured in the snapshot, the generation will be
committed and Snapper will be returned to its dormant state.

In terms of performance, the taking of snapshots is cheap as it comprises
a dictionary lookup, and in the worst case (the page’s contents do not appear
in a prior generation): a write to a file. The true cost comes when commit-

16

ting the generation. The Snapper: :Archiver is written to the generation’s
archive file, which means iterating over all the entries.

As an optimizations, reference counts are updated during the taking of
the snapshot (as opposed to the commit step) in order to prevent opening all
the files again at the commit stage. Unfortunately, this could lead to zombie
files if the system crashes before the generation is committed (and the archive
file is written). If no archive file has any mention of a snapshot file, then
that file will never be deleted as its reference count falsely indicates that the
file is still being needed. To clean up zombie file please refer to

[Zombics)

1. If the latest generation does not have a valid archive file, delete it (the
generation is incomplete).

2. Initialize a new generation directory with an RTC timestamp as the
name.

3. Within the generation directory create the archive file and the snapshot
directory.

4. Check if there is a valid prior generation (based on the timestamps).
If there is, load the archive file’s data into the Snapper: :Archiver.

5. Let hj := Snapper: :Archiver[i]. If Snapper: :Archiver[i] contains
backlinks, use the first backlink (i.e. the earliest backlink).

6. For each p; € P where the hash of the file h; does not match the hash
of p; (or h; does not exist):

(a) Create new file, hj, and save the binary contents of p; into this
new file.

(b) Initialize the snapshot file with the new hash of the data, a refer-
ence count of 1, and the binary data of p;.
c¢) Update Snapper: :Archiver[i] < path(h;), there path() is the
pp j
path relative to <snapper-root>.

7. For each p; € P where hash of the file h; matches the hash of p;:

(a) If the file hj has a reference count greater than or equal to Snapper: :Config: :redundancy:

i. Create a new file h; as outlined in Step 6.
ii. Increment the reference count for all files in Snapper: :Archiver[i].
iii. Enqueue path(h;) to Snapper: :Archiver[i].

17

(b) If the file h; has a reference count lower than Snapper: : Config: :redundancy,
increment the reference count of it and all other redundant files
in Snapper: :Archiver[i].

8. Save Snapper: :Archiver into the archive file and calculate the hash
of the entries.

18

6.2 Recovery Step

This step uses the archive file to efficiently lookup the data belonging to a
page. The recovery process is flexible enough to allow partial recovery, i.e.
the user recovers only the pages that they need. The pages can be recovered
at any time while the recovery procedure is active. Throughout the recovery
process all other Snapper procedures are disallowed.

Entry lookups happen in logarithmic time due to Genode’s Dictionary
use of AVL-trees. Additionally, in the case that an archive entry’s backlinks
are invalid a linear search through a queue is used until a valid backlink is
found or the queue is exhausted.

A downside to the lookup table being loaded in memory is that more
information (i.e. entries and backlinks) result in heavier RAM usage.

1. Choose a generation to boot from (by default the latest one).

2. Check if the generation is valid (i.e. has an archive file with a valid
hash). If not, recovery is not possible.

3. Load the archive file of the latest valid generation into Snapper: : Archiver.
4. For each h € Snapper: :Archiver and for each backlink, h; € h:

(a) Check the hash with the stored data.

(b) If hj does not exist or there is a mismatch with the hash, try the
next backlink.

(c) If there are no more backlinks to check, respond according to the

configured
(d) If the hash matches hj, load the data of h;j into the corresponding
page pi-

6.3 Purge Step

To purge a generation, the archive file is loaded into memory and each back-
link’s reference count is decremented. When a file’s reference count is decre-
mented to 0, the file is removed. If a directory becomes empty as a result, it
is removed. This ensures that all files needed by other generations are kept
in the same place, and everything else is properly cleaned up.

The worst case of this approach would be that a snapshot file could be
many sub-directories deep and while it is needed all those sub-directories will
remain. This cost is minimal and necessary as the alternative would be to

19

move the file higher in the directory structure, then search for all references
to that file in all of the other archive files and update the path, a much more
costly endeavor.

1. Make sure the generation is valid (i.e. it has an archive file with a valid
hash).

2. If the archive file has an invalid hash:

(a) If Snapper::Config::integrity is set to true, crash the system

and ask the system administrator to replace the generation’s cor-
rupted archive file with a backup copy.
Note, that if no backup copy exists it is highly recommended
to manually remove the current generation as well as all subse-
quent generations. Snapper can continue to function without the
removal, but the broken generation and its files will never be re-
moved. Alternatively, the administrator could manually remove
the broken generation and set Snapper::Config::integrity to
false. That way any snapshots that relied on the broken gener-
ation will only output warnings but will not crash the system if
they are unable to recover a file.

(b) Otherwise, log an error message and boot the system into a clean
state.

3. If the archive file has a valid hash:

(a) Load the archive file into Snapper: :Archiver.

(b) For each entry h € Snapper: :Archiver and for each file h; € h:
decrement the file h;’s reference count.

(c¢) Delete the archive file.

6.4 Purge Step (Zombies)

There is a possibility of files which are no longer in need by any generation

(aka zombie files) to occur as a result of a system crash during the
or the when the reference counts of files are updated. The
system crash would create an inconsistency between the file reference count
and the amount of generations that the file is needed by. By design, this
inconsistency would always result in the file reference count being lower
than the actual file references. Thus, when all the generations referencing

20

the file have been purged, the file itself will not be purged as its reference
count incorrectly states that it is still in need.

To remove all zombie files from the system we use the following algorithm.
Note that this algorithm is very slow (especially for large component sets and
many snapshots) hence it should be used rarely. To achieve its effect run it

at most once per [Purge Step| (the only time when zombies may appear).

1.

For each dead snapshot:

(a) For each file:
i. Check if the file is needed in any of the generations (requires
linear search).
ii. If the file is needed by at least one, keep it.
iii. Otherwise delete it.

7 Snapper’s Time and Space Complexity

The following complexity analysis uses the following assumptions:

let P be the set of all components, and let p = |P|

let H be the set of all entries in the mapping stored in an archive file,
and let h = |H|

let B be the set of all backlinks present in an archive file, and let b =
B

let S be the set of all generations, and let s = |S|

let Z be the set of all files in dead snapshots, and let z = |Z|

NOTE: Since Genode’s Dictionary uses an AVL-tree, all Dictio-
nary lookups are O(log(n)).

Use-Case Time Complexity | Space Complexity | Regularity

Continued on next page

21

Continued from previous page

Use-Case Time Complexity | Space Complexity | Regularity
Begin snapshot procedure. O(1) O(1) Determined by the
configured policy.
Take a snapshot. O(log(h)) O(1) Every time a component
needs
needs to be backed-up.
Commit generation. O(b) O(b)H When snapshot process
is completed.
Begin recovery procedure. O(b) O(b) When the system boots.
Recover a component. O(log(h)) O(1) For each component
that
needs to be recovered.
Finish recovery. O(1) O(1) When all components
have
been recovered.
Purge a generation. O(b) O(b) Determined by the
configured policy.
Purge zombies. O(z *s * p) O(1) At most once per purge.

40(b) because the entire Snapper: : Archive, which contains all the backlinks, needs to

22

be written to the archive file.

23

8 Remarks on the Implementation of Snapper

Snapper should be able to be implemented via the Genode’s API and pro-
vided data structures and the lwext4 libraryE]. I was unable to get Genode’s
libe to work with PhantomOS so unfortunately libc is not viable for Snapper.
Having this constraint in mind, here are what Snapper was optimized for:

8.1 Fast Insertion of Data

Insertion of new data during the snapshot procedure is relatively fast. All
that is needed is to compute the hash of the data and to write both the data
and its hash into a file.

8.2 Flexible Data Redundancy

Snapper allows the set of the data redundancy by allowing a file to have
redundant copies (i.e. backlinks) after its reference count meets or exceeds
Snapper: :Config: :redundancy. The archive file then links the virtual com-
ponent to a comma separated list of files from older generations that store
identical data. This redundancy comes at the cost of the following:

e slower insertions (due to additional string manipulations)
e higher disk usage (due to archive entries having longer strings)

It is important to note, however, that these costs are minimal and fur-
thermore there are no costs pertaining to recovering data, as the
tries to use the first file path provided by the archive entry. It accesses
subsequent backlinks only if the first file was corrupted.

8.3 Fast Recovery of Generations

Recovery of entire generations comprises reading all files needed by the gen-
eration and loading the data into the address space. By using an array to
keep track of where a component’s file is located, Snapper can efficiently
retrieve the data.

Shttps://codeberg.org/jws/genode-wundertuete/src/branch/sculpt-24.
04-2024-04-19

24

https://codeberg.org/jws/genode-wundertuete/src/branch/sculpt-24.04-2024-04-19
https://codeberg.org/jws/genode-wundertuete/src/branch/sculpt-24.04-2024-04-19

8.4 Manageable Directory Sizes

Since each component on the address space needs a snapshot file, the perfor-
mance would be be hampered severely if all those files in the same directory.
By using a radix trie with a dynamic height, the files are distributed in a
manageable way along the different directory levels, thus reducing the strain
on the filesystem.

8.5 File and Generation Integrity

By utilizing hash, Snapper can detect when a snapshot file or archive has
been tampered with. The admin of the system can then decide what to do
with that knowledge through configuration of the

8.6 Transient Files

Snapshot files that are relevant for more than one generation are not du-
plicated. Instead, the archive file keeps track of which files are needed for
the generation, even if some of those files could be from other generations.
Each file’s reference count makes sure that a file is not removed while it is
still needed by a valid generation. Similarly, files and directories that are
no longer needed can easily be identified and removed, ensuring that storage
space remains uncluttered.

8.7 Partial Snapshot Recovery

A generation with a valid archive, can be indexed to load a particular ver-
sion of a component without having to restore the entire system to that
generation.

9 The Snapper Object

The following section explains the usage of the main interfaces of the Snapper
object. For using Snapper in an actual project, see

The code in this section requires the snapper.h header. Error
handling has been omitted for brevity.

9.1 Initializing Snapper

This step is required to use any functionality of Snapper. You can initialize
the global object with:

25

Snapper: :Main snapper (env) ;

Here env is the Genode: :Envg object created at the start of the Genode
program.

9.2 Creating A Snapshot

Make sure [Snapper is initialized|

1. Prepare the Snapper object for the snapshot procedure.
snapper.init_snapshot(); // OPTIONAL pass in specific generation
2. For each component’s data that should be saved in the snapshot.

int payload = 5;
Genode::size_t size = sizeof (payload);

Genode::uint64_t identifier = 4;
snapper.take_snapshot (&payload, size, identifier);
3. Finally save mark the snapshot as complete and cleanup.

snapper.commit_snapshot () ;

9.3 Restoring A Snapshot

Make sure [Snapper is initialized|

1. Begin restoration procedure.

If no generation is provided to this method, the latest gen-
eration will be used for the restoration. If Snapper is to
restore a specific generation, the caller should provide the
RTC timestamp of the generation as a string.

snapper.open_generation(); // OPTIONAL pass in specific generation

2. Restore each desired component (idenitified by its identifier).

The caller is responsible for providing a buffer sufficient for
the data to be restored to.

26

Genode::size_t size = 5;
char data[size];

Genode::uint64_t identifier = b;
snapper.restore(&data, size, identifier);
3. Cleanup the restoration process.

snapper.close_generation();

9.4 Purging A Snapshot

Make sure [Snapper is initialized|

1. Purge a desired generation.

Provide a RTC timestamp as a string to delete a specific
generation. By default the oldest generation is removed.

snapper.purge(); // OPTIONAL pass in specific generation

2. Purge expired generations

The expiration for generations can be set in
snapper.purge_expired();

3. Purge zombie files

snapper .purge_zombies() ;

10 Snapper User Stories (i.e Using Snapper in Projects)

Snapper is designed with Genode’s RT'C server-client paradigm in mind. You
can find a demo configuration of the server in /run/snapper-common.inc. For

configuring the server, see
For the using the client (you can find an example in /src/test/snapper/main.cc),

you need:

27

#include "snapper_session/connection.h"

void
Component: :construct (Genode::Env &env)
{
Snapper: :Connection snapper (env); // establishes connection to the server

b

You can then use snapper as explained in [I'he Snapper Object]

11 Handling of Fail Points

Here’s how Snapper will handle the following failure points:

11.1 Improper Unmount of the File System

If the system were to crash then the filesystem would not be properly un-
mounted. This is already handled by the lwext4 library. On mount, it first
tries to fix the filesystem. If that is unsuccessful it prints out a message that
the fsck Linux utility should be used.

11.2 Incomplete Snapshot

In the case when the system crashes midway through a snapshot, the latest
generation directory will still not contain an archive file. Thus when the
system reboots the incomplete generation will be deleted and a prior valid
generation will be used, if such exists.

11.3 Low Disk Space

If the system detects that disk space is running low, it will run the [Purge
algorithm on the oldest generation until either disk usage is back to a ac-
ceptable level.

12 Backups

Although Snapper can detect when snapshot files or archive files have been
corrupted, it only supports redundancy when it comes to snapshot files (see
the [Data Redundancy| section for more details). However, archive files can
be corrupted as well. Snapper does not concern itself with providing

28

redundancy for the archive files. The reason for this decision is that
there are many variables that a system administrator might want to tweak
when backing up files that govern how a generation is to be recovered.

For instance, should the backup archive files be saved on a different disk?
Should archive backup files from different systems be stored together? How
should the backup files be named to differentiate them from one another?

With so many options and use cases, it is easier to leave the system
administrator in charge of ensuring that the archive files are backed-up.
If an archive file was deemed to have failed its hash, Snapper will notify
the system administrator that the generation could not be recovered. All
the system administrator has to do then is to simply replace the corrupted
archive file with a backed-up copy.

It is highly recommended to backup archive files! If an archive
file were to be corrupted, disk storage would leak as some files
will still have non-zero reference counts, even though there are
no references to them from any valid archive files.

29

13 Configuration of Snapper

Snapper should be configurable through Genode’s XML. The configuration
options are stored in Snapper: :Config:

OPTION

TYPE

DEFAULT

DESCRIPTION

verbose

bool

false

Whether to print verbose output.

threshold

unsigned int

100

The maximum number of files in a

snapshot sub-directory.

integrity

bool

true

If true, crash the system on failed integrity
checks,

otherwise log a warning.

redundancy

unsigned int

After reaching this reference count, a re-
dundant file

copy will be created for subsequent snap-
shot.

max_snapshots

unsigned int

The maximum number of complete snap-
shots inside

<snapper-root>.

min_snapshots

unsigned int

The minimum number of generations that
need to be present

for a purge to be possible.

expiration

unsigned int

(seconds)

How many seconds a generation should be
kept.

30

Continued on next page

Continued from previous page

OPTION TYPE DEFAULT | DESCRIPTION
bufsize size_t 1024 * 1024 | The size of the dataspace which will trans-
fer the payload
(bytes) to the snapper component.

31

13.1 Verbose Output

Snapper: :Config: :verbose (default = false) toggles verbose output.

13.2 Directory Load

Snapper: :Config: :threshold (default = 100) can be set to determine the
maximum number of snapshot files within a snapshot sub-directory. After
the number of files exceeds this threshold, an extender directory will be
created and all subsequent files will be placed within said directory.

13.3 Integrity Checks

Snapper: :Config::integrity (default = true), when true, will crash the
system during the if a mapping in the archive file does not
provide a single valid snapshot file. On false, Snapper will just log an error
and ignore the restoration of that page.

Likewise when an archive file fails its hash check, the system will crash
if Snapper::Config::integrity is set to true. Otherwise, an error will be
logged and the system will boot without recovering that generation.

13.4 Redundancy Level

Snapper: :Config: :redundancy (default = 3) determines the maximum num-
ber of generations that a snapshot file appears in before another backlink is
created.

13.5 Retention Policy

Snapper’s retention policy will determine which completed generations are
kept and which are [purged]

13.5.1 Limit by Number

The number of completed generations kept will be limited to Snapper: :Config: :max_snapshots.
This retention policy is disabled if that number is 0 (default). Conversely, the

will fail if the number of generations is lower than Snapper: :Config: :min_snapshots
(default = 0).

32

13.5.2 Limit by Expiration

If a generation is older than Snapper: :Config::expiration seconds it will
be purged. This can be disabled by setting Snapper: :Config: :expiration
to 0 (the default).

13.6 Payload Size

Snapper: :Config: :bufsize can be set according to the payload size ex-

pected for calls to Snapper::take_snapshot(). Be aware that calling
Snapper: :take_snapshot () with a payload larger than Snapper: :Config: :bufsize
will result in a crash!

14 Conclusion

Snapper 2.0 efficiently manages PhantomOS snapshots by storing only changed
data, reducing disk usage, and ensuring data integrity with ext4’s logging
features. It overcomes previous limitations with a robust mapping strat-
egy and reference counting for file management. The dynamic directory
structure enhances performance, while configurable retention policies and
fail-safe mechanisms improve system resilience. Despite some challenges,
Snapper provides a strong foundation for effective snapshot management in
PhantomOS.

33

	Introduction
	The Problems Snapper Solves
	Disk-Space Efficiency for Multiple Snapshots
	Handling of Snapshot Files
	File Integrity
	Redundancy

	Comparison of Snapper 2.0 and Prior Snapshot Mechanisms
	Snapper 2.0 vs Superblock
	Snapper 2.0 vs Squid
	Snapper 2.0 vs Snapper 1.0

	Definitions and Notations
	Snapper
	Component
	Backlink
	Snapshot
	Generation
	Zombie
	Dead Snapshot
	Snapshot Files
	Archiver
	Snapper Root
	Snapshot Root

	The Snapper Components
	The Snapper Root
	The Archive File
	The Snapshot File
	The Extender Directory
	The Snapshot Directory
	The Generation Directory

	The Snapper Mechanism
	Snapshot Step
	Recovery Step
	Purge Step
	Purge Step (Zombies)

	Snapper's Time and Space Complexity
	Remarks on the Implementation of Snapper
	Fast Insertion of Data
	Flexible Data Redundancy
	Fast Recovery of Generations
	Manageable Directory Sizes
	File and Generation Integrity
	Transient Files
	Partial Snapshot Recovery

	The Snapper Object
	Initializing Snapper
	Creating A Snapshot
	Restoring A Snapshot
	Purging A Snapshot

	Snapper User Stories (i.e Using Snapper in Projects)
	Handling of Fail Points
	Improper Unmount of the File System
	Incomplete Snapshot
	Low Disk Space

	Backups
	Configuration of Snapper
	Verbose Output
	Directory Load
	Integrity Checks
	Redundancy Level
	Retention Policy
	Limit by Number
	Limit by Expiration

	Payload Size

	Conclusion

