
Calibrate
good times!
The tools
and
methods
to get
top-quality
robot data.

Calibrate
good times!
The tools
and
methods
to get
top-quality
robot data.

Roland Meertens
Sam Pfeiffer
Roland Meertens
Sam Pfeiffer

Why monitor
data quality?

● At each company we worked we found a
LOT of issues with the data

● Everyone wants to collect data, but the
data should also be good from the start

● For machine learning purposes your data
should be good and consistent

● Vibe coding is not going to solve your
problems, taking a good look at your data
will!

● This presentation contains a subset of
common issues!

Robotics Software Engineer,
playing with robots for over
15 years with robots of all
kinds. But my favorite are
humanoid robots!

Fun fact
Love climbing, havenʼt
climbed a skyscraper!

Follow him on:
github.com/awesomebytes

Always working on robotics
and machine learning
projects! Currently working
on end-to-end learning for
self-driving cars

Fun fact
Takes photos of foxes in his
backyard! Follow my fox on
Instagram
Maple_and_her_friends

Follow him on:
LinkedIn!

Sam Pfeiffer, PhD Roland Meertens

About us

Senior Robotics Engineer @ Humanoid

sammypfeiffer@gmail.com

Tech Lead @ Wayve

rolandmeertens@gmail.com

 Research and plan
your sensors

Know your limitations
https://www.tangramvision.com/resources/visualizer-lidar,
https://www.tangramvision.com/resources/visualizer-depth

● What accuracy do you need at what distance?
● What is the coverage around your robot?

It’s not only about the sensor
● Interfaces

○ USB: can be quite problematic (flakiness of connection,
bandwidth limits)

○ Ethernet: implies the network stack (extra CPU usage and delay)
○ MIPI CSI: implies dedicated hardware (short cabling)
○ GSML: very expensive hardware
○ CAN: low bandwidth, CPU usage

● Driver quality
○ Is it open source?
○ Is it efficient?

● Data format
○ Usable out of the box?

Where to place the sensors

Coordinate systems
● Understand which one you are using!
● Mistakes upon mistakes negate

the issues - check every step!
● Solution: document, educate,

visualise!

3D Print the ISO8855 coordinate system and leave it all over
the office (https://www.thingiverse.com/thing:4032327).

● Note that diǕerent robots have diǕerent "default"
coordinate systems

Timestamps are important
● Is your reference time common in between sensors?

○ Ntpdate, chrony and friends
○ Is your reference time correct? Are you sure we are in 1 Jan 1970?

The world started on a Thursday!
● Triggering sensor reads

○ Great! Worth it? Need it?
● Decide and understand what your timestamp represents

○ Trigger time
○ Receiving time
○ Publishing time
○ Recording time

● CHECK ALL YOUR TIMESTAMPING CODE! EARLY ON! RECHECK IT!

 Get to know your
sensors

Calibrate
● Intrinsics: camera model + distortion — needed for geometry and

consistency.
● Extrinsics: sensor↔sensor and sensor↔body — needed to fuse and to

debug.
● Log raw (or raw-enough) AND store calibration/config with the dataset.
● Undistort/canonicalize deliberately (decide where in the pipeline this

happens).

Nice tools for intrinsic calibration!
● Generate calibration patterns:

https://calib.io/pages/camera-calibration-pattern-generator
● Calibrate any camera by showing a pattern from another screen:

https://calibdb.net/

https://calib.io/pages/camera-calibration-pattern-generator
https://calibdb.net/

LiDAR point clouds
● Generally very accurate (2mm error range), but there are scenarios where it's not...
● Hard to visualise a 3D representation on a 2D screen - so hard to capture 'errors'
● Hard to predict 'errors' as familiarity with LiDAR is needed.
● Common issues:

○ Bad lidar to vehicle/camera calibration
○ Bad lidar to lidar calibration
○ Dirty / blocked lidar not detected
○ Unrealistic expectations of what a LiDAR can do (point density / point spacing)

■ Tangram lidar visualiser
(https://www.tangramvision.com/resources/visualizer-lidar)

LiDAR visualisation
● Everyone seems to build their own visualiser

● It's hard to convey details with a plot, as it's 3D information on a 2D
screen

● Visualise your points with http://immersivepoints.com/

LiDAR visualisation
Visualise your points with http://immersivepoints.com/

Easy to embed in a Jupyter Notebook when running a server!

Supports Virtual Reality - Make your coworkers walk through the cloud!

Please help me extend this tool!

 Calibrate your
senses

Cross-visualisation
Try to visualise sensors with respect to each other! For example:

● Plot lidar points on camera, bounding boxes on both
● Project camera down to the ground - do camera projections "flow

over" in each other? Does it align with map-features?
● Does the map on your robot align with the actual world?
● Having good ROS transforms makes this trivial!
● Roland loves Foxglove, Sam loves RVIZ

○ FoxBox/LichtBlick (https://github.com/lichtblick-suite/lichtblick) -
A clone of FoxGlove before they went private.

○ Rerun: https://github.com/rerun-io/rerun - committed to stay
open source.

https://docs.google.com/file/d/1RrMCBjUlDYZAQ6ZaL1WOmyqUGimp99Ig/preview

Calibrate your senses
● Consider how "golden" your "golden data" actually is

○ Why is it golden?
○ Is it better in ONE aspect than the one you had before?
○ What does it avoid?
○ What does it incorporate?
○ What does it fix?
○ Does it break anything else?
○ If it was perfect, why would it be?

Easy tricks!
Making simple checks early can save a lot of hassle later

● Monitor time between samples - do you drop images somewhere?
● Monitor start and end of runs - do you start at the place you ended the

previous run?
● Visualise what data you record

○ Are your assumptions still correct - objects are visible when you
expect it.

○ Are you sensors clean / working / attached / right side up...?
○ Is that sensor the sensor you think? E.g. right/left

Conlusion
● 󰙩 Visualise: make failures obvious (plots, overlays, point clouds, VR

if needed), look for the detail.
● 🤖 Automate: cheap checks (blur, FPS, drops, drift, skew, occlusion).
● 🦅 Visualise again: dashboards + spot checks to avoid automating

the wrong thing, look for the trend and the outliers.
● 🏷 Version artifacts: configs + calibrations + datasets + code

revisions.

Tools you want to check out
○ Sam's sensor preview app:

https://awesomebytes.github.io/sensor_preview

○ 3D points in VR: immersivepoints.com

○ 3D Print the ISO8855 coordinate system:
https://www.thingiverse.com/thing:4032327

○ FoxBox/LichtBlick (https://github.com/lichtblick-suite/lichtblick)
- A clone of FoxGlove before they went private.

○ Rerun: https://github.com/rerun-io/rerun

○ Lidar planner:
https://www.tangramvision.com/resources/visualizer-lidar

