
Keeping Spatial Scripting

Sane

with Samaki and Raku

by Brian Duggan

 bduggan

FOSDEM 2026

about me

• Brian Duggan

• Logistics Engineer at Instacart

• Dispatch/Geospatial Team

• Contributor to Raku ecosystem

2/42

Outline

• Motivation

• Samaki

• Examples

• Extending

• Raku

3/42

Motivation

Spatial scripting!

goals

• Improve on UI-oriented workflows

• using on local text files

• that works with multiple languages

• and multiple tools

• and is easy to extend

challenges

• Visualization is part of coding

• but UIs can slow things down

• Data exploration is critical

• but volume of data can be a challenge

• Different languages for different things

• can be tricky to glue together

4/42

Samaki

• Stitching together A Multitude of Kinds of Items

• Swahili for fish

design goals

• simple text file format for a script

• multiple languages at once

• easy to extend (plugins and plugouts)

• console integration; minimal UI

• some aspects of REPLs, Notebooks

M. C. Escher, Fish, Vignette, 1956

5/42

Samaki

Basic concept

-- python
import this

-- duckdb
select st_buffer(...) as ring

-- R
plot(...)

-- llm
What latitude is the northernmost point in Belgium?

Terminology

• cells -- a sequence of "cells" of different types.

• plugins -- each cell type is handled by a "plugin".

• plugouts -- output files are handled by "plugouts".

6/42

Samaki

Basic concept

-- python:location.json
import json
print(json.dumps({...})) # find lat/lon

-- duckdb:rows.csv
select st_buffer(...) as ring

-- R:plot.png
plot(...)

-- llm:response.txt
What latitude is the northernmost point in Belgium?

Cells can also have:

• a name ("belgium")

• an output format ("json"), determines which plugouts handle it

7/42

Samaki

Share data between cells by interpolating into code

-- python:location.json
import json
print(json.dumps(..)) # find lat/lon

-- duckdb:rows.csv
select st_buffer(st_makepoint(〈 cell("location").res<lon lat>.join(',') 〉), 1) as ring

-- R:plot.png
plot(...)

-- llm:response.txt
What latitude is the northernmost point in Belgium?

Angle brackets contain Raku expressions.

Expressions can get output or content from other cells, after the cell is executed.

8/42

Samaki

Share data between cells by interpolating into code

--
my $country = 'belgium';

-- python:location.json
import json
print(json.dumps(..)) # find lat/lon

-- duckdb:rows.csv
select st_buffer(st_makepoint(〈 cell("location").res<lon lat>.join(',') 〉), 1) as ring

-- R:plot.png
plot(...)

-- llm:response.txt
What latitude is the northernmost point in 〈 $country.uc 〉?

You can also have Raku code outside of the cells.

Execution context is shared.

9/42

Samaki

Summary

A file named belgium.samaki may contain a
cell :

-- duckdb:circles.csv
SELECT
ST_BUFFER(..) as circle, *
FROM y
WHERE
 latitude >〈 ..raku expression.. 〉
 and latitude <〈 ..raku expression.. 〉

• type is duckdb

• name is circles

• extension is csv

Cells are delimited by

• lines like: -- type:name.extension

and will be handled by

• the first plugin that matches the type

("duckdb")

• the first plugout that match the

extension ("csv')

and the contents are generated by

interpolating

• 〈 angle brackets 〉with Raku
expressions

• or <<< triple less/greater-thans >>>

10/42

Samaki

The console interface

11/42

Samaki

The console interface

run sam for the console UI

12/42

Samaki

The console interface

Use [m] to toggle betwen eval and raw mode.

13/42

Samaki

The console interface

Select cells to run them

14/42

Samaki

The console interface

Select output files to view them

15/42

Samaki

The console interface

All plugouts are available to view the file.

16/42

Samaki

CSVGeo is a plugout reads GeoJSON, WKT, EWKB, EWKT, uses JS DataTables to view CSV

content, auto detects spatial columns and has options for tiles and color schemes.

17/42

Samaki

Overall flow

• Define input types (plugins)

• Define output types (plugouts)

• Write code

• Run cells

• Share data between cells

• Manage data

• Visualize data

• Write more code

• repeat!

18/42

Examples

Example 0 : Geocode with Raku + Nominatim, buffer with postgis

• Use Nominatim (via a Raku module) to geocode ULB.

• Use c(...).out to get the raw output (c is short for cell).
• Cell names ("latlon") get other cells, so do numbers (e.g. c(0))19/42

Examples

Example 0 : Geocode with Raku + Nominatim, buffer with postgis

20/42

Examples

Example 1 : Python + R

• Type python3 uses a python plugin to run this as a script.
• JSON is parsed and available via c('bbox').json .

21/42

Examples

Example 1 : Python + R

• R-repl uses a plugin that spawns a Pseudo TTY and interacts with the R CLI

interpreter.

• The R interpreter opens windows when ggplot is called.
22/42

Examples

Example 1 : Python + R

23/42

Examples

Example 2 : bash + raku + duckdb

Let's find the top OSM tags in the ULB bounding box

24/42

Examples

Example 2 : bash + raku + duckdb

Let's find the top OSM tags in the ULB bounding box

The ChartJS plugout is a DWIM interface to Chart.js

25/42

Examples

Example 2 : bash + raku + duckdb

• The ChartJS plugout picks a graph type based on heuristics about the column types

and contents.

• And provides options to change chart type and column selection.
26/42

Examples

Example 2 : bash + raku + duckdb

• View another cell using the CSVGeo plugout.

• Which detects latitude + longitude columns (and geojson columns seen earlier).

27/42

Examples

Example 2 : bash + raku + duckdb

• With duckdb's csv handling, it's easy to use a previously generated csv.

28/42

Examples

Example 2 : bash + raku + duckdb

• The DeckGLBin plugout supports hex or geohash binning with Deck.gl

• by detecting H3 hex ids or geohash strings.

29/42

Examples

Example 3 : LLM + Grass

• A claude plugin can take use the claude cli command
• to receive stdin and create stdout for quick LLM work.

• LLMs sometimes produce extra delimiters at the first and last line (''')

• Use the raku lines and and expression to trim them.
• The d.mon grass command opens a window.

30/42

Examples

Example 3 : LLM + Grass

31/42

Examples

Example 4 : Python + URL + XML + mapnik (bash) + png

-- python:bbox
...

-- url:data.osm
https://api.openstreetmap.org/api/0.6/map?bbox=〈c('bbox').out 〉

-- bash
ogr2ogr -f GeoJSON buildings.geojson data.osm multipolygons -where "building IS NOT NULL"
ogr2ogr -f GeoJSON roads.geojson data.osm lines -where "highway IS NOT NULL"

-- raku:style.xml
use Map::Mapnik;
my $map = Mapnik::Map.new:
 background-color => '#f8f4f0', fontsets => [...], styles => [...]
 data-sources => [
 ... buildings.geojson ...
 ... roads.geojson ...
];
say $map.to-xml

-- bash
mapnik-render --xml style.xml --img out.png

32/42

Examples

Example 4 : Python + URL + XML + mapnik (bash) + png

• An "open" plugout uses system open (or xdg-open) for image (or other files).

33/42

Extending

Configuring Plugins

Configuration file :

plugins => [
 / duck / => 'Samaki::Plugin::DuckDB',
 / something_else / => ...plugin...
 ...
]

somewhere else

class Samaki::Plugin::DuckDB does Samaki::Plugin {

 method execute(...) {
 ...
 }

}

• A regex matches a cell type to a
plugin class.

• Plugins have an execute method.

• Plugins read cell contents and

• stream output to the pane.

• write output files.

• interact with other processes.

34/42

Extending

Interacting with other processes:

Plugin classes can inherit from common ones.

class Samaki::Plugin::Postgres does Samaki::Plugin::Process {
 has $.cmd = 'psql';
}

class Samaki::Plugin::R does Samaki::Plugin::REPL {
 has $.cmd = 'R';
}

• Use Samaki::Plugin::Process for simple

stdin/stdout interaction (with support

for args, tempfiles).

• Use Samaki::Plugin::Repl for PTY

interactions (pseudo TTY like expect).
• Also Samaki::Plugin::Tmux will use the

tmux control protocol to run a process in

a tmux window. (new!)

35/42

Extending

Make classes right in the config file

easily:

plugins => [

 / grass / => Samaki::Plugin::Repl[cmd => 'grass'],

 / claude / => Samaki::Plugin::Process[
 cmd => 'claude',
 args => ['--permission-mode','dontAsk'],
 :use-stdin,
],

with built-in Raku syntax

• Parameterized roles can be used to

generate a class from a role.

• This is called "punning".

36/42

Extending

plugouts => [
 / html / => 'Samaki::Plugout::HTML',
 / csv / => 'Samaki::Plugout::CSVGeo',
 / csv / => 'Samaki::Plugout::DeckGLBin',
 / geojson / => 'Samaki::Plugout::Geojson',
 / .* / => 'Samaki::Plugout::Open',
 ...

Somewhere else

class Samaki::Plugout::Open does Samaki::Plugout {

 method execute(IO::Path :$path!, ...) {
 shell <<open $path>>;
 }
}

Plugouts also implement execute.

• Raku has gradual typing

• strict types enforce the plugin/

plugout interface

• at compilation time

37/42

Extending

• lots of plugins included

Plugin | Type | Description
========================|==========|==
Bash | Process | Execute contents as a bash program
Code | | Evaluate raku code in the current process
Duck | Process | Run SQL queries via duckdb executable
Duckie | inline | Run SQL queries via L<Duckie> inline driver
File | | Display file metadata and info
HTML | | Generate HTML from contents
LLM | inline | Send contents to LLM via LLM::DWIM
Markdown | inline | Generate HTML from markdown
Postgres | Process | Execute SQL via psql process
Raku | Process | Run raku in a separate process
Repl::Raku | Repl | Interactive raku REPL (persistent session)
Repl::Python | Repl | Interactive python REPL (persistent session)
Repl::R | Repl | Interactive R REPL (persistent session)
Text | | Write contents to a text file

• and plugouts

Plugout | Description
========================|==
ChartJS | Display CSV as interactive charts in browser (via Chart.js)
CSVGeo | Display CSV that has geojson data using a map in browser (via leaflet)
D3 | Display CSV as D3.js visualizations in browser
DataTable | Display CSV in browser with sorting/pagination/search
Duckview | Show CSV summary in bottom pane (via duckdb)
Geojson | Display GeoJSON on map in browser (via leaflet)
HTML | Open HTML content in browser
JSON | Display prettified JSON in bottom pane
Plain | Display plain text in browser
Raw | Open file with system default application
TJLess | View JSON in new tmux window (requires jless)

38/42

Raku

Why Raku?

• Process interaction (PTYs, streaming interaction with async primitives)

• Decoding UTF8 streams, parsing ANSI byte sequences

• Gradual typing for interface robustness

• Language and syntax extensibility

• much more

39/42

Other features

In progress

• watch for changes in a directory and auto reload (--watch)
• import from Jupytyer notebooks (sam import)
• output as an HTML page (sam export)
• run cells without the UI (sam run)

Not yet implemented :

• auto run cells when other cells change

• watch REPL outputs for specific prompts

• [your feature request goes here]

40/42

Conclusion

 bduggan/raku-samaki

or search raku.land

or google for "raku samaki"

This presentation:

bduggan.github.io/raku-samaki

41/42

https://raku.land/?q=samaki
https://raku.land/?q=samaki
https://bduggan.github.io/raku-samaki
https://bduggan.github.io/raku-samaki

The end!

42/42

