
ParticleOS, from Fedora to Feast:
Stirring Traditional Distros into Immutable Delights

Luca Boccassi, Linux Systems Group, Microsoft

https://github.com/systemd/particleos


Agenda

● Motivations - what is an immutable system anyway
● Cookware - what tools do we use to build one
● Ingredients - what do we build it from
● Recipes - how do we put it together
● Kitchen - where do we build it
● End result - what sort of image and workflow we get out of it
● Yum yum!



Glossary

● TPM: Trusted Platform Module
● UEFI Secure Boot: firmware-based payload signature verification
● UKI: Unified Kernel Image, kernel + initrd + cmdline + … in a signed PE
● EFI Addons: sidecars for UKIs with additional options, files, …
● Hermetic-usr: OS vendor tree self-contained or can regenerate from /usr/

○ Hint: sysusers.d for system users/groups, tmpfiles.d for /var/ or /etc/ dirs/files
● DDI: Discoverable Disk Image, GPT self-described disk
● dm-verity: kernel device mapper driver for cryptographically verified block 

devices
● IPE: Integrity Policy Enforcement, kernel LSM for code signing

https://uapi-group.org/specifications/specs/unified_kernel_image/
https://www.freedesktop.org/software/systemd/man/latest/systemd-stub.html#Companion%20Files
https://0pointer.net/blog/fitting-everything-together.html
https://www.freedesktop.org/software/systemd/man/latest/sysusers.d.html#
https://www.freedesktop.org/software/systemd/man/latest/tmpfiles.d.html#
https://uapi-group.org/specifications/specs/discoverable_disk_image/
https://uefi.org/specs/UEFI/2.10/05_GUID_Partition_Table_Format.html
https://docs.kernel.org/admin-guide/device-mapper/verity.html
https://docs.kernel.org/security/ipe.html


What is an immutable system anyway

● A system is either immutable or it is not
○ Vendor tree (/usr/) a little bit writable? It’s not!
○ Can just run this rpm-ostree command to pull in some packages? It’s not!
○ Can just build a new snapshot and reboot into it? It’s not!

● Immutable means immutable, with a chain of trust. I.E.: the threat model is 
local execution after privilege escalation attempting to change the system.

● Translation: if you use a kernel-verified signed dm-verity volume(s) without 
locally available private keys, then you have an immutable system, otherwise 
it’s just a sparkling package manager

● ParticleOS gives you the tools and the recipes to achieve this out of the box

https://github.com/systemd/particleos


mkosi to the rescue

● The swiss army knife of image building from the systemd project
● Pure Python3 implementation, no dependencies
● INI-style configuration files, composable/drop-ins style
● Native support for all the new fancy systemd tools
● Builds system images with bells and whistles

○ UKIs, DDIs, extensions, portable images, etc.
● Development builds for local workflows, booting containers/VMs with zeroconf
● Production builds with support for various signing workflows

○ OpenSSL provider/engine for inline signing with hardware tokens
○ Offline signing for multi-staged builds

https://mkosi.systemd.io/
https://uapi-group.org/specifications/specs/unified_kernel_image/
https://uapi-group.org/specifications/specs/discoverable_disk_image/
https://www.freedesktop.org/software/systemd/man/latest/systemd-stub.html#Companion%20Files
https://systemd.io/PORTABLE_SERVICES/


Choose your Destiny

● Currently Fedora, Arch, SUSE and Debian have recipes in ParticleOS
● Any distribution supported by mkosi can be trivially added
● The recipes broadly speaking cover three distinct areas:

○ mkosi boilerplate and glue
○ List(s) of packages to install - often per-release as packages tend to change and be 

incompatible
○ Workarounds for distributions that do not support hermetic-usr and other modern standards 

out of the box
● If mkosi does not support the distribution (or more precisely, the package 

manager), then work is more involved for a new port
○ Needs one or two Python3 modules to implement the internal install/update/etc APIs
○ Still doable! Plz send PR kkthxbye

https://github.com/systemd/particleos
https://mkosi.systemd.io/
https://mkosi.systemd.io/


OBS - SUSE Open Build Service

● Build system for Linux distributions by SUSE
○ Available for open source developers at https://build.opensuse.org 

● Rebuilds on git push or dependency tree changes
● Native support for mkosi added in 2022
● Can build UKIs or DDIs (full system images) or portable images or extensions
● Signing keys handled by build service, not accessible by developers

○ Same key management guarantees for random OSS developer and openSUSE builds
○ No custom code/scripting/management of any kind of private keys, all automated
○ Multi-stage build, hashes sent to signing service, builder gets signatures back and starts over

● Published on CDN with PGP-signed manifest compatible with sysupdate.d
● system:systemd OBS project builds GNOME/x86_64 DDI images based on F42, 

F43, F44, Deb13, Deb14
○ Server arm64 images for Deb13/Deb14

● Users can fork images, modify the recipe and get automated rebuilds and 
publishing, signed with a key scoped to their own user

https://openbuildservice.org/
https://build.opensuse.org
https://openbuildservice.org/help/manuals/obs-user-guide/cha-obs-package-formats#sec-pkgfmt-mkosi
https://uapi-group.org/specifications/specs/unified_kernel_image/
https://uapi-group.org/specifications/specs/discoverable_disk_image/
https://systemd.io/PORTABLE_SERVICES/
https://uapi-group.org/specifications/specs/extension_image/
https://www.freedesktop.org/software/systemd/man/latest/sysupdate.d.html
https://build.opensuse.org/project/show/system:systemd
https://uapi-group.org/specifications/specs/discoverable_disk_image/
https://download.opensuse.org/repositories/system:/systemd/fedora_42_images/
https://download.opensuse.org/repositories/system:/systemd/fedora_43_images/
https://download.opensuse.org/repositories/system:/systemd/fedora_44_images/
https://download.opensuse.org/repositories/system:/systemd/debian_13_images/
https://download.opensuse.org/repositories/system:/systemd/debian_testing_images/




End result

● Erofs and signed dm-verity for /usr/ with Fedora/Arch/SUSE/Debian
● ESP with signed systemd-boot and UKI
● UKI with profile preconfigured for IPE code integrity enforcement
● On first boot systemd-repart formats root, home and swap with LUKS2 

encrypted with TPM2
● Has systemd-sysupdate preconfigured to update systemd-boot, UKI and DDI 

as new builds appear on OBS with A/B partitioning scheme
○ With boot counting and assessment for fallback on failure

● Uses systemd-homed for user and home area management
● GNOME or KDE with Flatpak + Flathub preconfigured for desktop flavours
● Portable Services or containers for additional software on servers

https://erofs.docs.kernel.org/en/latest/
https://docs.kernel.org/admin-guide/device-mapper/verity.html
https://www.freedesktop.org/software/systemd/man/latest/systemd-boot.html
https://uapi-group.org/specifications/specs/unified_kernel_image/
https://uapi-group.org/specifications/specs/unified_kernel_image/
https://docs.kernel.org/security/ipe.html
https://www.freedesktop.org/software/systemd/man/latest/systemd-repart.html
https://www.freedesktop.org/software/systemd/man/latest/systemd-sysupdate.html#
https://www.freedesktop.org/software/systemd/man/latest/systemd-boot.html
https://uapi-group.org/specifications/specs/unified_kernel_image/
https://build.opensuse.org/project/show/system:systemd
https://www.freedesktop.org/software/systemd/man/latest/systemd-homed.html#
https://www.gnome.org/
https://kde.org/
https://flatpak.org/
https://flathub.org/en
https://systemd.io/PORTABLE_SERVICES/


Chain of trust

● UEFI Secure Boot automated self-enrollment with OBS signing keys
○ Still have the MSFT 3rd Party CAs to avoid bricking laptops that need to load signed OPROMs

● CPU verifies firmware (e.g.: Intel BootGuard)
● Firmware verifies systemd-boot
● sd-boot verifies UKI and addons via firmware
● Kernel verifies vendor tree as signed dm-verity via UEFI DB/MOK keyrings
● IPE LSM verifies loaded binaries and libraries originate from signed dm-verity
● End result is an immutable system cryptographically verified by a chain of 

trust from hardware to userspace binaries
○ TODO: interpreted scripts integrity verification via AT_EXECVE_CHECK
○ TODO: making GNOME IPE-friendly

https://build.opensuse.org/projects/system:systemd/signing_keys
https://tianocore-docs.github.io/Understanding_UEFI_Secure_Boot_Chain/draft/secure_boot_chain_in_uefi/intel_boot_guard.html
https://www.freedesktop.org/software/systemd/man/latest/systemd-boot.html
https://www.freedesktop.org/software/systemd/man/latest/systemd-boot.html
https://uapi-group.org/specifications/specs/unified_kernel_image/
https://www.freedesktop.org/software/systemd/man/latest/systemd-stub.html#Companion%20Files
https://docs.kernel.org/admin-guide/device-mapper/verity.html
https://docs.kernel.org/security/ipe.html
https://docs.kernel.org/userspace-api/check_exec.html


Demos

● Code integrity with IPE on Fedora
● GNOME on Debian

https://drive.google.com/file/d/1PzBW7r1bT0jUf90smUund4Ii3_8_0eqC/view?usp=sharing
https://www.youtube.com/watch?v=XgcnKxlIVcc


Thank you

Questions?


