Keeping Spatial Scripting

Sane

with Samaki and Raku

1 24

by Brian Duggan

() bduggan

FOSDEM 2026

about me

e Brian Duggan
e TLogistics Engineer at Instacart
e Dispatch/Geospatial Team

e Contributor to Raku ecosystem

2/42

Outline

Motivation
Samaki
Examples
Extending
Raku

3/42

Motivation

Spatial scripting!

goals

Improve on UI-oriented workflows
using on local text files

that works with multiple languages
and multiple tools

and is easy to extend

challenges

Visualization is part of coding

but UIs can slow things down

Data exploration is critical

but volume of data can be a challenge
Different languages for different things
can be tricky to glue together

4/42

ESRI
observations

moale[

64¢]

xml

S geOJson

[t |

‘ PO[[/I ne

N\

- Perl [| OverPo\sS QL

l Raku

Samaki

¢ Stitching together A Multitude of Kinds of Items

e Swahili for fish

design goals

e simple text file format for a script
e multiple languages at once

¢ casy to extend (plugins and plugouts)
e console integration; minimal UI

e some aspects of REPLs, Notebooks

M. C. Escher, Fish, Vignette, 1956

5/42

Samaki

Basic concept

-- python
import this

-- duckdb
select st_buffer(...) as ring

-- R
plot(...)

-- 11m
What latitude is the northernmost point in Belgium?

Terminology

¢ cells —— a sequence of "cells" of different types.
¢ plugins —— each cell type is handled by a "plugin".
¢ plugouts ——- output files are handled by "plugouts".

6/42

Samaki

Basic concept

-- python:location. json
import json
print(json.dumps({...})) # find lat/lon

-- duckdb:rows.csv
select st_buffer(...) as ring

-- R:plot.png
plot(...)

-- 1llm:response.txt

What latitude is the northernmost point in Belgium?

Cells can also have:

e a name ("belgium")

e an output format ("json"), determines which plugouts handle it

7/42

Samaki
Share data between cells by interpolating into code

-- python:location. json
import json
print(json.dumps(..)) # find lat/lon

-- duckdb:rows.csv
select st_buffer(st_makepoint(¢ cell("location").res<lon lat>.join(',') >), 1) as ring

-- R:plot.png
plot(...)

-- 1llm:response.txt
What latitude is the northernmost point in Belgium?

Angle brackets contain Raku expressions.

Expressions can get output or content from other cells, after the cell is executed.

8/42

Samaki

Share data between cells by interpolating into code

my $country = 'belgium';
-- python:location.json
import json

print(json.dumps(..)) # find lat/lon

-- duckdb:rows.csv
select st_buffer(st_makepoint(¢ cell("location").res<lon lat>.join(',') >), 1) as ring

-- R:plot.png
plot(...)

-- 1llm:response.txt
What latitude is the northernmost point in < $country.uc) ?

You can also have Raku code outside of the cells.

Execution context is shared.

9/42

Samaki

Summary

A file named belgium.samaki may contain a Cells are delimited by

cell
e lines like: -- type:name.extension

-- duckdb:circles.csv
SELECT
ST_BUFFER(..) as circle,
FROM vy

e the first plugin that matches the type

WHERE
latitude > ¢ ..raku expression..)

and will be handled by

*

("duckdb™")

and latitude < { ..raku expression..) e the first plugout that match the
extension ("csv')
e type is duckdb
ype 1 - and the contents are generated by
¢ name is circles . .
interpolating

e extension is csv
° 4 angle brackets > with Raku

expressions
¢ oOr <<< triple less/greater-thans >>>

10/42

Samaki

The console interface

-

my ($lat, $lon) = 50.8134719, 4.3812357;

-- postgres
select
st_makepoint(("$lon,$lat")),
st_buffer(
st_makepoint(¢ "$lon,$lat"))::geography, 100
)
i

11/42

Samaki

The console interface

-

-- circle --

H:my ($1at, $1lon) = 50.8134719, 4.3812357;

postgres (csv) [run]
select
st_makepoint(¢ "$lon,$1at")),
st_buffer(
st_makepoint(¢ "$lon,$lat"))::geography, 100
)

circle/
B files found.

run Sam for the console UI

12/42

Samaki

The console interface

-

~ circle ~

H:my ($1at, $1lon) = 50.8134719, 4.3812357;

postgres (csv) [run]
select
st_makepoint(4.3812357,50.8134719),
st_buffer(
st_makepoint(4.3812357,50.8134719)::geography, 100
)

circle/
B files found.

Use [m] to toggle betwen eval and raw mode.

13/42

Samaki

The console interface

-

~ circle ~

H:my ($1at, $1lon) = 50.8134719, 4.3812357;

postgres (csv) [run]

select
st_makepoint(4.3812357,50.8134719),

st_buffer(
st_makepoint(4.3812357,50.8134719)::geography, 100
)

1 row, 2 columns

st_makepoint st_buffer

81016000004B45BEA662861140855BE3D81F684940 6103600020E61000000

Select cells to run them

14/42

Samaki

The console interface

-

~ circle ~

H:my ($1at, $1lon) = 50.8134719, 4.3812357;

postgres (csv) [run]
select
st_makepoint(4.3812357,50.8134719),
st_buffer(
st_makepoint(4.3812357,50.8134719)::geography, 100
)

circle/
cell-1.csv

Select output files to view them

15/42

Samaki

The console interface

-

~ circle ~

H:my ($1at, $1lon) = 50.8134719, 4.3812357;

postgres (csv) [run]
select
st_makepoint(4.3812357,50.8134719),
st_buffer(
st_makepoint(4.3812357,50.8134719)::geography, 100
)

[data-table]
[chartjs]
[d3]
[csv-geo]

[raw]

All plugouts are available to view the file.

16/42

Samaki

CSVGeo is a plugout reads GeoJSON, WKT,

content,

-
I
+ S - OpenStreetMap v Muted
]
P R
P
R nH \
\p
\ R oot \
B . -
AN - L]
. e : <
] 'R
b ‘t
) \ 1 pwE
v
a‘r'r_
B %
A]
square s,
\ e,
AR %
®,)
N ¢ !
N\ ©
N P g
'Jo" %
N\, >}
"\, 2 %,
% 8 ¢ %
% & <
z N § %
3 2 > \ z 1
% o "\ X % %
< % '
3 N, >
NN
A =
2 %,
\\Voh S == | eaflet | © OpenStreetMap contributors
circle : cell-1
Show 10 v entries Search:
Color # st_makepoint st_buffer
[] 1 t: 1 coord
Showing 1 to 1 of 1 entries Previous 1 Next
o

auto detects spatial columns and has options for tiles and color schemes.

EWKB, EWKT,

17/42

uses JS DataTables to view CSV

Samaki

Overall flow

¢ Define input types (plugins)

e Define output types (plugouts)
e Write code

e Run cells

e Share data between cells

e Manage data

e Visualize data

e Write more code

e repeat!

18/42

Examples

Example 0 : Geocode with Raku + Nominatim, buffer with postgis

-

-- circle-too —-

raku (csv) [run]
{_;se WebService: :Nominatim 'nom';

say nom.search('University Libre de Brussels')[8]<lon lat>.join(',');

postgres (csv) [run]
select
st_makepoint(¢ c('lonlat').out >),
st_buffer(
st_makepoint(¢ c('lonlat').out))::geography, 160
)

circle-too/

¢ Use Nominatim (via a Raku module) to geocode ULB.
e Use C(...).out to get the raw output (c is short for cell).
* Cell names ("latlon") get other cells, s$g,d9 numbers (e.g. c(0))

Examples

Example O

i
5
<
3
circle
Show 10
Color

Geocode with Raku +

Showing 1 to 1 of 1 entries

Point:

coord

Nominatim, buffer with postgis
7
[°
3
+ OpenStreetMap v Muted v Ff—;,
. we? \
- |\
5 p, P
R
4 _in Henri Storck
o P
A\ R ¢ (T
= o«\“ L
[{] L]
S E hive
i\‘. - r
f
i,
X B
B
x
squater,
’ %
.
X F
B
%
P2 c’@
%C
s,
) e,
S 3
- r 5
cell-1
v entries
st_makepoint
1

== | eaflet | © OpenStreetMap contributors

st_buffer

Search:

lygon: 33 coords

Previous 1 Next

20/42

Examples

Example 1 : Python + R

-

~ pyr —-
python3 (json) [run]
from geopy.geocoders import Nominatim
import json

b = Nominatim(user_agent="nom').geocode("University Libre de Bruxelles", \
geometry="'geojson').raw['boundingbox"]
print(json.dumps(dict(zip(['lat-min', 'lat-max', 'lon-min', 'lon-max'], b))))

R-repl [run]
library(tidyverse)
library(sf)
library(osmdata)

bbox <- c(<c('bbox").json<lon-min lat-min lon-max lat-max>.join(',')))
opq(bbox) |>

add_osm_feature(key = "building") |>
osmdata_sf() [>

bbox. json

e Type python3 uses a python plugin to run this as a script.
e JSON is parsed and available via c('bbox').json .

21/42

Examples

Example 1 : Python + R

-

[print(json.dumps(dict(zip(['lat-min', 'lat-max', 'lon-min', 'lon-max'], b))))

R-repl [run]
library(tidyverse)
library(sf)
library(osmdata)

bbox <- c(4.3777200,56.8896525,4.3851645,50.8159744)

opg(bbox) [>
add_osm_feature(key = "building") |>
osmdata_sf() |[>
pluck("osm_polygons") [>
st_transform('EPSG:31378"') |>
ggplot() +
geom_sf(aes(fill = building), color = "gray3@", linewidth = 8.1) +
scale_fill_viridis_d(option = "turbo") +
theme_minimal() +
labs(title = "ULB Buildings", fill = "Type")

Linking to GEOS 3.13.1, GDAL 3.18.3, PROJ 9.5.1; sf_use_s2() is TRUE

> library(osmdata)

Data (c) OpenStreetMap contributors, ODbL 1.8. https://www.openstreetmap.org/copyright
>

> bbox <- c(4.3777200,56.8896525,4.3851645,50.8159744)

¢ R-repl uses a plugin that spawns a Pseudo TTY and interacts with the R CLI
interpreter.

¢ The R interpreter opens windows when ggB}?Zzis called.

Examples

Example 1

Python + R

ULB Buildings

50.816°N ‘ %‘// ./
50.815°N E | ;//
| WP 9 .
(\‘\A‘ v\x/‘ .
50.814°N ‘
50.813°N
50.812°N

L
50.811°N Q L F ¢

50.810°N ’

4.378°E 4.380°E 4.382°E

r - shed
b / \ university

Type
apartments
cabin
college
dormitory

garages
greenhouse
guardhouse

house

kindergarten

office

roof

school

& ‘ I i service
A

yes
-~ NA
4.384°E

23/42

Examples

Example 2 : bash + raku + duckdb

Let's find the top OSM tags in the ULB bounding box

-

raku (json) [run]

use WebService::Nominatim 'nom';

use JSON::Fast;

with nom.search('University Libre de Bruxelles', format => 'json').head {
put to-json % = (<lat- lon-> X~ <min max>) Z=> .<boundingbox>.List

duck (csv) [run]
select
unnest(map_keys(tags)) as tag_name, lat, lon,
unnest(map_values(tags)) as tag_value
from ST_ReadOSM('belgium-latest.osm.pbf')
where lat between 50.80896525 and 508.8159744
and lon between 4.3777200 and 4.3851645

duck (csv) [run]
select tag_name, count(1) from 'tags.csv' group by 1 order by 2 desc
limit 28

{
"lat-max": "58.8159744",

"lon-max": "4.3851645",
"lat-min": "508.8896525",
"lon-min": "4.3777208"

}

24/42

Examples

Example 2 : bash + raku + duckdb

Let's find the top OSM tags in the ULB bounding box
e

raku (json) [run]

use WebService::Nominatim 'nom';

use JSON::Fast;

with nom.search('University Libre de Bruxelles', format => 'json').head {
put to-json % = (<lat- lon-> X~ <min max>) Z=> .<boundingbox>.lList

duck (csv) [run]
select
unnest(map_keys(tags)) as tag_name, lat, lon,
unnest(map_values(tags)) as tag_value
from ST_ReadOSM('belgium-latest.osm.pbf')
where lat between 50.80896525 and 508.8159744
and lon between 4.3777200 and 4.3851645

duck (csv) [run]
select tag_name, count(1) from 'tags.csv' group by 1 order by 2 desc
limit 28

Matched plugout handler duckview for /home/bduggan/fosdem/samaki-talk/tags/list.csv
[data-table]

[raw]

-- Loading resources from /home/bduggan/.duckdbrc

The ChartJS plugout is a DWIM interface to Chart.js
25/42

Examples

bash + raku + duckdb

Example 2

-

tags : list.csv
count(1)

catter Pie Chart Polar Area « Horizon

180

count(1)

The ChartJS plugout picks a graph type based on heuristics about the column types

and contents.
e And provides options to change chart tygg/ﬁﬁd column selection.

Examples

Example 2 : bash + raku + duckdb

Show All Satellite

Row 349

tag_name: vending
lat: 50.8140069
lon: 4.3846185
tag_value: public_transport_tickets

- 344 payment:maestro 50.514000Y 4.354018> yes

[] 345 payment:mastercard 50.8140069 4.3846185 yes

[] 346 payment:notes 50.8140069 4.3846185 no

[] 347 payment:visa 50.8140069 4.3846185 yes

[] 348 payment:visa_electron 50.8140069 4.3846185 yes

349 vending 50.8140069 4.3846185 public_transport_tickets
[] 350 amenity 50.814030100000004 4.3814269 bench
Showing 341 to 350 of 3,460 entries Previous 1 34 35 36 346 Next
\ J

e View another cell using the CSVGeo plugout.

¢ Which detects latitude + longitude columns (and geojson columns seen earlier).

27/42

Examples

Example 2 : bash + raku + duckdb

-

~ tags ~
duck (csv) [run]

load h3;
select
h3_latlng_to_cell(lat,lon,11),
count(1)
from 'tags.csv
group by 1

(8:raku®)

¢ With duckdb's csv handling, it's easy to use a previously generated csv.

28/42

Examples

Example 2 : bash + raku + duckdb

4 B\

tags : bin
VALUE COLUMN (HEIGHT)

count (1)

ELEVATION SCALE
OPACITY

COLOR SCHEME

Viridis v

BASE MAP

JARDIN ROBERT
LECLERCQ - ROBER|
LECLERCQTUIN

VALUE

Features: 151 | Type: h3 1.0
s Uiy

¢ The DeckGLBin plugout supports hex or geohash binning with Deck.gl
e Dby detecting H3 hex ids or geohash strings.

29/42

Example 3 :

Examples

LILM + Grass

-- 1lm --
claude (txt) [run]
Make a sequence of grass commands that sets a high resolution region and then
displays a synethetic fractal landscape with shadows and shading
and hills and valleys.
Do not output anything else. Do not output comments, only commands.

[run]

[——<grass

cell('out').res.lines[1..%-2].join("\n"))

~ 1lm ~
claude (txt) [run]
Make a sequence of grass commands that sets a high resolution region and then
displays a synethetic fractal landscape with shadows and shading
and hills and valleys.
Do not output anything else.

Do not output comments, only commands.

grass [run]
g.region n=5000 s=0 e=5000 w=0 rows=2000 cols=2000
~.surf.fractal output=fractal_terrain dimension=2.05
~.colors map=fractal_terrain color=elevation
~.relief input=fractal_terrain output=fractal_shaded
d.mon start=wx0
d.shade shade=fractal_shaded color=fractal_terrain brighten=30

A claude plugin can take use the claude cli command

to receive stdin and create stdout for quick LLM work.

LLMs sometimes produce extra delimiters at the first and last line

("')

Use the raku lines and and expression to trim them.

The d.mon grass command opens a window.

30/42

Examples

Example 3 : LLM + Grass

x " g 8 5 . Ik W 2Dview

¥ Render

31/42

Examples

Example 4 : Python + URL + XML + mapnik (bash) + png

-- python:bbox

-- url:data.osm
https://api.openstreetmap.org/api/@.6/map?bbox= {c('bbox').out >

-- bash
ogr2ogr -f GeoJSON buildings.geojson data.osm multipolygons -where "building IS NOT NULL"
ogr2ogr -f GeoJSON roads.geojson data.osm lines -where "highway IS NOT NULL"

-- raku:style.xml
use Map: :Mapnik;
my $map = Mapnik::Map.new:
background-color => '#f8f4f@', fontsets
data-sources => [
. buildings.geojson ...
. roads.geojson ...

> [... 1, styles => [...]

1;
say $map.to-xml

-- bash
mapnik-render --xml style.xml --img out.png

32/42

Examples

Example 4 : Python + URL + XML + mapnik (bash) + png

- ™
Palais du Congo Résidence Solbosch
Palais de I'Avenue C
du Congo)
S K E 0)
B F4
R M V
Y Fl P1\ Py
Ambassade d'lran b U
- Ambassade L
van | N NA
e L AW Salle Eric Schelstraete
AX AY. Résidence Lucia
De Brouckere
Créche de I'ULB
L J

e An "open" plugout uses system open (or Xxdg-open) for image (or other files).

33/42

Extending

Configuring Plugins

Configuration file : e A regex matches a cell type to a

plugin class.

lugins =>

p2ugt : , , e Plugins have an execute method.
/ duck / => 'Samaki: :Plugin: :DuckDB',
/ something_else / => ...plugin...

e Plugins read cell contents and
e stream output to the pane.
e write output files.

somewhere else
e interact with other processes.

class Samaki::Plugin: :DuckDB does Samaki::Plugin {

method execute(...) {

34/42

Extending

Interacting with other processes:

Plugin classes can inherit from common ones. e Use Samaki::Plugin::Process for simple
stdin/stdout interaction (with support
class Samaki::Plugin::Postgres does Samaki::Plugin: :P1:

for args, tempfiles).
has $.cmd = 'psql’; e .)

¢ Use Samaki::Plugin::Repl for PTY

interactions (pseudo TTY like expect).
class Samaki::Plugin::R does Samaki::Plugin::REPL {
has $.cmd = 'R';

¢ Also Samaki: :Plugin::Tmux will use the
tmux control protocol to run a process in

a tmux window. (new!)

35/42

Extending

Make classes right in the config file with built-in Raku syntax
easily:
¢ Parameterized roles can be used to
plugins => [generate a class from a role.
/ grass / => Samaki::Plugin::Repl[cmd => 'grass'], * This is called "punning®.

/ claude / => Samaki::Plugin::Process]|
cmd => 'claude',
args => ['--permission-mode', 'dontAsl
:use-stdin,

] I

36/42

Extending

plugouts => [

/ html / => 'Samaki:
/ csv / => 'Samaki:
/ csv / => 'Samaki:
/ geojson / => 'Samaki:
/[.* => 'Samaki:

Somewhere else

class Samaki::Plugout: :Open

method execute(IO::Path
shell <<open $path>>;

:Plugout:
:Plugout:
:Plugout:
:Plugout:
:Plugout::

;2;&;5.’ Plugouts also implement execute.
:DeckGLBin"',

:Geojson',

:Open’, e Raku has gradual typing

e strict types enforce the plugin/
plugout interface

e at compilation time

does Samaki::Plugout {

:$path!,

) A

37/42

Extending

e lots of plugins included

Plugin | Type | Description
======================== | ========== | ==
Bash | Process | Execute contents as a bash program
Code | | Evaluate raku code in the current process
Duck | Process | Run SQL queries via duckdb executable
Duckie | inline | Run SQL queries via L<Duckie> inline driver
File | | Display file metadata and info
HTML | | Generate HTML from contents
LLM | inline | Send contents to LLM via LLM::DWIM
Markdown | inline | Generate HTML from markdown
Postgres | Process | Execute SQL via psql process
Raku | Process | Run raku in a separate process
Repl: :Raku | Repl | Interactive raku REPL (persistent session)
Repl: :Python | Repl | Interactive python REPL (persistent session)
Repl::R | Repl | Interactive R REPL (persistent session)
Text | | Write contents to a text file

e and plugouts
Plugout | Description
======================== | ==
ChartJs | Display CSV as interactive charts in browser (via Chart.js)
CSVGeo | Display CSV that has geojson data using a map in browser (via leaflet)
D3 | Display CSV as D3.js visualizations in browser
DataTable | Display CSV in browser with sorting/pagination/search
Duckview | Show CSV summary in bottom pane (via duckdb)
Geojson | Display GeoJSON on map in browser (via leaflet)
HTML | Open HTML content in browser
JSON | Display prettified JSON in bottom pane
Plain | Display plain text in browser
Raw | Open file with system default application
TJLess | View JSON in new tmux window (requires jless)

38/42

Raku
Why Raku?

¢ Process interaction (PTYs, streaming interaction with async primitives)
¢ Decoding UTF8 streams, parsing ANSI byte sequences

¢ Gradual typing for interface robustness

e Language and syntax extensibility

® much more

39/42

Other features

In progress

e watch for changes in a directory and auto reload (--watch)
e import from Jupytyer notebooks (Ssam import)

e output as an HTML page (Sam export)

e run cells without the UI (Sam Irun)

Not yet implemented

e auto run cells when other cells change
e watch REPL outputs for specific prompts

e [your feature request goes here]

40/42

Conclusion

() bduggan/raku-samaki

or search raku.land

or google for "raku samaki"
This presentation:

bduggan.github.io/raku—-samaki

41/42

https://raku.land/?q=samaki
https://raku.land/?q=samaki
https://bduggan.github.io/raku-samaki
https://bduggan.github.io/raku-samaki

The end!

42/42

