

Open Source Private 5G on Standard Servers:

| An End-to-End O-RAN Blueprint on
OpenNebula

Hello, FOSDEM!

Alfonso Carrillo Aspiazu | Principal Edge Solutions Architect at OpenNebula Systems

- **Alfonso Carrillo Aspiazu** is the Principal Architect for Edge Solutions at OpenNebula Systems. With over 20 years of experience, he is an expert telecom and edge virtualization.
- He currently participates in the **EU IPCEI-CIS ONEnextgen** project ecosystem, is the Technical Account Manager for Telco projects, and actively participates in various national and **European projects**.

Table of Contents

1

Motivation & Goal

From black-box Private 5G to open, reproducible deployments on COTS

2

End-to-End Reference Architecture

srsRAN (CU/DU) + Open5GS (5GC) orchestrated on OpenNebula

3

Enhanced Platform Awareness (EPA) for Telco Workloads

SR-IOV / PCI Passthrough, CPU Pinning + NUMA Awareness and PTP Host → Guest Timing

4

Blueprint Automation & Verified Appliances

5G-ready edge node preparation + Marketplace-based instantiation flow

5

Beyond 5G: Multi-Tenancy, Neutral Hosting & AI Inference at the Edge

Turning deterministic infrastructure into a shared edge platform

1

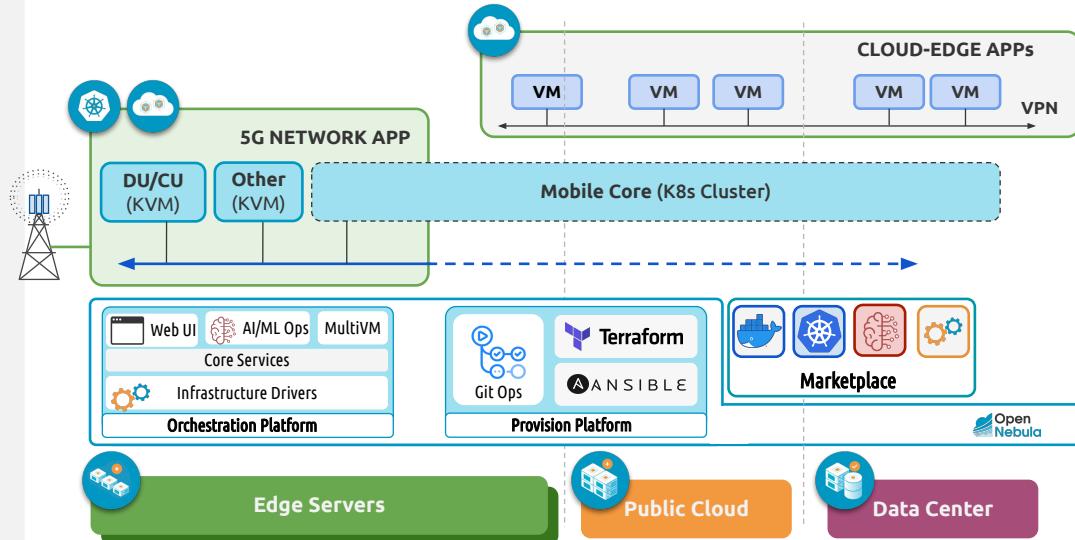
Motivation & Goal

Private 5G without proprietary boxes

- ✓ Proprietary "black box" baseline
- ✓ Open-source maturity (srsRAN + Open5GS)
- ✓ Thesis: orchestration + EPA makes telco-grade behavior

What you'll see in 18 minutes

- ✓ End-to-end blueprint on OpenNebula
- ✓ srsRAN (CU/DU) + Open5GS (5GC)
- ✓ EPA pillars: SR-IOV/PT, CPU pinning/NUMA, PTP host→guest
- ✓ Automation + Marketplace appliances


2

End-to-end Reference Architecture

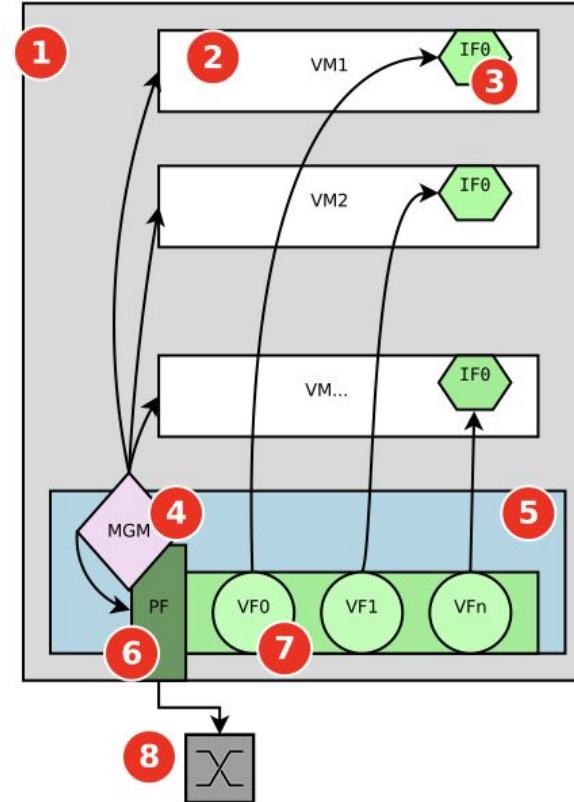
Reference Architecture

https://support.opennebula.pro/hc/en-us/article_attachments/26384607794973

- ✓ Edge node(s) + OpenNebula
- ✓ Telco appliances:
 - Open5GS Core VM
 - srsRAN CU/DU VM(s)
- ✓ Traffic flow: RAN → Core

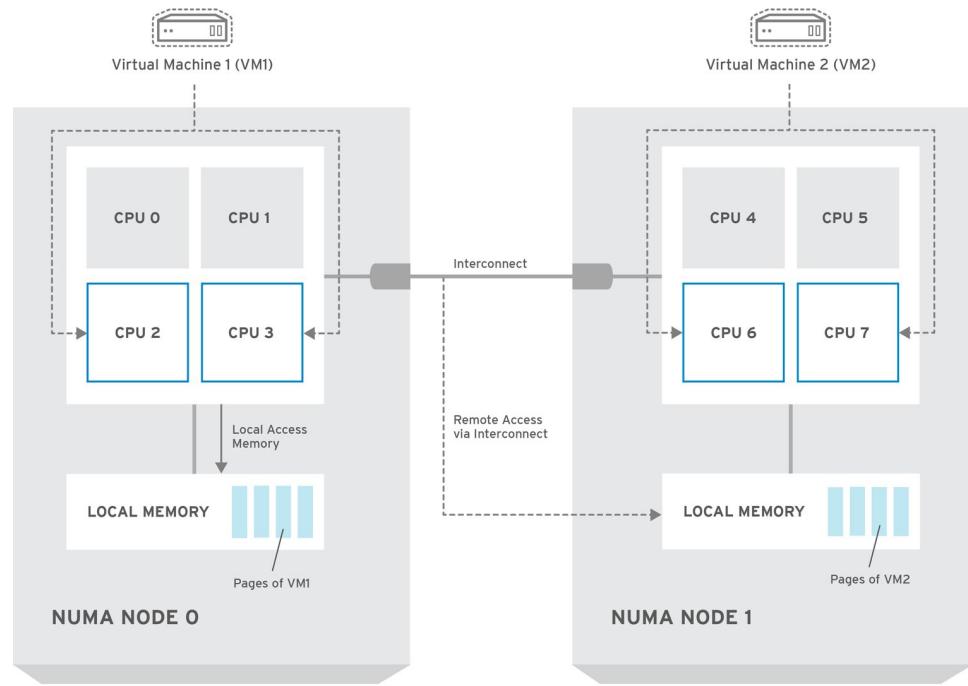
Where performance is won or lost

- ✓ EI/O determinism
- ✓ TCPU/NUMA determinism
- ✓ Time determinism

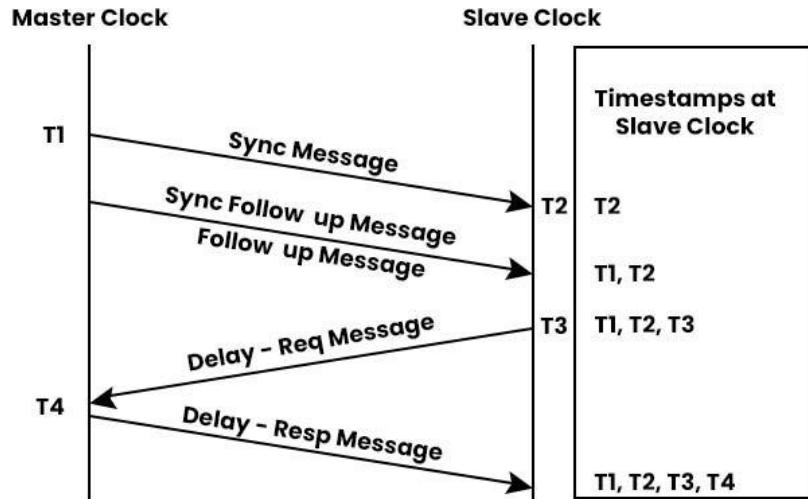


3

EPA for Telco Workloads

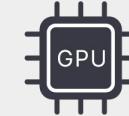

EPA #1: SR-IOV & PCI passthrough

- ❑ VF vs passthrough: when/why
- ❑ Pitfalls:
 - ❑ IOMMU/VT-d,
 - ❑ drivers/firmware,
 - ❑ IRQ/queues


EPA #2: CPU pinning & NUMA awareness

- ❑ vCPU pinning for determinism
- ❑ NUMA alignment: CPU + memory + NIC locality
- ❑ Pitfalls: oversubscription, SMT, affinity drift
- ❑ Visual: RedHat

OPENSTACK_39825_0516


- ❑ Host PTP discipline → guest time propagation
- ❑ Pitfalls: NTP/PTP conflicts, unstable GM/holdover, “close enough”

Why platform beats black box: multi-tenancy & neutral hosting

- ✓ **EPA enables hard isolation**
- ✓ **Multi-tenant edge hosting model**
- ✓ **Neutral hosting for multiple tenants**
- ✓ **Co-located services: AI inference / analytics / caching**

4

Blueprint Automation & Verified Appliances

- ❑ **BIOS: VT-d/IOMMU, SR-IOV**
- ❑ **OS/kernel: isolation, hugepages (if used), VF provisioning**
- ❑ **PTP: host setup + validation**
- ❑ **OpenNebula: templates for pinning/NUMA + SR-IOV/PT profiles**

- ★ **Verified appliances: Open5GS Core, srsRAN CU/DU**
- ★ **Launch sequence: attach → verify → start core → start RAN → validate**

5

Beyond 5G: Multi-Tenancy, Neutral Hosting & AI Inference at the Edge

- **EPA is mandatory for telco-grade stability**
- **Blueprinting makes deployments reproducible**
- **Deterministic edge → multi-tenancy / neutral hosting / AI inference**

AI Plumbers :

[OneAI: An Open-Source Framework for Managing AI Models at Scale.](#)

Network :

[Building an Open Source Private 5G Network: A Practical Blueprint.](#)

Virtualization & Cloud Infrastructure :

[How I Turned a Raspberry Pi into an Open-Source Edge Cloud with OpenNebula.](#)

[Arming Cloud Computing Continuum: Hunting vulnerabilities in open source hybrid clouds.](#)

Find our Booth in LEVEL 1 of BUILDING K

Thank You!

OpenNebula.io

> OpenNebula.io/IPCEI-CIS

IPCEI-CIS

Next-Generation European Platform for the Datacenter-Cloud-Edge Continuum

Initiative supported by the Spanish Ministry for Digital Transformation and Civil Service through the **ONEnextgen Project: Next-Generation European Platform for the Datacenter-Cloud-Edge Continuum** (UNICO IPCEI-2023-003) and co-funded by the European Union's NextGenerationEU instrument through the Recovery and Resilience Facility (RRF).

