—  Update onthe
- —  SLUB allocator
sheaves

Vlastimil Babka, SUSE Labs
FOSDEM 2026, Kernel track

cWe SUSE



SLUB percpu sheaves - initial motivation (2023/2024)

*  What’s the next step after removing SLOB and SLAB, leaving only SLUB?

Overall goal: stop building caching layers on top of slab allocator (usually arrays of object pointers)
- Some seem to do it just for performance reasons (block layer)
- BPF: allocate/free in restricted contexts (e.g. NMI handler) not supported by slab

— maple tree nodes: preallocate before an operation that can’t fail in the middle, return unused
objects afterwards

Why? Code duplication, maintenance overhead, wasted memory, in some cases cpu overhead

— Cached objects out of slab allocator’s control, cannot be consolidated or reused

Idea: once the allocator provides what users need, building layers on top is unnecessary

= An array of object pointers in some form, but under the allocator’s control

Maybe also improve performance, combine only the good parts of SLUB and SLAB design?

cWe SUSE 2 e


https://lore.kernel.org/all/aWh06YoiJrR3-J-X@dread.disaster.area/

SLUB (vs SLAB) basic functionality - single slab

struct slab

list_head slab_list

freelist (SLUB)

freelist (SLAB)

counters

Slab page (10 objects, 6 allocated, 4 free)

:

5 6

\/

freelist array (SLAB)

0

6

5 3

* SLUB has freelist embedded in free objects - single-linked, NULL-terminated

—  Allows allocating all objects in a single operation, multiple freelists in a single slab

- Allows freeing to the slab with an atomic update of freelist+counters by the
try_cmpxchg128( ) operation

cWE SUSE



SLUB (vs SLAB) - multiple slabs, SLAB percpu caching

kmem_cache_node slab slab slab

list_head partial |4 »|g]lgbh_list (¢ »[slab_list |[* ®|slab_list |**
list_head full

list_head free f ? /
spinlock_t VK\
list_lock array_cache _ (SLAB)

List of slabs per NUMA node with a spinlock - would not scale, needs some form of percpu caching

Turns out the caching is much easier to implement for allocating than for freeing

SLAB - array caches: percpu (only NUMA local objects), shared (victim cache, same node), alien (freeing
non-local objects, needed periodic flushing) - decided based on object’s NUMA node provenance

Part of the array flushed to slabs (or shared) when full, part refilled from them when empty

cWe SUSE . B



SLUB percpu caching

kmem_cache_cpu:0 /vSlab kmem_cache_cpu:1| > |Slab

struct slab *slab

void **freelist
struct slab *partial| ™|Slab >|Slab

unsigned long tid

Allocations - fast from the percpu slab/freelist if available (and from a matching NUMA node)

this_cpu_try_cmpxchg128() of freelist+tid to avoid irg or preempt disable

Freeing - fastpath similar to allocation, but actually unlikely, the object might be from another slab
Freeing to another slab is much more likely than freeing to remote NUMA node in SLAB

Slowpath is try_cmpxchg128() (atomic), sometimes also spinlock for the partial list

cWe SUSE : B



SLUB percpu sheaves - basics (v8) (LWN)

* Sheaf: fixed-capacity (per kmem_cache) array of object pointers from slabs
— each cpu has two - main and spare sheaves, so that flushing or refilling is not partial

- per-node barnis a victim cache for empty and full sheaves (up to 10)

* Issues of SLAB design avoided by bypassing sheaves when freeing remote objects
= Quick tracing session suggested it’s only done in ~5% of the cases

— No alien arrays that would need periodic flushing

Percpu sheaves locking overhead limited by the Local_trylock_t primitive

—  Uses cheaper preempt disable instead of irq disable in exchange for (rare) trylock failures

Initially opt-in, capacity given when creating the kmem_cache

Thanks to Matthew Wilcox for the terminology

cWe SUSE ‘ e


https://lore.kernel.org/all/20250910-slub-percpu-caches-v8-0-ca3099d8352c@suse.cz/
https://lwn.net/Articles/1010667/

SLUB percpu sheaves - handing out prefilled sheaves

* Support a usage pattern where a number of objects might be needed in a critical section that cannot
block (and thus free memory to allocate) and also can’t handle allocation failures

—  Maple tree nodes - exact number of allocations not known beforehand, only the worst case
scenario can be pre-calculated

=  Previously handled by preallocating for the worst case, freeing back most of the preallocated
objects afterwards - ineffective even with bulk alloc/free

 kmem_cache_prefill_sheaf(size, gfp) -ideally removes the spare sheaf, refills it only
when it has less than size objects, returns it to the caller

 kmem_cache_alloc_from_sheaf() - guaranteed to succeed until depleted

 kmem_cache_return_sheaf() -ideally restores the sheaf as spare as-is, avoids flushing if
possible

cWe SUSE ; e



SLUB percpu sheaves - kfree_rcu( ) batching

* The existing kfree_rcu( ) implementation frees objects back to their slabs after the grace period
— Batching exists to make it more efficient than a straightforward implementation
*  Problem: freeing to percpu sheaves of many accumulated objects was overloading them

= With rcu_nocbs, this freeing was restricted to some cpus only, others not refilled

*  Solution: each cpu has additional rcu_free sheaf
- kfree_rcu() adds to this sheaf; when full, call_rcu() called on the full sheaf

- rcu_free_sheaf() callback will try to put the sheaf to barn for reuse

cWe SUSE . e



SLUB sheaves - current state and plans

*  Sheaves were merged in 6.18 (which is a LTS kernel...)

*  Opt-in, enabled only for VMA’s and maple tree nodes
* Both utilize kfree_rcu()

* Maple nodes also use the prefilled sheaves API

* The kernel didn’t explode :)

c®We SUSE ’



SLUB sheaves - current state and plans

* Being opt-in is far from ideal though!
— It was OK as the first step to validate the implementation, fix bugs...
* Non-trivial implementation and maintenance overhead for only few users

- Still backed by another caching layer with arguably even less trivial implementation

How to determine which caches should benefit from the opt-in?

- What sheaf size? Should the size be fixed? Automatically selected?

Thus, enabling sheaves for all caches is the next step

-  And then removing the existing caching based on cpu (partial) slabs

cWESUSE 10 BN



SLUB sheaves - enabling for all caches

* Series (v4, 22 patches), now in linux-next for several weeks; thanks to all the reviewers!

*  Some fun with bootstrapping and recursion prevention

~  Sheaves are allocated by kmalloc( ), initial percpu sheaves have to be instantiated at cache
creation, so how to create caches for kmalloc without allocating sheaves?

~  Allocating from a kmalloc () cache might result in allocating a sheaf, which can (depending on
the size) be actually allocated from the very same cache?

~  Both solvable and not completely new problems in slab allocators’ history

*  Sheaf capacity calculated automatically to roughly match how many objects the cpu (partial) slabs
would cache on average - subject to possible future tuning

~  Also rounded up to nearest kmalloc () object size

Any explicitly specified size now treated as a minimum

cWESUSE n BN


https://lore.kernel.org/all/20260123-sheaves-for-all-v4-0-041323d506f7@suse.cz/

SLUB sheaves - enabling for all caches

* Lots of code removed afterwards :) including usage of this_cpu_try_cmpxchg128()

- try_cmpxchg128() usage remains to put free objects back to their slab’s freelist
* Lots of fun with a memory leak due to missing “break ; " in an earlier version

= Not found by Chris Mason’s AI powered review until retrospectively told to look for leaks

—  After his prompts adjustments, now should be found in 5 of 6 cases

cWESUSE 2 BN


https://lore.kernel.org/all/a4b0be3f-bb6f-42d7-9176-a2bc0dcbd3a8@meta.com/

So what about performance?

Sorry, won’t be presenting fancy graphs here :)

The initial implementation was validated on in-kernel microbenchmarks

Also Suren Baghdasaryan had measured mmap () operation improvements

For enabling sheaves, on all caches, there were benchmarks done by Harry Yoo and Petr Tesarik

In general showing an improvement, but with specific cases showing worse performance

But that was older versions of the patches, e.g. with the memory leak still present

Due to being such a low-level implementation detail, it appears difficult to benchmark reliably

Things like subtly different memory layout may play a role due to processor caches

Kernel test robot reports - some regressions to investigate, including workloads known to be sensitive
to various corner cases, so should not be show-stoppers on their own

Many performance aspects are the matter of tuning - sheaf sizes, barn sizes, and various heuristics

cWESUSE 2 BN


https://lore.kernel.org/all/20250910-slub-percpu-caches-v8-0-ca3099d8352c@suse.cz/
https://lore.kernel.org/oe-lkp/202601132136.77efd6d7-lkp@intel.com/T/#u

What are the tradeoffs?

Thanks to Christoph Lameter for summarizing them

CPU slabs (before sheaves) - consecutive allocations served from the same CPU slab
- Spatial locality, good for TLB overhead

- Worse for cache performance (objects might be cold)

Sheaves - allocations are typically returning recently freed objects (LIFO)
- Temporal locality, good for cache performance (objects might still be hot)
- Potentially scattered from many slabs (worse for TLB)

—  Might also increase memory overhead (testing so far suggests it’s not significant)

Object freeing - fastpath is more likely with sheaves, and a bit faster thanks to local_trylock_t

- Slowpath is identical - try_cmpxchg128()

cWESUSE " BN


https://lore.kernel.org/all/f7c33974-e520-387e-9e2f-1e523bfe1545@gentwo.org/

Final Thoughts

* Implementation-wise - sheaves less tricky than this_cpu_try_cmpxchg128() based fastpaths

*  More suitable for kmalloc_nolock( ) - avariant for alloc/free in restricted context such as NMI

— Replaces BPF object caches (one of the original motivation of sheaves)

*  Without being based on sheaves (but also merged in 6.18)

- Much of its complexity and limitations (mainly due to PREEMPT_RT) are removed with CPU
slabs replaced by sheaves

* Astrong arsgument for completing the sheaves conversion, hence aiming for 7.0

*  Future work - integrate better with existing kfree_rcu() batching - now mostly bypassed

cWESUSE s BN






Effects on code size - merging of sheavesin 6.18

15 files changed, 2280 insertions(+), 1458 deletions(-)

include/linux/local_lock_internal.h 9 +-

include/linux/maple_tree.h 6 +-

include/linux/slab.h 47 +++++

lib/maple_tree.c 667 ++++++++++tt--- -
lib/test_maple_tree.c 137 ————------—-——-

mm/slab.h 5 +

mm/slab_common.c 34 +++-

mm/slub.c 1756 ++++++++++++++++++++++++++++++++H+H+HHHHHH

L a0 o 0 0 S O O S S o T S o B S S o S T IR oo o
s e

mm/vma_init.c 1 +

tools/include/linux/slab.h 165 +++++++++++++++++-
tools/testing/radix-tree/maple.c 514 +44----—mmm e -
tools/testing/shared/linux.c 120 ++++++++++---

tools/testing/shared/maple-shared.h 11 ++

tools/testing/shared/maple-shim.c 7 +

tools/testing/vma/vma_internal.h 259 +++++++----- - -

mm/ only: 5 files changed, 1790 insertions(+), 53 deletions(-)

cWe SUSE . BN



Effects on code size - replacing CPU slabs with sheaves

*  Current diffstat of slab/for-7.0/sheaves

- include/linux/slab.h | 6 -
mm/Kconfig | 11 -
mm/internal.h | 1 +
mm/page_alloc.c | 5 +
mm/slab.h | 57 ++---
mm/slab_common.c | 9 +-
mm/slub.c | 2663 ++++++++++++++H++HH+H A

S

7 files changed, 978 insertions(+), 1774 deletions(-)

* Together with sheaves introduction: net addition of 941 lines (mm only) or 26 lines (all)

cWe SUSE 10 BN



Evolution of slab allocator(s) code size

14000
12000
10000
8000
6000
4000
2000

0

Vo> oD O XD DO AR YD P T T U N, T T I T T P

Yo oY o BT B B B B Y Y Y Y Y N TR R R O e e o e O P e oo o
@ RGN RN R R 4&@‘\\»‘\\»@‘\\»‘\\.4444@@@@@44444\@\@@\{0\9’\
b. _
N



Evolution of personal diffstat (lines added minus removed)

4000
3000

2000

1000

0

,\"b,\'b‘.@,\?:bp‘bvb‘b%"bb‘@% %6«%»%%«%&%%4%%»%‘0(}\6\

S .5
Y a¥ o ot B B B B B W Y Y N Y 07 0T 0T B Y Y o Y oY 0T @ 0 0 T oY o @Y G
R adlcagt-age TR P ST BT PTRTS PTETPD P o7 o7 o7 T T TP ECRCR A

L
-1000

-2000
6 l l -3000




	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20

