Extending AF_XDP for fast co-located
packet transfer

Debojeet Das, Kevin Prafull Baua, Aditya Kansara, Arghyadip Chakraborty,
Dheeraj Kurukunda, Mythili Vutukuru, and Purushottam Kulkarni

debojeetdas@cse.iitb.ac.in

Systems and Networking Research Group (SynerG)
Department of Computer Science and Engineering
Indian Institute of Technology Bombay

FOSDEM 26
JAN 31, 2026

https://creativecommons.org/licenses/by-sa/4.0/
https://creativecommons.org/licenses/by-sa/4.0/
https://creativecommons.org/licenses/by-sa/4.0/

Fast network 1/0O with XDP and AF_XDP

XDP and AF_XDP allows us to deploy our-own high-performance load balancer, firewall, etc.

App
(Regular)

User space\

, eBPF/XDP
Linux Network _
Stack In-kernel packet processing
¢ - eBPF based

Driver

Kernel Space

- eBPF restricted constraints

if (pkt.ip == a.b.x.x)
DROP

©@®O

https://creativecommons.org/licenses/by-sa/4.0/
https://creativecommons.org/licenses/by-sa/4.0/
https://creativecommons.org/licenses/by-sa/4.0/

Fast network 1/0O with XDP and AF_XDP

XDP and AF_XDP allows us to deploy our-own high-performance load balancer, firewall, etc.

User space\

App
(Regular)

Linux Network

Stack

)

Kernel Space

©@®O

Driver

eBPF/XDP
In-kernel packet processing
- eBPF based

- eBPF restricted constraints

if (pkt.ip == a.b.x.x)
DROP

User spac

Kernel Space

I\

App App

\

(Regular)| | (0-copy)

Linux Network
Stack
)

Driver

AXDP
NIC

AF_XDP
Partial kernel bypass via XDP
- zero-copy delivery to user apps

- Interrupt driven/Busy poll

if (pkt.ip == a.b.x.x)
Redirect to AF_XDP sock 1

https://creativecommons.org/licenses/by-sa/4.0/
https://creativecommons.org/licenses/by-sa/4.0/
https://creativecommons.org/licenses/by-sa/4.0/

Co-locating multiple AF_XDP zero-copy apps

Load
Balancer

NIC —> Firewall

Router

Goal: Efficient co-location of AF_XDP zero-copy apps to provide
complex services

Problem: AF_XDP lacks socket-to-socket redirection much less

zero-copy transfers

©@®O

App

G a\

Sdcke

https://creativecommons.org/licenses/by-sa/4.0/
https://creativecommons.org/licenses/by-sa/4.0/
https://creativecommons.org/licenses/by-sa/4.0/

Existing solutions for co-located packet transfers
between AF_XDP sockets

SR-IOV
d A Pros:
App App No APl modifications needed
(O-copy) | | (O-copy)
Sbckdt $ocket Cons:
Y - F‘ e Limited AF_XDP support
L J - VF support only in mIx5
. - SF support only in ice and mlx5
| 2 Switcl PP Y
\/ NIC \j Perfo_rmance hit from app-to-app
/ \ copying

©@®O

https://creativecommons.org/licenses/by-sa/4.0/
https://creativecommons.org/licenses/by-sa/4.0/
https://creativecommons.org/licenses/by-sa/4.0/

Existing solutions for co-located packet transfers
between AF_XDP sockets

SR-10V

-

~

App App
(0-copy)] {(O'COPV)

bckat $ock

et

\

| 2 Switcl

F\ |/VE

E
-/ ne
/

©@®O

\

Pros:
No APl modifications needed

Cons:

Limited AF_XDP support

- VF support only in mlx5

- SF support only in ice and mIx5

Performance hit from app-to-app
copying

Userspace Chaining*

4 I
App App
(O-copy) | | (O-copy)
AL A

" NFLibrar

}

NF Mehagr
\ E§E§$§§E /
NIC \

Motivated from existing DPDK
solutions like OpenNetVM, etc.

Pros:
Zero-copy packet transfers

Cons:
Requires new APIs

Creates tight coupling between
Apps and libraries

*Possible Solution

https://creativecommons.org/licenses/by-sa/4.0/
https://creativecommons.org/licenses/by-sa/4.0/
https://creativecommons.org/licenses/by-sa/4.0/

Our work: In-kernel packet transfers for AF_XDP

-

~

App

(0-copy)

App
(O-copy)

T«

1 |
1 .

Sepcket

f\F_‘)’(DP‘

oC

N

NIC

©@®O

Flexible co-location via AF_XDP kernel extensions
Zero-copy for shared memory sockets; single-copy for others

Backward compatible solution: Transparent redirection with zero
changes to userspace APIs

FLASH: Fast Linked AF_XDP Sockets for High-Performance Chaining

https://creativecommons.org/licenses/by-sa/4.0/
https://creativecommons.org/licenses/by-sa/4.0/
https://creativecommons.org/licenses/by-sa/4.0/

Split data path of AF_XDP

—————————

Userspace | " AE XDP
BRSPS » Socket 5
£ UMEM I
Iy PG
(FR)—(Rx) Ry
3o ..
Kernelspace ---..__ . Driver |
e ‘7_:_-_::_:_-_:\’ N
L . Queue #1 %J

<--> RX Descriptor fow <— Packet flow

©@®O

TX Descriptor flow

Driver handles RX/TX

UMEM (buffer pool) shared
between userspace application
and kernel

SPSC rings to maintain packet
accesses

« Fill Ring and Rx Ring used in
packet reception

« Tx Ring and Completion Ring
used in packet transmission

https://creativecommons.org/licenses/by-sa/4.0/
https://creativecommons.org/licenses/by-sa/4.0/
https://creativecommons.org/licenses/by-sa/4.0/

Packet Reception in AF_XDP

Userspace Akt »
- {(8)-- . AF_XDP
Ay O "' Socket
/ @
B AR UMEM I T AN
FR TX
& e DAY
‘\\ @A‘\\ %[[
®. @XDPE ko
Kernelspace---.._ . Driver |
-'_-:__-::—::—:‘.I =
 Queue #1 , z
<--> RX Descriptor flow <— Packet flow TX Descriptor flow

©@®O

. Applications provide free

descriptors for DMA

. Kernel allocates them to NIC
. NIC DMA’s the packet to UMEM

. napi_poll executes the XDP

program which returns the
socket where the packet
should be sent

. The Driver calls AF_XDP

subsystem’s function to place
the descriptor in Rx ring

. Application reads 7. processes

and 8. recycles descriptors.

https://creativecommons.org/licenses/by-sa/4.0/
https://creativecommons.org/licenses/by-sa/4.0/
https://creativecommons.org/licenses/by-sa/4.0/

Packet transmission and modes of AF_XDP

—————————

Userspace/—_ _______ " AF_XDP \.

-------- >i Driver
' Queue #1 : Lz)
<--> RX Descriptor flow <— Packet flow TX Descriptor flow

*The functions can be found at include/net/xdp_sock _drv.h

©@®O

8b. to 12. shows the transmission
path which uses the Tx and
completion rings

The kernel space operations are
initiated by the driver with the
help of AF_XDP subsystem
functions*

Driver can either invoke them
based on interrupts or

via hints using sendto() and
recvfrom() syscalls (Busypoll)

10

https://creativecommons.org/licenses/by-sa/4.0/
https://creativecommons.org/licenses/by-sa/4.0/
https://creativecommons.org/licenses/by-sa/4.0/

Challenge #1 Ring semantics

Redirection violates SPSC (Single-Producer/Single-Consumer)
semantics

Key Idea #1: Backward-compatible MP/MC lockless rings

« CAS operations serialize MP/MC while maintaining SP/SC for

userspace
struct xdp_ring {
u32 producer; // 0ld field; represents producer_ tail
u32 consumer; // 0ld field; represents consumer_ tail
u32 flags;
u32 producer_head; // Used only for MPSC

u32
}s

consumer_head; // Used only for SPMC

int xskqg _enqueue_desc(struct xsk queue *q, u64 addr, u32 len, u32 flags);
bool xskq dequeue desc(struct xsk queue *qg, struct xdp desc* desc, struct xsk buff pool *pool);

©@®O

<--» Descriptor flow

<+— Packet flow

...................................

: [AF_XDP]

: [AF_XDP]

T
R

gksoftirqd1 oo ksoftirqd2

e
&

11

https://creativecommons.org/licenses/by-sa/4.0/
https://creativecommons.org/licenses/by-sa/4.0/
https://creativecommons.org/licenses/by-sa/4.0/

Zero-copy redirection with MP / MC rings

Packet data stays in shared UMEM

FLASH can move packet descriptor from TX ring
of App 1 to RX ring of App 2

FLASH brings back empty descriptor from fill ring e
of App 2 to completion ring of App 1

Fill ring becomes MC in kernel and Rx ring
becomes MC in kernel

‘[AF_xpP ‘([aF_xpp)
3) ((__Socket . : Socket :

@\, A Y. -
o N O S
O] 1© ;

)
e (e oo &)y

@ ORFONCICAG)
‘ FLASH % FLASH
' A

A

@

single-copy redirection works similarily but using
memcpy

©@®O

*H E Queue #1 5 Queue #2 f ---O

<--> Descriptor flow <—> Packet flow & eBPF Program

12

https://creativecommons.org/licenses/by-sa/4.0/
https://creativecommons.org/licenses/by-sa/4.0/
https://creativecommons.org/licenses/by-sa/4.0/

Challenge #2: Batched redirections

App 2

We, batch redirections to amortize CAS overhead

u32 xskq bulk enqueue descs(struct xsk queue *q, struct xdp desc* descs, u32 n_descs);

« With new MPSC/SPMC rings, available capacity changes mid-redirection

* FR descriptors cannot be returned without violating ring semantics

Key Idea #2: Partial TX + Descriptor Buffering

« Order ring updates so any packet placed in TX is guaranteed to redirect

« Buffer extra FR descriptors for use in the next iteration

©@®O

13

https://creativecommons.org/licenses/by-sa/4.0/
https://creativecommons.org/licenses/by-sa/4.0/
https://creativecommons.org/licenses/by-sa/4.0/

Challenge #3: Scheduling threads

To balance CPU utilization and performance a hybrid
polling workflow is usually employed in applications:

1. Startin interrupt mode: Use pollL() with the POLLIN
flag to block until packets arrive

2. Switch to busy-polling: At high rates, switch to a busy
loop using recvfrom() to continuously process
packets

3. Revert to interrupt mode: When load decreases, return
to interrupt mode

By default, hybrid polling across packet transfers doesn’t
work

Moreover, during congestion, the sender must retry
transmissions until space becomes available this leads to
wastage of CPU cycles

©@®O

Shared UMEM
Y o RS T
(App 1§ I AiApp2 § | jiApep3 S]
‘[AF_XxDP |:1:(AF_XDP |'i:(AF XDP |
‘| Socket [i1'| Socket |il'| Socket |:
s /I:\~__,*_ ______ /Il\~ A \ /I
A I |oTTTTTT D
' 9 1 ! 1 ‘ 1 4
I "~‘ |
RX}(HTX) 1 ({RX) I HRXHHTX
Sksoftirqd1 L1 Ckeoftirgd2 1 gksoftirqu
~ ‘\~ 'I y
- TN [

14

https://creativecommons.org/licenses/by-sa/4.0/
https://creativecommons.org/licenses/by-sa/4.0/
https://creativecommons.org/licenses/by-sa/4.0/

Smart polling and early backpressure detection

Polling
mode /' Outstanding = Backpressure

RX ti RX i t
me > 7 imeou TX Threshold
RX packets = Busy threshold

and
RX time < RX timeout

No congestion
in downstream NF

Throttle
mode

Interrupt
mode

RX time > RX timeout

Key Idea #3: Smart Polling & Early Backpressure
« Extends hybrid polling across redirection paths
« Congestion Handling: Senders block via polL() (POLLOUT) until space

« Wake-up Signal: Receivers use recvfrom() (MSG_MORE) to signal senders

©@®O

15

https://creativecommons.org/licenses/by-sa/4.0/
https://creativecommons.org/licenses/by-sa/4.0/
https://creativecommons.org/licenses/by-sa/4.0/

Challenge #4: Performance vs. safety

How to isolate zero-copy Apps from each other in multi-tenant settings?

Host netns T T s o s App 1 netns
e “App 1 ;
N > v
ey ‘| AF_XDP | :
3 ‘| Socket |1 IS
1 : I\ 1 : |.IJ '
I‘-.O.,I __________ ’ E % :
FLASH . :
NIC) - :
Monitor | [___ : % :
I---‘I ‘) : :
3 Paiid BN
S '(AF_xDP :
S »'| Socket |
=y ')
T Data Path ControlPath | ~~ -~~~ ~°°° App 2 netns
S —>

Key Idea #4: FLASH monitor and safe runtime
« FLASH Monitor: Offloads privileged tasks and manages access control

« Rust Runtime: Ensures memory and packet isolation in multi-tenant setups

©@®O

https://creativecommons.org/licenses/by-sa/4.0/
https://creativecommons.org/licenses/by-sa/4.0/
https://creativecommons.org/licenses/by-sa/4.0/

But how do you specify the path of transfers?

We need a way to inspect active AF_XDP sockets and configure transfer rules between sockets
* FLASH should then use the rules to access the rings and perform the transfers

* But, the sockets (struct xdp_sock) and its rings are backed by process local fds

How do XDP get access of rings then?

« It stores the struct xdp _sock in a map and uses XDP program to select the socket on packet
reception

Our Solution: Expose a sysfs interface under /sys/kernel/flash to store the sockets and
configure redirection rules*

For example, if there are two sockets and we want all packets from socket 1 to go to socket 2

echo 2 | sudo tee /sys/kernel/flash/1/next

*We also support dynamic packet transfers
©@®0O 17

https://creativecommons.org/licenses/by-sa/4.0/
https://creativecommons.org/licenses/by-sa/4.0/
https://creativecommons.org/licenses/by-sa/4.0/

How much change is needed to support all this?

~700 LoC in AF_XDP subsystem
The changes mostly augments new features to the AF_XDP subsystem

Requires straightforward patching in driver to ignore packet transmissions

bool xmit batch(struct xsk buff pool *pool, unsigned int budget)

{
struct xdp desc *descs = pool->tx_descs;
unsigned int nb_pkts = 9;
// Fetch a batch of descriptors for transmission
nb_pkts = xsk _tx peek release desc batch(pool, budget);
if (!nb_pkts)
return true;
// If redirection is configured, skip NIC transmission
if (pool->no_tx out) // New lines
return nb_pkts < budget; // New lines
// Proceed with normal transmission
return nb_pkts < budget;
}

We have already added support for ixgbe, i40e, ice and mIx5
©@®0

18

https://creativecommons.org/licenses/by-sa/4.0/
https://creativecommons.org/licenses/by-sa/4.0/
https://creativecommons.org/licenses/by-sa/4.0/

FLASH performance gains

= =
© N
o (9]

Throughput (Mpps)
N
93}

0.0

Latency (us)
N
)

©@®O

N
u

bk
o

B FLASH-ZC BN AF _XDP-SRIOV
| E==E FLASH-ZR [OpenNetVM

1 2 3 4 5

Chain Length

6 7 8

Baselines:

AF_XDP-SRIOV: AF_XDP over SR-IOV
OpenNetVM: DPDK userspace chaining
Our work:

FLASH-ZC: FLASH C library zero-copy
FLASH-ZR: FLASH Rust library zero-copy

FLASH provides lowest latency among all

solutions.

FLASH-ZC provides 1.1 x - 2.5 x higher
throughput than SR-IOV

24-core Intel Xeon Gold 5418Y, 128 GB RAM, HT disabled - Mellanox Connect X-4 MT27700 40Gbps (mlx5)
Ubuntu 22.04 LTS, Linux Kernel 6.10.6 — Chains of L2ZFWD switches — Used Pktgen for load generation 19

https://creativecommons.org/licenses/by-sa/4.0/
https://creativecommons.org/licenses/by-sa/4.0/
https://creativecommons.org/licenses/by-sa/4.0/

Summary

« The Problem: AF_XDP lacks native support for zero-copy packet redirection between co-
located sockets

« The Solution: FLASH extends the AF_XDP kernel subsystem to enable high-performance,
transparent chaining

« Key ldeas:
« MP/MC Lockless Rings
« Batching & Buffering

« Smart Polling

« A sysfs interface for setting up the redirections

©@®O

20

https://creativecommons.org/licenses/by-sa/4.0/
https://creativecommons.org/licenses/by-sa/4.0/
https://creativecommons.org/licenses/by-sa/4.0/

Future Directions

* From sysfs to XDP_EGRESS: Replace current sysfs-based rule configuration with a native
XDP hook at the egress point

» packet-steering logic can be entirely programmable via eBPF
 Interesting use case of XDP_EGRESS? (LPC 2025)

« Generalizing the service chaining framework to support diverse set of applications
« mTCP Integration: Currently developing zero-copy support for TCP-based applications

« Using SPMC/MPSC rings of AF_XDP for other use-cases:

« Packet redirection from one queue to another queue during ingress

We are also working on a Rust rewrite of FLASH monitor

©@®O

21

https://creativecommons.org/licenses/by-sa/4.0/
https://creativecommons.org/licenses/by-sa/4.0/
https://creativecommons.org/licenses/by-sa/4.0/
https://lpc.events/event/19/contributions/2275/attachments/1946/4156/zero_copy.pdf
https://lpc.events/event/19/contributions/2275/attachments/1946/4156/zero_copy.pdf
https://lpc.events/event/19/contributions/2275/attachments/1946/4156/zero_copy.pdf

Ofcrt ;.10
Thank You A

Project Link: <=3)&+
debojeetdas@cse.iitb.ac.in @"‘F oy

©@®O

https://creativecommons.org/licenses/by-sa/4.0/
https://creativecommons.org/licenses/by-sa/4.0/
https://creativecommons.org/licenses/by-sa/4.0/

	Default Section
	Slide 1: Extending AF_XDP for fast co-located packet transfer
	Slide 2: Fast network I/O with XDP and AF_XDP
	Slide 3: Fast network I/O with XDP and AF_XDP
	Slide 4: Co-locating multiple AF_XDP zero-copy apps
	Slide 5: Existing solutions for co-located packet transfers between AF_XDP sockets
	Slide 6: Existing solutions for co-located packet transfers between AF_XDP sockets
	Slide 7: Our work: In-kernel packet transfers for AF_XDP
	Slide 8: Split data path of AF_XDP
	Slide 9: Packet Reception in AF_XDP
	Slide 10: Packet transmission and modes of AF_XDP
	Slide 11: Challenge #1 Ring semantics
	Slide 12: Zero-copy redirection with MP / MC rings
	Slide 13: Challenge #2: Batched redirections
	Slide 14: Challenge #3: Scheduling threads
	Slide 15: Smart polling and early backpressure detection
	Slide 16: Challenge #4: Performance vs. safety
	Slide 17: But how do you specify the path of transfers?
	Slide 18: How much change is needed to support all this?
	Slide 19: FLASH performance gains
	Slide 20: Summary
	Slide 21: Future Directions
	Slide 22

