
Calling JIT compiled scripts

Under the hood of Roto's integration with Rust
Feb 01 2026, FOSDEM

Terts Diepraam (he/him), NLnet Labs

Quick disclaimer

NLnet Labs ≠ NLnet

We can’t fund your projects (sorry!)

NLnet Labs

Open Source

DNS and routing

Non-profit organization

Been around for 26 years!

E.g. NSD, Unbound, Routinator, Rotonda

Rotonda

BGP route collector

Written in Rust

Has to filter a lot of data

Requires a fast scripting language

Me at FOSDEM 2024

Master’s thesis in Programming Languages

Me at FOSDEM 2024

Master’s thesis in Programming Languages

Looking for a job

Me at FOSDEM 2024

Master’s thesis in Programming Languages

Looking for a job

Software Engineer at NLnet Labs

Me at FOSDEM 2024

Master’s thesis in Programming Languages

Looking for a job

Software Engineer at NLnet Labs

Organizer of RustWeek

Chapter 1

Rotonda

Chapter 1

Rotonda

In a nutshell

Statically typed

Integrates tightly with Rust

JIT compiled to machine code!

No interpreter, no bytecode

Example

script.roto

fn foo(x: f64) -> f64 {

 print(f"Got value: {x}");

 (2.0 * x).pow(0.5)

}

Example

script.roto

fn foo(x: f64) -> f64 {

 print(f"Got value: {x}");

 (2.0 * x).pow(0.5)

}

// main.rs

let rt = roto::Runtime::new();

let mut pkg = rt.compile("script.roto")?;

let f = pkg.get_function::<fn(f64) -> f64>("foo")?;

let y = f.call(10.0);

Chapter 2

Under the Hood

Cranelift

Roto compiles to Cranelift IR

Cranelift then compiles that to machine code!

The unsafest unsafe

Cranelift gives us just a pointer and a buffer of code.

The unsafest unsafe

Cranelift gives us just a pointer and a buffer of code.

// SAFETY: ???

let func_ptr = unsafe {

 mem::transmute::<*const u8, Self::RotoFn>(ptr)

};

where Self::RotoFn is an extern "C" fn

The unsafest unsafe

Cranelift gives us just a pointer and a buffer of code.

// SAFETY: ???

let func_ptr = unsafe {

 mem::transmute::<*const u8, Self::RotoFn>(ptr)

};

where Self::RotoFn is an extern "C" fn

🔥 🐕️ 🔥 “This is fine”

Getting the signature

Each argument and return type needs to map to a Roto type

So we can check against the signature in the script

Sending Rust to Roto

bool → bool

u8 → u8

 ⋮ ⋮

Type layout

We can only deal with values with a known representation.

Otherwise we don’t know what code to generate!

Type layout

We can only deal with values with a known representation.

Otherwise we don’t know what code to generate!

std::mem::{size_of, align_of}

Type layout

We can only deal with values with a known representation.

Otherwise we don’t know what code to generate!

std::mem::{size_of, align_of}

Primitives are well-defined!

Type layout

We can only deal with values with a known representation.

Otherwise we don’t know what code to generate!

std::mem::{size_of, align_of}

Primitives are well-defined!

But Option<T> ?

Type layout

The only data layout guarantees made by this representation are those

required for soundness. They are:

• The fields are properly aligned.

• The fields do not overlap.

• The alignment of the type is at least the maximum alignment of its fields.

— Rust Reference

A normal Option<T> could be anything! 😔

Type layout: #[repr(C)

#[repr(C)]

enum RotoOption<T> {

 Some(T),

 None

}

So we have to transform to C representation!

Sending Rust to Roto

bool → bool

u8 → u8

 ⋮ ⋮

Option<T> → RotoOption<T>

Chapter 3

Registration

Builtins

Strings

Booleans

Integers

Floats

…

But not everything!

DateTime?

fn fast_forward(dt: DateTime) -> DateTime {

 dt.add_days(7)

}

Register it!

use jiff::Zoned;

use roto::{Runtime, Val, library};

let lib = library! {

 #[clone] type DateTime = Val<Zoned>;

};

let rt = Runtime::from_lib(lib)?;

Val<T> means “custom type”

#[clone] means “ Clone but not Copy ”

DateTime!

script.roto

fn fast_forward(dt: DateTime) -> DateTime {

 dt # TODO: add some days

}

// main.rs

type F = fn(Val<Zoned>) -> Val<Zoned>;

let f = pkg.get_function::<F>("fast_forward")?;

let now = Val(Zoned::now());

let out = f.call(now);

Sending Rust to Roto

bool → bool

u8 → u8

 ⋮ ⋮

Option<T> → RotoOption<T>

Val<T> → *const u8

Time to add functionality!

use jiff::{ToSpan, Zoned};

use roto::{Runtime, Val, library};

let lib = library! {

 #[clone] type DateTime = Val<Zoned>;

 impl Val<Zoned> {

 fn add_days(self, num_days: i64) -> Self {

 Val(self.0 + num_days.days())

 }

 }

};

let rt = Runtime::from_lib(lib)?;

Function registration

Very similar to RotoFunc

Reuse the Value trait!

Do the opposite transformations

Chapter 4

Generics

Lists

We should have List

And we should implement it in Rust!

let lib = library! {

 #[clone] type List<T> = Vec<T>;

};

Lists

We should have List

And we should implement it in Rust!

let lib = library! {

 #[clone] type List<T> = Vec<T>;

};

Nope!

But...

Generic types don’t exist after compilation

No TypeId , fixed layout, function pointers

End of the road?

But what if…

But what if… we fake generics?

Fake generics!

We can register type-erased data structures

List<T> ≈ ErasedList + vtable of T

Pretend there’s a type parameter

Sending Rust to Roto

bool → bool

u8 → u8

 ⋮ ⋮

Option<T> → RotoOption<T>

Val<T> → *const u8

List<T> → *const ErasedList

Lists in action

script.roto

fn foo(x: List[u8]) -> List[u8] {

 x.push(42);

 x

}

// main.rs

let f = pkg

 .get_function::<fn(List<u8>) -> List<u8>>("foo")?;

let y = f.call(List::new());

Chapter 5

Epilogue

General strategies

Don’t be too clever

Test test test!

Run Valgrind & MIRI

More features coming!

Maps / Dictionaries

Accessing Rust struct fields

Matching on Rust enums

First class functions

and more!

Join us for RustWeek 2026!

May 18-23, 2026 – Utrecht, The Netherlands

See rustweek.org

https://2026.rustweek.org

Join us for RustWeek 2026!

May 18-23, 2026 – Utrecht, The Netherlands

See rustweek.orgDISCOUNT CODE: FOSDEM26

https://2026.rustweek.org

Links

More about Roto

• github.com/NLnetLabs/roto

• roto.docs.nlnetlabs.nl

Find me online

• terts.dev

• terts@nlnetlabs.nl

• @mastodon.online@tertsdiepraam

Feel free to come up and talk to me!

Slides made with Typst.

No GenAI was used.

Slides, recording & links:

https://terts.dev/talks/roto-fosdem26

https://github.com/NLnetLabs/roto
https://roto.docs.nlnetlabs.nl
https://terts.dev
mailto:terts@nlnetlabs.nl
https://mastodon.online@tertsdiepraam
https://terts.dev/talks/roto-fosdem26

	1 Rotonda
	2 Under the Hood
	3 Registration
	4 Generics
	5 Epilogue

