
Island: Sandboxing tool powered by Landlock

FOSDEM

Mickaël Salaün – kernel maintainer

2026-01-31

https://digikod.net/

2

Protect users’ data access from buggy,
malicious, or exploited software by
restricting most commands.

Island leverages Landlock, the
unprivileged Linux sandboxing
mechanism.

Island’s goal

3

“A restricted, controlled execution
environment that prevents potentially
malicious software [...] from accessing
any system resources except those for
which the software is authorized.”

Sandbox

4

Landlock

5

Examples of sandbox tools:
● setpriv
● Minijail
● Firejail

Examples of sandbox libraries:
● Landlock Rust crate
● Landlock Go library
● Minijail
● Pledge for Linux

Landlock helpers

6

Examples of various sandboxed apps:
● Zathura (document viewer)
● Pacman (package manager)
● Cloud Hypervisor (VM monitor)
● Suricata (network IDS)
● Polkadot (blockchain SDK)
● wireproxy (Wireguard client)
● GNOME LocalSearch (search

engine)
● XZ Utils (archive manager)

Landlocked apps

7

Unprivileged
● Dynamic and ephemeral restrictions: no persistent

state, no file labels
● Independent restrictions: the kernel manages a set of

standalone policies per user, service, program…
● Nested sandboxes
● One-way restrictions: cannot be disabled once

enabled for a process hierarchy.

Access control
● Configuration not explicitly tied to system calls, but to

the kernel semantic: no need to synchronize with
library/code updates using new syscalls

● Orthogonal to namespaces: only restrict access, do
not build “views” of kernel resources (e.g. filesystem,
network)

Key Landlock
features

8

Restrict ambient rights according to
the kernel semantic (e.g., global
filesystem access) for a set of
processes, thanks to 3 dedicated
syscalls.

Security policies are inherited by all
new children processes without being
able to escape their sandbox.

How does
Landlock work?

9

Implicit restrictions
● Process impersonation (e.g., ptrace)
● Filesystem topology changes (e.g.,

mounts), when it makes sense

Explicit access rights
● Filesystem
● Networking
● Signaling
● UNIX socket

Current access
control

10

Exploitable bugs in trusted
programs: protect from vulnerable code
maintained by developers.

Candidates:

● Parsers: archive tools, file format
conversion, renderers…

● Web browsers

● Network and system services

Use case #1

11

Untrusted programs: protect from
potentially malicious third-party code.

Candidates:

● Sandboxer tools

● Container runtimes

● Init systems

Use case #2

12

1. Linux 5.13: Initial set of FS access
rights

2. Linux 5.19: Rename and link

3. Linux 6.2: Truncation

4. Linux 6.7: TCP connect and bind

5. Linux 6.10: IOCTL for devices

6. Linux 6.12: Signal and abstract UNIX
socket

7. Linux 6.15: Log configuration

Landlock ABI
versions

13

Island

14

Make Landlock practical for everyday
workflows by acting as a high-level
wrapper and policy manager.

Island is designed to be available to
everyone (using a terminal), and to
avoid cognitive load (once configured).

Why Island?

15

● Zero-code integration: Runs existing
binaries without modification.

● Declarative, flexible, and sharable
policies: Uses TOML profiles instead of
code-based rules.

● Context-aware activation:
Automatically applies security profiles
based on your current working directory.

● Dedicated environments per
sandbox: Manages isolated workspaces
(XDG directories, TMPDIR) in addition to
access control.

Island’s main
properties

16

Demo

17

Missing features
● Not full isolation on most desktop or

(unsandboxed) Tmux environments
because of unrestricted access to local
services

● No restriction to access file’s metadata, but
data is well handled

The upcoming kernels will address these
issues, but in the meantime, get ready!

Island is pretty young and looking for
feedbacks!

Current
limitations

18

Landlock Config

19

abi = 6

[[variable]]
name = "writable"
literal = ["/tmp", "/var/tmp", "/home/user/tmp"]

Main system file hierarchies can be read and executed.
[[path_beneath]]
allowed_access = ["abi.read_execute"]
parent = ["/bin", "/lib", "/usr", "/dev", "/proc", "/etc", "/home/user/bin"]

Only allow writing to temporary and home directories.
[[path_beneath]]
allowed_access = ["abi.read_write"]
parent = ["${writable}"]

Simple example (FS-only)

20

● Ease sharing and maintaining security
policies

● Declarative, deterministic, idempotent
● Customizable
● Handle variables and compose them

commutatively:
– Variables are a set of values
– Must be defined when using it, but

can be empty
● Individual access rights or groups

scoped to a specific Landlock ABI:
read_execute, read_write, all

Properties

21

Requirements
● Standalone files/snippets tailored to

specific programs
● Handle different set of access rights

Several sources
● Provided by upstream developers

(independent from distros)
● Provided by distro packages
● Provided by end users, communities

Composed and
shared policies

22

Wrap-up

23

Try Island (with Zsh)

git clone https://github.com/landlock-lsm/island
cd island
cargo install --path .
export PATH="$PATH:$HOME/.cargo/bin"
rehash
source <(island completion zsh)
source <(island hook zsh)
cd ~/my-project
island create my-project
ls /

https://github.com/landlock-lsm/island

24

● Protects from malicious or
unattended actions per activity

● Dedicated to Linux users with a
terminal

● Easy to use

Island

25

Questions?

landlock@lists.linux.dev

Thank you!

https://github.com/landlock-lsm/island
mailto:landlock@lists.linux.dev

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25

