Calling JIT compiled scripts

Under the hood of Roto's integration with Rust
Feb 01 2026, FOSDEM

Terts Diepraam (he/him), NLnet Labs

Quick disclaimer

NLnet Labs # NLnet

We can’t fund your projects (sorry!)

NLnet Labs

Open Source
DNS and routing
Non-profit organization

Been around for 26 years!

E.g. NSD, Unbound, Routinator, Rotonda

Rotonda

BGP route collector
Written in Rust
Has to filter a lot of data

Requires a fast scripting language

Me at FOSDEM 2024

Master’s thesis in Programming Languages

Me at FOSDEM 2024

Master’s thesis in Programming Languages

Looking for a job

Me at FOSDEM 2024

Master’s thesis in Programming Languages

Lovhirg/BpL2iq

Software Engineer at NLnet Labs

Me at FOSDEM 2024

Master’s thesis in Programming Languages

Levkirg/ ol 2id
Software Engineer at NLnet Labs

Organizer of RustWeek

Chapter 1

Rotonda

Chapter 1
Rotox! i

In a nutshell

Statically typed
Integrates tightly with Rust
JIT compiled to machine code!

No interpreter, no bytecode

Example

fn foo(x: f64) -> f64 {

print(f"Got value: {x}");
(2.0 * x).pow(0.5)

Example

fn foo(x: f64) -> f64 {
print(f"Got value: {x}");
(2.0 * x).pow(0.5)

let rt = roto::Runtime: :new();

let mut pkg = rt.compile("script.roto")?;

let f = pkg.get function::<fn(f64) -> f64>("foo")?;
let y f.call(10.0);

Chapter 2

Under the Hood

Cranelift

Roto compiles to Cranelift IR

Cranelift then compiles that to machine code!

The unsafest unsafe

Cranelift gives us just a pointer and a buffer of code.

The unsafest unsafe

Cranelift gives us just a pointer and a buffer of code.

let func ptr = unsafe {

mem: :transmute: :<*const u8, Self::RotoFn>(ptr)

}i

where Self::RotoFn isan extern "C" fn

The unsafest unsafe

Cranelift gives us just a pointer and a buffer of code.

let func ptr = unsafe {

mem: :transmute: :<*const u8, Self::RotoFn>(ptr)

}i

where Self::RotoFn isan extern "C" fn

W “This is fine”

Getting the signature

Each argument and return type needs to map to a Roto type

So we can check against the signature in the script

Sending Rust to Roto

bool — bool

u8 — u8

Type layout

We can only deal with values with a known representation.

Otherwise we don’t know what code to generate!

Type layout

We can only deal with values with a known representation.

Otherwise we don’t know what code to generate!

std::mem::{size of, align of}

Type layout
We can only deal with values with a known representation.
Otherwise we don’t know what code to generate!

std::mem::{size of, align of}

Primitives are well-defined!

Type layout

We can only deal with values with a known representation.

Otherwise we don’t know what code to generate!

std::mem::{size of, align of}
Primitives are well-defined!

But Option<T>?

Type layout

The only data layout guarantees made by this representation are those
required for soundness. They are:

e The fields are properly aligned.
e The fields do not overlap.
 The alignment of the type is at least the maximum alignment of its fields.

— Rust Reference

A normal Option<T> could be anything! <

Type layout: #[repr(C)

#[repr(C)]
enum RotoOption<T> {

Some(T),
None

So we have to transform to C representation!

Sending Rust to Roto

bool — bool

u8 — u8

Option<T> — RotoOption<T>

Chapter 3
Registration

Builtins

Strings
Booleans
Integers

Floats

But not everything!

DateTime?

fn fast forward(dt: DateTime) -> DateTime {

dt.add days(7)

}

Register it!

use jiff::Zoned;
use roto::{Runtime, Val, library};

let 1ib = library! {

#[clone] type DateTime = Val<Zoned>;

}i

let rt = Runtime::from lib(lib)?;

Val<T> means “custom type”

#[clone] means “ Clone but not Copy ”

DateTime!

fn fast forward(dt: DateTime) -> DateTime {
dt

}

type F = fn(Val<Zoned>) -> Val<Zoned>;
let f = pkg.get function::<F>("fast forward")?;

let now Val(Zoned: :now());
let out f.call(now);

Sending Rust to Roto

bool

u8

Option<T>

Val<T>

l

!

bool

u8

RotoOption<T>

*const u8

Time to add functionality!

impl Val<Zoned> {
fn add days(self, num days: i64) -> Self {
Val(self.0 + num _days.days())
}

Function registration

Very similar to RotoFunc

Reuse the Value trait!

Do the opposite transformations

Chapter 4
Generics

Lists

We should have List

And we should implement it in Rust!

let 1ib = library! {

#[clone] type List<T> = Vec<T>;
}i

Lists

We should have List

And we should implement it in Rust!

let 1ib = library! {

#[clone] type List<T> = Vec<T>;
}i

Nope!

But...

Generic types don’t exist after compilation

No Typeld, fixed layout, function pointers

End of the road?

But what if...

But what if... we fake generics?

Fake generics!

We can register type-erased data structures
List<T> ~ ErasedList + vtableof T

Pretend there’s a type parameter

Sending Rust to Roto

bool

u8

Option<T>
Val<T>

List<T>

l

l

l

bool

u8

RotoOption<T>
*const u8

*const ErasedList

Lists 1n action

fn foo(x: List[u8]) -> List[u8] {
X.push(42);
X

let f = pkg
.get function::<fn(List<u8>) -> List<u8>>("fo0o0")?;
let y = f.call(List::new());

Chapter 5

Epilogue

General strategies

Don’t be too clever
Test test test!

Run Valgrind & MIRI

More features coming]

Maps / Dictionaries

Accessing Rust struct fields

Matching on Rust enums

First class functions

and more!

Join us for RustWeek 2026!

Rusﬁeek

- by RustNL ———

May 18-23, 2026 — Utrecht, The Netherlands

See rustweek.org

https://2026.rustweek.org

Join us for RustWeek 2026!

https://2026.rustweek.org

Links

More about Roto
« github.com/NLnetLabs/roto
« roto.docs.nlnetlabs.nl

Slides, recording & links:

Find me online
. terts.dev
 terts@nlnetlabs.nl

Feel free to come up and talk to me!

Slides made with Typst.

No GenAl was used. https://terts.dev/talks/roto-fosdem26

https://github.com/NLnetLabs/roto
https://roto.docs.nlnetlabs.nl
https://terts.dev
mailto:terts@nlnetlabs.nl
https://mastodon.online@tertsdiepraam
https://terts.dev/talks/roto-fosdem26

	1 Rotonda
	2 Under the Hood
	3 Registration
	4 Generics
	5 Epilogue

