Package Management
Learnings from

Homebrew
N

dap
LI

Mike McQuaid

Mike McQuaid
https://mikemcquaid.com

https://mikemcquaid.com

brew install

WOrks: ho-one cares

brew install

breaks: we're fucked
-

&$!#%

my toilet
WOrks: ho-one cares

o

my toilet
breaks: shit everywhere

Q0

"Homebrew i
WIS Ssiow™

ﬂ\"
P

-
‘s_//x
‘ A

"Bundler is slow"

é’ N
@

!_/4
y 2

"Cargo is fast"

"Bundler is fast"

"Sbrew in Rust is fast"

00

28 HOMEBREW DOWNLOAD CONCURRENCY=auto

‘Smm—

2. HOMEBREW_USE_INTERNAL_API=1

aeee
| N——

ghcr.1o
€w pash

© brew prof

http://ghcr.io

"Homebrew is fast(er)"

"Homebrew
compiles"

ﬂ\"
P

-
‘s_//x
‘ A

"Homebrew extracts"

Homebrew on macOS x86 64

Homebrew on macOS x86 64
Homebrew on Linux x86 64

Homebrew on macOS x86 64
Homebrew on Linux x86 64

Homebrew on macOS arm64
Homebrew on Linux armé64

Homebrew on macOS x86 64
Homebrew on Linux x86 64

Homebrew on macOS arm64
Homebrew on Linux arm64
Homebrewon...?

Homebrew on macOS 26
Homebrew on macOS 15
Homebrew on macOS 14

Homebrew on macOS 26 x86 64
Homebrew on macOS 26 arm64
Homebrew on macOS 15 x86 64
Homebrew on macOS 15 arm64
Homebrew on macOS 14 x86 64
Homebrew on macOS 14 arm64

Homebrew on macOS 26 x86 64
Homebrew on macOS 26 arm64
Homebrew on macOS 15 x86 64
Homebrew on macOS 15 arm64
Homebrew on macOS 14 x86 64
Homebrew on macOS 14 arm64
Homebrew on Linux x86 64
Homebrew on Linux armo4

"Homebrew i
WIS Ssiow™

ﬂ\"
P

-
‘s_//x
‘ A

Homebrew on macOS 26 arm64
Homebrew on macOS 15 arm64
Homebrew on macOS 14 x86 64
Homebrew on macOS 14 arm64
Homebrew on Linux x86 64
Homebrew on Linux arm64

Homebrew on macOS 27 arm64
Homebrew on macOS 26 arm64
Homebrew on macOS 15 arm64
Homebrew on Linux x86 64
Homebrew on Linux arm64

"Homebrew

hates me"

"Homebrew
cannot support me"

Smm—

= ——no-—-quarantine

A odeprecated
& odisabled

& deleted

The rustc book

Platform Support

Support for different platforms (“targets”) are organized into three tiers, each with a different set of
guarantees. For more information on the policies for targets at each tier, see the Target Tier Policy.

Targets are identified by their “target triple” which is the string to inform the compiler what kind of
output should be produced.

Component availability is tracked here.

Tier 1 with Host Tools

Tier 1 targets can be thought of as “guaranteed to work”. The Rust project builds official binary
releases for each tier 1 target, and automated testing ensures that each tier 1 target builds and
passes tests after each change.

Tier 1 targets with host tools additionally support running tools like rustc and cargo natively on
the target, and automated testing ensures that tests pass for the host tools as well. This allows the
target to be used as a development platform, not just a compilation target. For the full requirements,
see Tier 1 with Host Tools in the Target Tier Policy.

All tier 1 targets with host tools support the full standard library.

https://doc.rust-lang.ora/rustc/platform-support.html

https://doc.rust-lang.org/rustc/platform-support.html

\
&

Homebrew Documentation
Qe L)

Support Tiers

Homebrew defines three support tiers to help users understand how well
Homebrew is expected to work on different systems.

These tiers describe the level of compatibility, automation coverage, and
community support that the project actively maintains. They also set
expectations for how we handle issues, pull requests, and regressions.

Tier 1

A Tier 1 configuration is considered fully supported. These configurations
receive the highest level of Cl coverage and are prioritized during issue review

and formula development.

https://docs.brew.sh/Support-Tiers

https://docs.brew.sh/Support-Tiers

Cl L .
articles talks interviews thoughts projects

https:

cQuai

-

—

- » o —

cv now about

Open Source Maintainers Owe You
Nothing

19 March 2018

This post is heavily inspired by my experience over the last ten years participat-
ing in the open source community and eight years as a maintainer of
Homebrew (which I've maintained longer than anyone else at this point).

Burnout is a big problem for open source software maintainers. This is avoid-
able; maintainers can have fun, keep healthy and be productive working long-
term on open source projects. How? By realising they have zero obligations to
any other maintainers, contributors or users of their software even if they have
personally benefited from the project (e.g. through self-promotion or dona-
tions).

Is there any basis to state that maintainers have no obligations? In fact, yes: in
open source licenses themselves. Let’s start by looking at the most popular
open source license used on GitHub: the MIT license.

€ € The software is provided “as is”, without warranty of any
kind, express or implied, including but not limited to the
warranties of merchantability, fitness for a particular pur-
hose and noninfringement. In no event shall the author

mmg.lol/nothinc

https://mmq.lol/nothing

self promotion

- R

B

1ke cQuai,\ .

articles talks interviews fhoﬁéhts" projects cv now about

Robot Pedantry, Human Empathy

09 June 2021

Homebrew was the first open source project I've maintained where I've had to

[N

~ ’ —

review and merge contributions from other users. Homebrew is also one of the
most active community projects on GitHub with a consistently small team of
maintainers (always under thirty in total, always under ten doing work every
week). As a result I've had to figure out over the last twelve years how best to
manage large numbers of contributions from users in pleasantly and efficiently
for both maintainers and contributors.

£ Manual Process

I’'ve written before about how Homebrew’s CI system has evolved over time but
not what I've had to learn to make it work as well as it does.

In the earlier days of Homebrew all review and testing was manual. This in-
volved a maintainer checking out a GitHub pull request onto their local

Homebrew installation and verifying it worked as expected. I'm obsessed in my

mmag.lol/robot

https://mmq.lol/robot

— "Mike'McQuaid

DR S —

articles talks interviews thoughts projects cv now about -

The Open Source Contributor Funnel
(or: Why People Don’t Contribute To

Your Open Source Project)
14 August 2018

Homebrew, the macOS package manager I maintain, is one of the most active
community projects on GitHub. We regularly attract large numbers of new

contributors and valuable, first-time open source contributions. We've done

this by thinking about our users, contributors and maintainers going through a
“contributor funnel”. If you're wondering why people aren’t contributing to
your open source project (&): thinking this way will help you fix this.

Who uses your software?
Let’s start with defining groups of open source project users by looking at how
they are interacting with your project.

e []the users of an open source project are the people who use the soft-

’ -
N A1) lll (] U ATAI N AN (TAE T .ll AT lniAlmin l'

https://mma.lol/funnel

https://mmq.lol/funnel

T
“

P - ey \ o ¥
Y WNT e' cQual —————

T N o —
~ | S—

articles talks interviews thouéhts" projects cv now about

Open Source Economics (is not what
you think)

27 October 2021

“Open Source Economics” and the “Open Source Economy” are regularly dis-

cussed in the context of how to improve open source software’s sustainability,
contributor diversity and ecosystem quality. Too often, though, the use of the
word “economics” brings incorrect assumptions about the problems to be
solved.

<~ What aren’t “Open Source Economics”?

When most people hear the term “economics” they tend to think about how EZ
&I flows around an economy and, particularly in a capitalist economy,
how the allocation of capital affects the throughput of businesses operating in a
free market.

As a result, when people hear the term “open source economics” they tend to
jump to the same conclusions: it's about how sl & I flows between and is
invested in open source projects. This is not a bad conclusion, it results in the

https://mma.lol/economics

https://mmq.lol/economics

uaid™

¥
“(\..l. N
y e

T g

articles talks interviews thoughts projects cv now about

Saying No
20 January 2022

I've developed a bit of a reputation inside and outside work as being pretty
good with “saying no” and setting boundaries. In this post, I will help you do
S0, too.

Why say “no”?

I've been consuming a lot of Brené Brown’s podcasts and read one of her books
recently, and they’'ve got me thinking about what’s at the root of being able to
say “no” regularly and well.

The Seven Elements of Trust Brené¢ Brown

daretolead brenebrown.com

BOUNDARIES
RELIABILITY

r e v 2 S B ESE _IVS WA AV

https://mmg.lol/no

https://mmq.lol/no

Cl L .
articles talks interviews thoughts projects

https:

cQuai

-

—

- » o —

cv now about

Open Source Maintainers Owe You
Nothing

19 March 2018

This post is heavily inspired by my experience over the last ten years participat-
ing in the open source community and eight years as a maintainer of
Homebrew (which I've maintained longer than anyone else at this point).

Burnout is a big problem for open source software maintainers. This is avoid-
able; maintainers can have fun, keep healthy and be productive working long-
term on open source projects. How? By realising they have zero obligations to
any other maintainers, contributors or users of their software even if they have
personally benefited from the project (e.g. through self-promotion or dona-
tions).

Is there any basis to state that maintainers have no obligations? In fact, yes: in
open source licenses themselves. Let’s start by looking at the most popular
open source license used on GitHub: the MIT license.

€ € The software is provided “as is”, without warranty of any
kind, express or implied, including but not limited to the
warranties of merchantability, fitness for a particular pur-
hose and noninfringement. In no event shall the author

mmg.lol/nothinc

https://mmq.lol/nothing

Acts

" Default to fast
Publish support reality
Optimise for maintainers

(VIV}

s+ Make something faster
1 sentence "supported"
Set maintainer boundary

Questions?

mike@brew.sh
https://mikemcquaid.com

mailto:mike@brew.sh
https://mikemcquaid.com

