
Backtraces for embedded Linux C and
C++ programs

- ARMv7 architecture (Cortex-A8)
- MACHINE=qemuarm bitbake core-image-full-cmdline
- MACHINE=qemuarm runqemu core-image-full-cmdline nographic

Work environment

ARMv7 registers:

- r0 to r12
- r13 : sp
- r14 : lr
- r15 : pc

R14/LR

rt_sigreturn

PC_offset

PC

SP_offset

SP

SP

LR_offset

LR

LR_offset

SPLR

SP LR_offset
LR

#0 0x4000065e in segv_handler
#1 <signal trampoline>
#2 0x4000067a in f3
#3 0x40000698 in f2
#4 0x400006b0 in f1
#5 0x400006fc in main

Custom backtrace

GDB backtrace

fp = r7 (thumb) or r11

Fast unwind with frame pointers

Fast unwind with frame pointers

gcc-arm -mthumb -O[123] : No frame pointer
gcc-arm -mthumb -O0 : Unusable frame pointer in r7 (see gcc bugzilla)
gcc-arm -O[123] -fno-omit-frame-pointer : Frame pointer in r11
gcc-arm -O0 : Frame pointer in r11

https://gcc.gnu.org/bugzilla/show_bug.cgi?id=92172

Yocto and libunwind

Full Stripped Stripped +
.debug_frame

Stripped +
.debug_frame +
.symtab

Stripped +
.debug_frame +
.gnu_debugdata

538K 66K 72K 88K 106K

Size increase for backtrace support

Partial backtrace on Yocto

Default (stripped) .symtab +
.debug_frame

.gnu_debugdata
(minidebuginfo) +
.debug_frame

No stripping

48M 55M 57M 194M

Full backtrace on Yocto

Conclusion
- Unwind info (DWARF or architecture specific)
- Symbols (symbols table, DWARF or minidebuginfo)
- Unwider (libunwind, custom or else)
- Light Yocto patching might be necessary
- Backtraces in the syslog are quite handy

