
Extending AF_XDP for fast co-located

packet transfer

Debojeet Das, Kevin Prafull Baua, Aditya Kansara, Arghyadip Chakraborty,

Dheeraj Kurukunda, Mythili Vutukuru, and Purushottam Kulkarni

debojeetdas@cse.iitb.ac.in

Systems and Networking Research Group (SynerG)

Department of Computer Science and Engineering

Indian Institute of Technology Bombay

 FOSDEM
’26

 JAN 31, 2026

https://creativecommons.org/licenses/by-sa/4.0/
https://creativecommons.org/licenses/by-sa/4.0/
https://creativecommons.org/licenses/by-sa/4.0/

Fast network I/O with XDP and AF_XDP

2

eBPF/XDP

In-kernel packet processing

- eBPF based

- eBPF restricted constraints

if (pkt.ip == a.b.x.x)
 DROP

XDP and AF_XDP allows us to deploy our-own high-performance load balancer, firewall, etc.

https://creativecommons.org/licenses/by-sa/4.0/
https://creativecommons.org/licenses/by-sa/4.0/
https://creativecommons.org/licenses/by-sa/4.0/

Fast network I/O with XDP and AF_XDP

3

eBPF/XDP

In-kernel packet processing

- eBPF based

- eBPF restricted constraints

if (pkt.ip == a.b.x.x)
 DROP

AF_XDP

Partial kernel bypass via XDP

- zero-copy delivery to user apps

- Interrupt driven/Busy poll

if (pkt.ip == a.b.x.x)
 Redirect to AF_XDP sock 1

XDP and AF_XDP allows us to deploy our-own high-performance load balancer, firewall, etc.

https://creativecommons.org/licenses/by-sa/4.0/
https://creativecommons.org/licenses/by-sa/4.0/
https://creativecommons.org/licenses/by-sa/4.0/

Co-locating multiple AF_XDP zero-copy apps

Goal: Efficient co-location of AF_XDP zero-copy apps to provide

complex services

Problem: AF_XDP lacks socket-to-socket redirection much less

zero-copy transfers

X
4

NIC Firewall Load
Balancer Router

https://creativecommons.org/licenses/by-sa/4.0/
https://creativecommons.org/licenses/by-sa/4.0/
https://creativecommons.org/licenses/by-sa/4.0/

Existing solutions for co-located packet transfers

between AF_XDP sockets

Pros:

No API modifications needed

Cons:

Limited AF_XDP support

- VF support only in mlx5

- SF support only in ice and mlx5

Performance hit from app-to-app

copying

5

SR-IOV

https://creativecommons.org/licenses/by-sa/4.0/
https://creativecommons.org/licenses/by-sa/4.0/
https://creativecommons.org/licenses/by-sa/4.0/

Pros:

No API modifications needed

Cons:

Limited AF_XDP support

- VF support only in mlx5

- SF support only in ice and mlx5

Performance hit from app-to-app

copying

6

*Possible Solution

Motivated from existing DPDK

solutions like OpenNetVM, etc.

Pros:

Zero-copy packet transfers

Cons:

Requires new APIs

Creates tight coupling between

Apps and libraries

Existing solutions for co-located packet transfers

between AF_XDP sockets

SR-IOV Userspace Chaining*

https://creativecommons.org/licenses/by-sa/4.0/
https://creativecommons.org/licenses/by-sa/4.0/
https://creativecommons.org/licenses/by-sa/4.0/

Flexible co-location via AF_XDP kernel extensions

Zero-copy for shared memory sockets; single-copy for others

Backward compatible solution: Transparent redirection with zero

changes to userspace APIs

FLASH: Fast Linked AF_XDP Sockets for High-Performance Chaining

7

Our work: In-kernel packet transfers for AF_XDP

https://creativecommons.org/licenses/by-sa/4.0/
https://creativecommons.org/licenses/by-sa/4.0/
https://creativecommons.org/licenses/by-sa/4.0/

Split data path of AF_XDP

Driver handles RX/TX

UMEM (buffer pool) shared

between userspace application

and kernel

SPSC rings to maintain packet

accesses

• Fill Ring and Rx Ring used in

packet reception

• Tx Ring and Completion Ring

used in packet transmission

8

https://creativecommons.org/licenses/by-sa/4.0/
https://creativecommons.org/licenses/by-sa/4.0/
https://creativecommons.org/licenses/by-sa/4.0/

Packet Reception in AF_XDP

1. Applications provide free

descriptors for DMA

2. Kernel allocates them to NIC

3. NIC DMA’s the packet to UMEM

4. napi_poll executes the XDP

program which returns the

socket where the packet

should be sent

5. The Driver calls AF_XDP

subsystem’s function to place

the descriptor in Rx ring

6. Application reads 7. processes

and 8. recycles descriptors.

9

https://creativecommons.org/licenses/by-sa/4.0/
https://creativecommons.org/licenses/by-sa/4.0/
https://creativecommons.org/licenses/by-sa/4.0/

Packet transmission and modes of AF_XDP

10

8b. to 12. shows the transmission

path which uses the Tx and

completion rings

The kernel space operations are

initiated by the driver with the

help of AF_XDP subsystem

functions*

Driver can either invoke them

based on interrupts or

via hints using sendto() and

recvfrom() syscalls (Busypoll)

*The functions can be found at include/net/xdp_sock_drv.h

https://creativecommons.org/licenses/by-sa/4.0/
https://creativecommons.org/licenses/by-sa/4.0/
https://creativecommons.org/licenses/by-sa/4.0/

Challenge #1 Ring semantics

Redirection violates SPSC (Single-Producer/Single-Consumer)

semantics

Key Idea #1: Backward-compatible MP/MC lockless rings

• CAS operations serialize MP/MC while maintaining SP/SC for

userspace

11

struct xdp_ring {
 u32 producer; // Old field; represents producer_tail
 u32 consumer; // Old field; represents consumer_tail
 u32 flags;
 u32 producer_head; // Used only for MPSC
 u32 consumer_head; // Used only for SPMC
};

int xskq_enqueue_desc(struct xsk_queue *q, u64 addr, u32 len, u32 flags);
bool xskq_dequeue_desc(struct xsk_queue *q, struct xdp_desc* desc, struct xsk_buff_pool *pool);

https://creativecommons.org/licenses/by-sa/4.0/
https://creativecommons.org/licenses/by-sa/4.0/
https://creativecommons.org/licenses/by-sa/4.0/

Zero-copy redirection with MP / MC rings

Packet data stays in shared UMEM

FLASH can move packet descriptor from TX ring

of App 1 to RX ring of App 2

FLASH brings back empty descriptor from fill ring

of App 2 to completion ring of App 1

Fill ring becomes MC in kernel and Rx ring

becomes MC in kernel

single-copy redirection works similarily but using

memcpy

12

https://creativecommons.org/licenses/by-sa/4.0/
https://creativecommons.org/licenses/by-sa/4.0/
https://creativecommons.org/licenses/by-sa/4.0/

Challenge #2: Batched redirections

We, batch redirections to amortize CAS overhead

 u32 xskq_bulk_enqueue_descs(struct xsk_queue *q, struct xdp_desc* descs, u32 n_descs);

• With new MPSC/SPMC rings, available capacity changes mid-redirection

• FR descriptors cannot be returned without violating ring semantics

Key Idea #2: Partial TX + Descriptor Buffering

• Order ring updates so any packet placed in TX is guaranteed to redirect

• Buffer extra FR descriptors for use in the next iteration

13

https://creativecommons.org/licenses/by-sa/4.0/
https://creativecommons.org/licenses/by-sa/4.0/
https://creativecommons.org/licenses/by-sa/4.0/

Challenge #3: Scheduling threads

To balance CPU utilization and performance a hybrid

polling workflow is usually employed in applications:

1. Start in interrupt mode: Use poll() with the POLLIN

flag to block until packets arrive

2. Switch to busy-polling: At high rates, switch to a busy

loop using recvfrom() to continuously process

packets

3. Revert to interrupt mode: When load decreases, return

to interrupt mode

By default, hybrid polling across packet transfers doesn’t

work

Moreover, during congestion, the sender must retry

transmissions until space becomes available this leads to

wastage of CPU cycles

14

https://creativecommons.org/licenses/by-sa/4.0/
https://creativecommons.org/licenses/by-sa/4.0/
https://creativecommons.org/licenses/by-sa/4.0/

Smart polling and early backpressure detection

Key Idea #3: Smart Polling & Early Backpressure

• Extends hybrid polling across redirection paths

• Congestion Handling: Senders block via poll() (POLLOUT) until space

• Wake-up Signal: Receivers use recvfrom() (MSG_MORE) to signal senders

15

https://creativecommons.org/licenses/by-sa/4.0/
https://creativecommons.org/licenses/by-sa/4.0/
https://creativecommons.org/licenses/by-sa/4.0/

Challenge #4: Performance vs. safety

How to isolate zero-copy Apps from each other in multi-tenant settings?

Key Idea #4: FLASH monitor and safe runtime

• FLASH Monitor: Offloads privileged tasks and manages access control

• Rust Runtime: Ensures memory and packet isolation in multi-tenant setups

16

https://creativecommons.org/licenses/by-sa/4.0/
https://creativecommons.org/licenses/by-sa/4.0/
https://creativecommons.org/licenses/by-sa/4.0/

But how do you specify the path of transfers?

We need a way to inspect active AF_XDP sockets and configure transfer rules between sockets

• FLASH should then use the rules to access the rings and perform the transfers

• But, the sockets (struct xdp_sock) and its rings are backed by process local fds

How do XDP get access of rings then?

• It stores the struct xdp_sock in a map and uses XDP program to select the socket on packet

reception

Our Solution: Expose a sysfs interface under /sys/kernel/flash to store the sockets and

configure redirection rules*

For example, if there are two sockets and we want all packets from socket 1 to go to socket 2

echo 2 | sudo tee /sys/kernel/flash/1/next

17

*We also support dynamic packet transfers

https://creativecommons.org/licenses/by-sa/4.0/
https://creativecommons.org/licenses/by-sa/4.0/
https://creativecommons.org/licenses/by-sa/4.0/

How much change is needed to support all this?

~700 LoC in AF_XDP subsystem

The changes mostly augments new features to the AF_XDP subsystem

Requires straightforward patching in driver to ignore packet transmissions

bool xmit_batch(struct xsk_buff_pool *pool, unsigned int budget)

{

 struct xdp_desc *descs = pool->tx_descs;

 unsigned int nb_pkts = 0;

 // Fetch a batch of descriptors for transmission

 nb_pkts = xsk_tx_peek_release_desc_batch(pool, budget);

 if (!nb_pkts)

 return true;

 // If redirection is configured, skip NIC transmission

 if (pool->no_tx_out) // New lines

 return nb_pkts < budget; // New lines

 // Proceed with normal transmission

 return nb_pkts < budget;

}

We have already added support for ixgbe, i40e, ice and mlx5

18

https://creativecommons.org/licenses/by-sa/4.0/
https://creativecommons.org/licenses/by-sa/4.0/
https://creativecommons.org/licenses/by-sa/4.0/

FLASH performance gains

Baselines:

AF_XDP-SRIOV: AF_XDP over SR-IOV

OpenNetVM: DPDK userspace chaining

Our work:

FLASH-ZC: FLASH C library zero-copy

FLASH-ZR: FLASH Rust library zero-copy

FLASH provides lowest latency among all

solutions.

FLASH-ZC provides 1.1 x - 2.5 x higher

throughput than SR-IOV

19

24-core Intel Xeon Gold 5418Y, 128 GB RAM, HT disabled - Mellanox Connect X-4 MT27700 40Gbps (mlx5)
Ubuntu 22.04 LTS, Linux Kernel 6.10.6 – Chains of L2FWD switches – Used Pktgen for load generation

https://creativecommons.org/licenses/by-sa/4.0/
https://creativecommons.org/licenses/by-sa/4.0/
https://creativecommons.org/licenses/by-sa/4.0/

Summary

• The Problem: AF_XDP lacks native support for zero-copy packet redirection between co-

located sockets

• The Solution: FLASH extends the AF_XDP kernel subsystem to enable high-performance,

transparent chaining

• Key Ideas:

• MP/MC Lockless Rings

• Batching & Buffering

• Smart Polling

• A sysfs interface for setting up the redirections

20

https://creativecommons.org/licenses/by-sa/4.0/
https://creativecommons.org/licenses/by-sa/4.0/
https://creativecommons.org/licenses/by-sa/4.0/

Future Directions

• From sysfs to XDP_EGRESS: Replace current sysfs-based rule configuration with a native

XDP hook at the egress point

• packet-steering logic can be entirely programmable via eBPF

• Interesting use case of XDP_EGRESS? (LPC 2025)

• Generalizing the service chaining framework to support diverse set of applications

• mTCP Integration: Currently developing zero-copy support for TCP-based applications

• Using SPMC/MPSC rings of AF_XDP for other use-cases:

• Packet redirection from one queue to another queue during ingress

We are also working on a Rust rewrite of FLASH monitor

21

https://creativecommons.org/licenses/by-sa/4.0/
https://creativecommons.org/licenses/by-sa/4.0/
https://creativecommons.org/licenses/by-sa/4.0/
https://lpc.events/event/19/contributions/2275/attachments/1946/4156/zero_copy.pdf
https://lpc.events/event/19/contributions/2275/attachments/1946/4156/zero_copy.pdf
https://lpc.events/event/19/contributions/2275/attachments/1946/4156/zero_copy.pdf

Thank You

debojeetdas@cse.iitb.ac.in

22

Project Link:

https://creativecommons.org/licenses/by-sa/4.0/
https://creativecommons.org/licenses/by-sa/4.0/
https://creativecommons.org/licenses/by-sa/4.0/

	Default Section
	Slide 1: Extending AF_XDP for fast co-located packet transfer
	Slide 2: Fast network I/O with XDP and AF_XDP
	Slide 3: Fast network I/O with XDP and AF_XDP
	Slide 4: Co-locating multiple AF_XDP zero-copy apps
	Slide 5: Existing solutions for co-located packet transfers between AF_XDP sockets
	Slide 6: Existing solutions for co-located packet transfers between AF_XDP sockets
	Slide 7: Our work: In-kernel packet transfers for AF_XDP
	Slide 8: Split data path of AF_XDP
	Slide 9: Packet Reception in AF_XDP
	Slide 10: Packet transmission and modes of AF_XDP
	Slide 11: Challenge #1 Ring semantics
	Slide 12: Zero-copy redirection with MP / MC rings
	Slide 13: Challenge #2: Batched redirections
	Slide 14: Challenge #3: Scheduling threads
	Slide 15: Smart polling and early backpressure detection
	Slide 16: Challenge #4: Performance vs. safety
	Slide 17: But how do you specify the path of transfers?
	Slide 18: How much change is needed to support all this?
	Slide 19: FLASH performance gains
	Slide 20: Summary
	Slide 21: Future Directions
	Slide 22

