
Update on the
SLUB allocator

sheaves

1

Vlastimil Babka, SUSE Labs
FOSDEM 2026, Kernel track

● What’s the next step after removing SLOB and SLAB, leaving only SLUB?

● Overall goal: stop building caching layers on top of slab allocator (usually arrays of object pointers)
– Some seem to do it just for performance reasons (block layer)

– BPF: allocate/free in restricted contexts (e.g. NMI handler) not supported by slab
– maple tree nodes: preallocate before an operation that can’t fail in the middle, return unused

objects afterwards

● Why? Code duplication, maintenance overhead, wasted memory, in some cases cpu overhead
– Cached objects out of slab allocator’s control, cannot be consolidated or reused

● Idea: once the allocator provides what users need, building layers on top is unnecessary
– An array of object pointers in some form, but under the allocator’s control

● Maybe also improve performance, combine only the good parts of SLUB and SLAB design?

2

SLUB percpu sheaves – initial motivation (2023/2024)

https://lore.kernel.org/all/aWh06YoiJrR3-J-X@dread.disaster.area/

● SLUB has freelist embedded in free objects – single-linked, NULL-terminated
– Allows allocating all objects in a single operation, multiple freelists in a single slab
– Allows freeing to the slab with an atomic update of freelist+counters by the

try_cmpxchg128() operation

3

SLUB (vs SLAB) basic functionality – single slab

Slab page (10 objects, 6 allocated, 4 free)
0 1 2 3 4 5 6 7 8 9

struct slab
list_head slab_list

freelist (SLUB)

freelist (SLAB)

counters freelist array (SLAB)
0 6 5 3

● List of slabs per NUMA node with a spinlock – would not scale, needs some form of percpu caching
– Turns out the caching is much easier to implement for allocating than for freeing

● SLAB - array caches: percpu (only NUMA local objects), shared (victim cache, same node), alien (freeing
non-local objects, needed periodic flushing) – decided based on object’s NUMA node provenance

– Part of the array flushed to slabs (or shared) when full, part refilled from them when empty

4

SLUB (vs SLAB) – multiple slabs, SLAB percpu caching
kmem_cache_node
list_head partial

list_head full

list_head free

spinlock_t
list_lock

slab
slab_list
...

array_cache

slab
slab_list
...

slab
slab_list
...

(SLAB)

● Allocations – fast from the percpu slab/freelist if available (and from a matching NUMA node)
– this_cpu_try_cmpxchg128() of freelist+tid to avoid irq or preempt disable

● Freeing – fastpath similar to allocation, but actually unlikely, the object might be from another slab
– Freeing to another slab is much more likely than freeing to remote NUMA node in SLAB
– Slowpath is try_cmpxchg128() (atomic), sometimes also spinlock for the partial list

5

SLUB percpu caching

kmem_cache_cpu:0
struct slab *slab

void **freelist

struct slab *partial

unsigned long tid

Slab

Slab Slab

kmem_cache_cpu:1 Slab

● Sheaf: fixed-capacity (per kmem_cache) array of object pointers from slabs
– each cpu has two - main and spare sheaves, so that flushing or refilling is not partial
– per-node barn is a victim cache for empty and full sheaves (up to 10)

● Issues of SLAB design avoided by bypassing sheaves when freeing remote objects
– Quick tracing session suggested it’s only done in ~5% of the cases
– No alien arrays that would need periodic flushing

● Percpu sheaves locking overhead limited by the local_trylock_t primitive
– Uses cheaper preempt disable instead of irq disable in exchange for (rare) trylock failures

● Initially opt-in, capacity given when creating the kmem_cache

● Thanks to Matthew Wilcox for the terminology

6

SLUB percpu sheaves – basics (v8) (LWN)

https://lore.kernel.org/all/20250910-slub-percpu-caches-v8-0-ca3099d8352c@suse.cz/
https://lwn.net/Articles/1010667/

● Support a usage pattern where a number of objects might be needed in a critical section that cannot
block (and thus free memory to allocate) and also can’t handle allocation failures

– Maple tree nodes – exact number of allocations not known beforehand, only the worst case
scenario can be pre-calculated

– Previously handled by preallocating for the worst case, freeing back most of the preallocated
objects afterwards – ineffective even with bulk alloc/free

● kmem_cache_prefill_sheaf(size, gfp) - ideally removes the spare sheaf, refills it only
when it has less than size objects, returns it to the caller

● kmem_cache_alloc_from_sheaf() - guaranteed to succeed until depleted

● kmem_cache_return_sheaf() - ideally restores the sheaf as spare as-is, avoids flushing if
possible

7

SLUB percpu sheaves – handing out prefilled sheaves

● The existing kfree_rcu() implementation frees objects back to their slabs after the grace period
– Batching exists to make it more efficient than a straightforward implementation

● Problem: freeing to percpu sheaves of many accumulated objects was overloading them
– With rcu_nocbs, this freeing was restricted to some cpus only, others not refilled

● Solution: each cpu has additional rcu_free sheaf
– kfree_rcu() adds to this sheaf; when full, call_rcu() called on the full sheaf
– rcu_free_sheaf() callback will try to put the sheaf to barn for reuse

8

SLUB percpu sheaves – kfree_rcu() batching

● Sheaves were merged in 6.18 (which is a LTS kernel...)

● Opt-in, enabled only for VMA’s and maple tree nodes
● Both utilize kfree_rcu()
● Maple nodes also use the prefilled sheaves API

● The kernel didn’t explode :)

9

SLUB sheaves – current state and plans

● Being opt-in is far from ideal though!
– It was OK as the first step to validate the implementation, fix bugs…

● Non-trivial implementation and maintenance overhead for only few users
– Still backed by another caching layer with arguably even less trivial implementation

● How to determine which caches should benefit from the opt-in?
– What sheaf size? Should the size be fixed? Automatically selected?

● Thus, enabling sheaves for all caches is the next step
– And then removing the existing caching based on cpu (partial) slabs

10

SLUB sheaves – current state and plans

● Series (v4, 22 patches), now in linux-next for several weeks; thanks to all the reviewers!
● Some fun with bootstrapping and recursion prevention

– Sheaves are allocated by kmalloc(), initial percpu sheaves have to be instantiated at cache
creation, so how to create caches for kmalloc without allocating sheaves?

– Allocating from a kmalloc() cache might result in allocating a sheaf, which can (depending on
the size) be actually allocated from the very same cache?

– Both solvable and not completely new problems in slab allocators’ history
● Sheaf capacity calculated automatically to roughly match how many objects the cpu (partial) slabs

would cache on average - subject to possible future tuning
– Also rounded up to nearest kmalloc() object size
– Any explicitly specified size now treated as a minimum

11

SLUB sheaves – enabling for all caches

https://lore.kernel.org/all/20260123-sheaves-for-all-v4-0-041323d506f7@suse.cz/

● Lots of code removed afterwards :) including usage of this_cpu_try_cmpxchg128()
– try_cmpxchg128() usage remains to put free objects back to their slab’s freelist

● Lots of fun with a memory leak due to missing “break;” in an earlier version
– Not found by Chris Mason’s AI powered review until retrospectively told to look for leaks
– After his prompts adjustments, now should be found in 5 of 6 cases

12

SLUB sheaves – enabling for all caches

https://lore.kernel.org/all/a4b0be3f-bb6f-42d7-9176-a2bc0dcbd3a8@meta.com/

● Sorry, won’t be presenting fancy graphs here :)
● The initial implementation was validated on in-kernel microbenchmarks

– Also Suren Baghdasaryan had measured mmap() operation improvements
● For enabling sheaves, on all caches, there were benchmarks done by Harry Yoo and Petr Tesařík

– In general showing an improvement, but with specific cases showing worse performance
– But that was older versions of the patches, e.g. with the memory leak still present

● Due to being such a low-level implementation detail, it appears difficult to benchmark reliably
– Things like subtly different memory layout may play a role due to processor caches

● Kernel test robot reports – some regressions to investigate, including workloads known to be sensitive
to various corner cases, so should not be show-stoppers on their own

● Many performance aspects are the matter of tuning – sheaf sizes, barn sizes, and various heuristics

13

So what about performance?

https://lore.kernel.org/all/20250910-slub-percpu-caches-v8-0-ca3099d8352c@suse.cz/
https://lore.kernel.org/oe-lkp/202601132136.77efd6d7-lkp@intel.com/T/#u

● Thanks to Christoph Lameter for summarizing them

● CPU slabs (before sheaves) – consecutive allocations served from the same CPU slab
– Spatial locality, good for TLB overhead
– Worse for cache performance (objects might be cold)

● Sheaves – allocations are typically returning recently freed objects (LIFO)
– Temporal locality, good for cache performance (objects might still be hot)
– Potentially scattered from many slabs (worse for TLB)
– Might also increase memory overhead (testing so far suggests it’s not significant)

● Object freeing – fastpath is more likely with sheaves, and a bit faster thanks to local_trylock_t
– Slowpath is identical – try_cmpxchg128()

14

What are the tradeoffs?

https://lore.kernel.org/all/f7c33974-e520-387e-9e2f-1e523bfe1545@gentwo.org/

● Implementation-wise – sheaves less tricky than this_cpu_try_cmpxchg128() based fastpaths

● More suitable for kmalloc_nolock() - a variant for alloc/free in restricted context such as NMI
– Replaces BPF object caches (one of the original motivation of sheaves)

● Without being based on sheaves (but also merged in 6.18)
– Much of its complexity and limitations (mainly due to PREEMPT_RT) are removed with CPU

slabs replaced by sheaves

● A strong argument for completing the sheaves conversion, hence aiming for 7.0

● Future work – integrate better with existing kfree_rcu() batching – now mostly bypassed

15

Final Thoughts

Questions?

16

Thank you

15 files changed, 2280 insertions(+), 1458 deletions(-)

include/linux/local_lock_internal.h | 9 +-
include/linux/maple_tree.h | 6 +-
include/linux/slab.h | 47 +++++
lib/maple_tree.c | 667 ++++++++++++--------------------------------------

lib/test_maple_tree.c | 137 ---------------
mm/slab.h | 5 +
mm/slab_common.c | 34 +++-
mm/slub.c | 1756 ++
+++
+++++++++++++++++++++++++++++++++++------
mm/vma_init.c | 1 +
tools/include/linux/slab.h | 165 +++++++++++++++++-
tools/testing/radix-tree/maple.c | 514 +++---

tools/testing/shared/linux.c | 120 ++++++++++---
tools/testing/shared/maple-shared.h | 11 ++
tools/testing/shared/maple-shim.c | 7 +
tools/testing/vma/vma_internal.h | 259 +++++++--------------------

mm/ only: 5 files changed, 1790 insertions(+), 53 deletions(-)

17

Effects on code size - merging of sheaves in 6.18

● Current diffstat of slab/for-7.0/sheaves
– include/linux/slab.h | 6 -

mm/Kconfig | 11 -
mm/internal.h | 1 +
mm/page_alloc.c | 5 +
mm/slab.h | 57 ++---
mm/slab_common.c | 9 +-
mm/slub.c | 2663 +++
++++++++++++++++++++++++++++++---------------------------------------

7 files changed, 978 insertions(+), 1774 deletions(-)

● Together with sheaves introduction: net addition of 941 lines (mm only) or 26 lines (all)

18

Effects on code size – replacing CPU slabs with sheaves

19

Evolution of slab allocator(s) code size

20

Evolution of personal diffstat (lines added minus removed)

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20

