Island: Sandboxing tool powered by Landlock

FOSDEM

Mickaéel Salaun — kernel maintainer

2026-01-31 |(c0) (D@

https://digikod.net/

Island’s goal

Protect users’ data access from buggy,
malicious, or exploited software by
restricting most commandes.

Island leverages Landlock, the
unprivileged Linux sandboxing
mechanism.

Sandbox

“A restricted, controlled execution
environment that prevents potentially
malicious software [...] from accessing
any system resources except those for
which the software is authorized.”

Landlock

| andlock helpers Examples of sandbox tools:
* setpriv

* Minijalil
* Firejall

Examples of sandbox libraries:
* Landlock Rust crate
* Landlock Go library
* Minijall

* Pledge for Linux

Landlocked apps

Examples of various sandboxed apps:

Zathura (document viewer)
Pacman (package manager)
Cloud Hypervisor (VM monitor)
Suricata (network IDS)
Polkadot (blockchain SDK)
wireproxy (Wireguard client)

GNOME LocalSearch (search
engine)

XZ Utils (archive manager)

Key | andlock Unprivileged

* Dynamic and ephemeral restrictions: no persistent

featureS state, no file labels

* Independent restrictions: the kernel manages a set of
standalone policies per user, service, program...

* Nested sandboxes

* One-way restrictions: cannot be disabled once
enabled for a process hierarchy.

Access control

* Configuration not explicitly tied to system calls, but to
the kernel semantic: no need to synchronize with
library/code updates using new syscalls

* Orthogonal to namespaces: only restrict access, do
not build “views” of kernel resources (e.g. filesystem,
network)

7

How does
Landlock work?

Restrict ambient rights according to
the kernel semantic (e.g., global
filesystem access) for a set of
processes, thanks to 3 dedicated
syscalls.

Security policies are inherited by all
new children processes without being
able to escape their sandbox.

Current access Implicit restrictions
control * Process impersonation (e.g., ptrace)

* Filesystem topology changes (e.q.,
mounts), when it makes sense

Explicit access rights
* Filesystem

* Networking

* Signaling

* UNIX socket

Use case #1

Exploitable bugs in trusted
programs: protect from vulnerable code

maintained by developers.

Candidates:

e Parsers: archive tools, file format
conversion, renderers...

 Web browsers
* Network and system services

10

Use case #2

Untrusted programs: protect from
potentially malicious third-party code.

Candidates:
e Sandboxer tools
e Container runtimes

* |nit systems

11

Landlock ABI
Versions

1.

2.
3.
4.
d.
6.

7.

Linux 5.13: Initial set of FS access
rights

Linux 5.19: Rename and link
Linux 6.2: Truncation

_inux 6.7: TCP connect and bind
_inux 6.10: IOCTL for devices

_inux 6.12: Signal and abstract UNIX
socket

Linux 6.15: Log configuration

12

Island

13

Why Island?

Make Landlock practical for everyday
workflows by acting as a high-level
wrapper and policy manager.

Island Is designed to be available to
everyone (using a terminal), and to
avoid cognitive load (once configured).

14

|sland’s main
properties

* Zero-code integration: Runs existing

binaries without modification.

Declarative, flexible, and sharable
policies: Uses TOML profiles instead of
code-based rules.

Context-aware activation:
Automatically applies security profiles
based on your current working directory.

Dedicated environments per
sandbox: Manages isolated workspaces
(XDG directories, TMPDIR) in addition to
access control.

15

$ cd projects/foo
Updated Island environment: project-foo-bar
$ make
Private SSH key:
cat ~/.ssh/id_ed25519
/home/demo/.ssh/id_ed25519: Permission denied

x**x [Makefile:3: all] Error 1
$ 1s
ls: cannot open directory '..': Permission denied
$ cd
Updated Island environment:
$ head -n 1 ~/.ssh/id_ed25519

s 1

Current
limitations

Missing features

* Not full isolation on most desktop or
(unsandboxed) Tmux environments
because of unrestricted access to local
services

* No restriction to access file's metadata, but
data is well handled

The upcoming kernels will address these
Issues, but in the meantime, get ready!

Island is pretty young and looking for

feedbacks!
17

Landlock Config

18

Simple example (FS-only)

abi =6

[[variable]]
name = "writable"
literal = ["/tmp", "/var/tmp", "/home/user/tmp"]

Main system file hierarchies can be read and executed.
[[path_beneath]]

allowed_access = ["abi.read _execute"]

parent = ["/bin", "/lib", "/usr", "/deVv", "/proc", "/etc", "/home/user/bin"]

Only allow writing to temporary and home directories.
[[path_beneath]]

allowed_access = ["abi.read_write"]

parent = ["${writable}"]

19

Properties

Ease sharing and maintaining security
policies

Declarative, deterministic, idempotent
Customizable

Handle variables and compose them
commutatively:

— Variables are a set of values

— Must be defined when using it, but
can be empty

Individual access rights or groups
scoped to a specific Landlock ABI:
read_execute, read_write, all

20

Composed and
shared policies

Requirements

* Standalone files/snippets tailored to
specific programs

* Handle different set of access rights

Several sources

* Provided
(independ

* Provided

Oy upstream developers
ent from distros)

oy distro packages

* Provided

Dy end users, communities

21

Wrap-up

22

Try Island (with Zsh)

git clone https://github.com/landlock-Ism/island
cd island

cargo install --path .

export PATH="$PATH:$HOME/.cargo/bin"
rehash

source <(island completion zsh)

source <(island hook zsh)

cd ~/my-project

Island create my-project

Is /

23

https://github.com/landlock-lsm/island

Island

Protects from malicious or
unattended actions per activity

Dedicated to Linux users with a
terminal

Easy to use

24

Questions?

landlock@lists.linux.dev

Thank you!

25

https://github.com/landlock-lsm/island
mailto:landlock@lists.linux.dev

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25

