Lighter, faster, simpler
An Element Web for the future

David Baker Florian Duros
He/They He/Him
@dave:matrix.org @ormaz:matrix.ormaz.fr

Agenda

Intro

The Journey to Element Web today

The Destination: Matrix Rust SDK

The Map: How do we get there?

Deep dive: MVVM and shared components
Demos!

Questions

Speakers

David Baker

Staff Software Engineer,
Element

Matrix Spec Core Team

@dave:matrix.org

Florian Duros
Senior Software Engineer,
Element

@ormaz:matrix.ormaz.fr
@florianduros:element.io

The journey to Element Web today

A React client for Matrix

Capybara Club & UBE 0 ¥:

@E All Chats Capybara Club
@D

You ated this room. This rt of Capybara Club.
reads ' | People | | Rooms Add a topic to help people know what it is about.

| . + &
7, This Week in Matrix (TWIM)

[[BACKSTAGE] Decentralis...
D) Decentralised Communic...
Element All-hands (ex-Ne...

Element Product Feedbac...
Florian Duros

Speakers @ FOSDEM 2026 | love this club!

The Element Moving Movi... ' Dave

Florian Duros ~

FOSDEM Mission Control

Element FOSDEM 2026

S
9 Bridge Crew | Lobby
<

G@ GoToSocial Help -- On holi...

Backend Team | Lobby
It's the best club

...the early days!

INVITES
FAVOURITES
test incirpted room
$ roxtusarv
$ roxtvsdrv
ROOMS

g

VolIP | Watercooler

Element

Web/Desktop
Element Web
Development

Dave

Dave Test 23

e Start chat
E Directory
Q Settings %"

Wed Jun 12 2024

Let's party like it's 2016 £

A React client for Matrix

Our first Matrix client built on React

Started in 2015

Built on (and alongside) matrix-js-sdk

Most data / state stored by js-sdk

Nominal Flux pattern (pass data down, dispatch up)
Very fast... at first!

Reusable Parts

Most code actually in a separate package: Matrix
React SDK

Intended to be a reusable SDK to build a Matrix app
in React

Expectation vs. reality...

React SDK components weren't really re-usable in
isolation

Quite a lot of logic in components

Organic Growth

More & more features have been added over the

years
As with all large projects, has accumulated technical
debt as it's grown

Technology and coding standards have changed in
the last decade!

Open source means contributions need managing if
they're to maintain the same code style.

Leading Matrix on the Web

e The Element Web codebase is one of the most
feature-complete Matrix clients in the ecosystem
and is key to many organisations using Matrix.

e Including forks, the most widely deployed Matrix
client

B B o &

Setting the Standard

If Matrix, and decentralised chat as a whole,
Is to succeed widely, it needs a web client
that's a fast and reliable as the closed
source, centralised competitors.

N
N

Matrix Rust SDK

e Both Element mobile apps now powered by Matrix
Rust SDK

e Rewritten from scratch:
o Faster

“Sliding sync” (instant launch)

Memory efficient

E2E built in from the very start m

Scalable design

Shared models with Ruma

Cross-platform consistency

O O O O O O

Element Web ‘X’

Can we have Element Web backed by the same SDK
as the mobile clients?

Run the Rust SDK via WebAssembly

No longer need to write each feature twice

Should lead to higher quality apps

Already uses the crypto part of Matrix Rust SDK

Avoiding a Rewrite

e The Element X mobile apps are vastly improved
having been rewritten on top of the Rust SDK

e ...but the migration is still not complete.

e How can we iterate on Element Web, migrate to

Matrix Rust SDK and improve the codebase in the
process?

Shared Components

Reusable, but opinionated: designed for Element.
Can be used in Element Web Modules too!
Agnostic of any Matrix SDK

They are Ul code and nothing more

A few small components done so far
In progress: Room List, Timeline tiles

Shared Components: Medium Term

e Right panel (member list, room info etc.)
e Space panel
e Login & registration views

Plus, prove these components are reusable by reusing
them in another app!

Shared Components: Long Term

Decoupled, well-defined interfaces: easier to
replace the code that drives them.

We can then start to migrate to the Rust SDK, now
that the view level is SDK-agnostic.

MVVM and Shared Components

Technical detail

Florian Duros

MVVM

e Model-view-viewmodel (MVVM) facilitates the
separation of the development of a graphical user
interface from the development of the business
logic such that the view is not dependent upon any
specific model platform.

https://en.wikipedia.org/wiki/Separation_of_concerns
https://en.wikipedia.org/wiki/Graphical_user_interface
https://en.wikipedia.org/wiki/Business_logic

MVVM

M

Data Binding |

Presentation and Presentation Logic Business Logic and Data

MVVM in Shared Components

The View lives in Shared Components

Shared Components defines the interface

o The expected data (snapshot)

o The actions to call on the view model

The Viewmodel is provided by the application

o Element Web

o EW module

o Aurora

Internally Viewmodels use react.syncExternalStore

MVVM in Shared Components

export interface MyCompViewSnapshot {
label: string;
I

export interface MyCompSearchViewActions {
onClick: MouseEventHandler<HTMLButtonElement>;
}

export type MyCompViewModel = ViewModel<MyCompViewSnapshot> &
MyCompSearchViewActions

interface MyCompViewProps {
vm: MyCompViewModel;
}

export function MyCompView({ vm }: Readonly<MyCompViewProps>): JSX.Element {
const { label } = useViewModel(vm)

return (
<button type="button" onClick={vm.onClick}>
{label}
</button>
)

MVVM in Shared Components

interface Props {}

class MyCompViewModel extends BaseViewModel<MyCompViewSnapshot, Props> implements
MyCompViewModelInterface {
public constructor(props: Props) {
super(props, {
label: "Click Me",
});
}

public onClick: () => void = () => {
console.log("Button clicked");

ks

Shared Components

We completely decouple Shared Components from
the app logic from the start

o No dependencies from Element Web

We re-use Shared Components in other apps as
early as possible

Most of all: new Ul or Ul refactoring is done in
Shared Components

We also modernized our tooling! Vite, vitest,
storybook, CSS module...

Aurora

A hackathon project to see if we can build a web /

desktop client using the Rust SDK.

e |[nitially desktop powered by Tauri

e Now runs on web using Rust SDK in Web Assembly

e \ery basic, most components copied & pasted from
Element Web... until now!

https://github.com/element-hq/aurora

