You don't need an ORM

Who am |

W Hello! I'm Giacomo
#* | love functional programming

% I'm part of Gleam's core team

Our running example

create table if not exists book (

1sbn text primary key,

title text not null,

ratings by star int[] not null default arrayl0, 0, 0, 0, 0]
);
create table if not exists genre (

isbn text not null references book(isbn),

name text not null,

primary key (isbn, name)

);

We should use the right language
for the job

We should use the right language
for the job

That's Java

We should use the right language
for the job

That's Python
Java

We should use the right language
for the job

That's Gleam

Python
Java

We should use the right language
for the job

That's SQL!

Sticking to plain old SQL

® Makes us more intentional about what queries are sent to the database

Sticking to plain old SQL

® Makes us more intentional about what queries are sent to the database

i Forces us to think about what data we're fetching

... we once identified an extremely
costly query that joined 12 tables ...
Many of these problematic queries are
generated by ORMs, so it's important to
carefully review the SQL they produce
and ensure It behaves as expected.

Scaling PostgreSQL to power 800 million users

Sticking to plain old SQL

® Makes us more intentional about what queries are sent to the database
i Forces us to think about what data we're fetching

— Nudges us towards a pit of success

We should use the right language
for the job

That's SQL!

We should use the right language
for the job

That's SQL! Or s it?

pub fn list _books(db: Connection) {

"select book.1isbn, book.title

from book limit 10"

> pog.query

> pog.returning({
use isbn ¢« decode.field(®, decode.string)
use title ¢« decode.field(1l, decode.string)
decode.success(Book(isbn:, title:))

})
> pog.execute(db)

}

pub fn list _books(db: Connection) {

"select book.1isbn, book.title

from book limit 10"

> pog.query

> pog.returning({
use isbn <« decode.field(®, decode.string)
use title ¢« decode.field(1, decode.string)
decode.success(Book(isbn:, title:))

})
> pog.execute(db)

}

pub fn list _books(db: Connection) {

"select book.1isbn, book.title

from book limit 10"

> pog.query

> pog.returning({
use isbn ¢« decode.field(®, decode.string)
use title ¢« decode.field(1l, decode.string)
decode.success(Book(isbn:, title:))

})
> pog.execute(db)

}

pub fn list _books(db: Connection) {

"select book.1isbn, book.title

from book limit 10"

> pog.query

> pog.returning({
use isbn ¢« decode.field(®, decode.string)
use title ¢« decode.field(1, decode.string)
decode.success(Book(isbn:, title:))

})
> pog.execute(db)

}

pub fn list _books(db: Connection) {

"select book.1isbn, book.title

from book limit 10"

> pog.query

> pog.returning({
use isbn <« decode.field(®, decode.string)
use title ¢« decode.field(1l, decode.string)
decode.success(Book(isbn:, title:))

})
> pog.execute(db)

}

pub fn list _books(db: Connection) {

"select book.1isbn, book.title

from book limit 10"

> pog.query

> pog.returning(4
use isbn ¢« decode.field(®, decode.string)
use title ¢« decode.field(1l, decode.string)
decode.success(Book(isbn:, title:))

})
> pog.execute(db)

}

pub fn list _books(db: Connection) {

"select book.1isbn, book.title, book.average rating
from book limit 10"

> pog.query

> pog.returning(4
use isbn ¢« decode.field(®, decode.string)
use title ¢« decode.field(1l, decode.string)
decode.success(Book(isbn:, title:))

})
> pog.execute(db)

}

pub fn list _books(db: Connection) {

"select book.1isbn, book.average rating, book.title
from book limit 10"

> pog.query

> pog.returning(4
use isbn ¢« decode.field(®, decode.string)
use title ¢« decode.field(1l, decode.string)
decode.success(Book(isbn:, title:))

})
> pog.execute(db)

}

@
|
|

Think about the Fetch and use
data we need the data!

Think about the Fetch and use
data we need the data!

e #
Think about the Fetch and use
data we need the data!

Write some SQL

e #
Think about the Fetch and use
data we need the data!
Write some SQL write some

_/ glue code

e #
Think about the Fetch and use
data we need the data!
Write some SQL write some

_/ glue code

e B
Think about the Fetch and use
data we need the data!
Write some SQL write more

_/ glue code

®

Think about the Fetch and use
dat< we need the data!

Write some SQL Debug the

glue code

e &
Think about the Fetch and use
data we need the data!

e

Write some SQL

We should use the right language
for the job

That's SQL! Or s it?

We should use the right language
for the job

That's SQL! Or s it? It could be!

® |s it possible to embrace SQL

and not compromise on developer
experience?

book ranking query(db)

case book ranking query(db) {
Ok(rows) — todo
Error() — panic as "pesky database"

)

Enter Squirrel 3}

Time for a live demo!

Great developer experience

-f It's plain old SQL files

Great developer experience

-f It's plain old SQL files

“* Errors happen at build time

> gleam run -m squirrel

Error: Invalid query [42803]
./src/app/sql/book _and_genres.sql

1 | select book.title, genre.name

I— column "genre.name" must appear 1n
the GROUP BY clause or be used 1n an
aggregate function

2 | from book join genre using(isbn)
3 | group by book.1sbn

Great developer experience

~ It's plain old SQL files
“* Errors happen at build time

« Refactoring is a breeze

e &
Think about the Fetch and use
data we need the data!

e

Write some SQL

e &
Think about the Fetch and use
data we need the data!
Write some SQL

Let tools take care
of the glue code

You don't need an ORM

Share your

Ofx=40
feedback! :

[l -]
[l
r ot), el
giacomocavalieri.me/feedback/fosdem-2026 ; 1#
| — =
N
]] L]
o Y -
1] L]

=]

http://giacomocavalieri.me/feedback/fosdem-2026

Share your feedbm

Let's keep In touch!

W giacomocavalieri.me/socials

~ Info@glacomocavalieri.me
2 github.com/giacomocavalieri/squirrel

http://giacomocavalieri.me/socials
mailto:info@giacomocavalieri.me?subject=FOSDEM%202026%20-%20you%20do%20not%20need%20an%20orm

