
OpenCCA: An Open Framework to
Enable Research on Arm CCA

FOSDEM2026

Andrin Bertschi
PhD Student

Secure & Trustworthy Systems Group

https://opencca.github.io

Later: Live Demo

Spoiler: I brought the Box

Arm CCA Hardware, when?

Main Challenge on Arm CCA:

● No public Arm CCA hardware yet

Documentation?

Technical reference
manuals?

Locked-Down?

Flashable custom
firmware?

Affordable?

Enterprise only?

Initial Rollout for Data Centers:

FUJITSU: Monaka (2027)

Microsoft: Cobalt 200 (2026)

Likely: Nvidia: Vera (2026)

• https://global.fu jitsu/en-global/technology/research/fujitsu-monaka

• https://techcommunity.microsoft.com/blog/azureinfrastructureblog/announcing-cobalt-200-

azure%E2%80%99s-next-cloud-native-cpu/4469807

• https://developer.nvidia.com/blog/inside-the-nvidia-rubin-platform-six-new-chips-one-ai-supercomputer/

Arm CCA, today?!

Main Challenge on Arm CCA:

● No public Arm CCA hardware yet

But how fast?

No microarchitectural
effects of complex hardware

✓ Functionality

✓ Compatibility

Arm FVP

QEMU

1. Under Simulation

Arm CCA, today?!

Main Challenge on Arm CCA:

● No public Arm CCA hardware yet

✓ Functionality

✓ Compatibility

Arm FVP

QEMU

1. Under Simulation

Custom

Ad-Hoc

Armv8

2. Under Custom Prototype

Closed Source

Difficult to compare

Difficult to reproduce

Repeated engineering

For Research:

Approximate research design
on real Armv8 Hardware

Arm CCA, today?!

Main Challenge on Arm CCA:

● No public Arm CCA hardware yet

✓ Functionality

✓ Compatibility

Arm FVP

QEMU

1. Under Simulation

Custom

Ad-Hoc

Armv8

Closed Source

Difficult to compare

Difficult to reproduce

Repeated engineering

3. Under OpenCCA

OpenCCA
Framework

2. Under Custom Prototype

The Need for Open Framework

for Performance Evaluation

Minimal changes to CCA reference

stack → Preserve functionality

No security guarantees

Only for benchmarking & accelerator support

Target: Affordable & Open Armv8

Boards

Focus on reusable Framework

Not specific to a board

Performance estimation

OpenCCA Design Goals

Validate design

Step 1: Simulation

Arm FVP

QEMU

Approximate

Performance & Interact

with real HW

Step 2: OpenCCA

OpenCCA
Framework

Background on Arm CCA

● Before Armv9: TrustZone

Secure worldNormal world

Platform

Services

VM

Hypervisor

VM

Armv8 Hardware

Trusted Firmware

Background on Arm CCA

Secure worldNormal world

Platform

Services

VM

Hypervisor

VM

Armv8 Hardware

Trusted Firmware

Realm world

Trusted

Hypervisor

Realm

VM

Background on Arm CCA

Secure worldNormal world

Platform

Services

VM

Hypervisor

VM

Armv9 Hardware with FEAT_RME

Trusted Firmware

Realm world

Root

world

Trusted

Hypervisor

Realm

VM

Secure worldNormal world

Platform

Services

VM

Hypervisor

VM

Armv9 Hardware with FEAT_RME

Trusted Firmware

Realm world

Trusted

Hypervisor

Realm

VM

Root

world

Secure worldNormal world

Platform

Services

VM

Hypervisor

VM

Armv8 Hardware

Trusted Firmware

How do you even run Arm CCA on older Hardware?

Armv9 Armv8

Secure worldNormal world

Platform

Services

VM

Hypervisor

VM

Armv9 Hardware with FEAT_RME

Trusted Firmware

Realm world

Trusted

Hypervisor

Realm

VM

Root

world

Secure worldNormal world

Platform

Services

VM

Hypervisor

VM

Armv8 Hardware

Trusted Firmware

How do you even run Arm CCA on older Hardware?

Armv9 Armv8

Secure worldNormal world

Platform

Services

VM

Hypervisor

VM

Armv9 Hardware with FEAT_RME

Trusted Firmware

Realm world

Trusted

Hypervisor

Realm

VM

Root

world

Secure worldNormal world

Platform

Services

VM

Hypervisor

VM

Armv8 Hardware

Trusted Firmware

How do you even run Arm CCA on older Hardware?

Trusted

Hypervisor

Realm

VM

Realm World

emulated

Armv9 Armv8

Secure worldNormal world

Platform

Services

VM

Hypervisor

VM

Armv9 Hardware with FEAT_RME

Trusted Firmware

Realm world

Trusted

Hypervisor

Realm

VM

Root

world

Secure worldNormal world

Platform

Services

VM

Hypervisor

VM

Armv8 Hardware

Trusted Firmware

How do you even run Arm CCA on older Hardware?

Trusted

Hypervisor

Realm

VM

Realm World

emulated

Armv9 Armv8

Secure worldNormal world

Platform

Services

VM

Hypervisor

VM

Armv9 Hardware with FEAT_RME

Trusted Firmware

Realm world

Trusted

Hypervisor

Realm

VM

Root

world

Secure worldNormal world

Platform

Services

VM

Hypervisor

VM

Armv8 Hardware

Trusted Firmware

How do you even run Arm CCA on older Hardware?

Trusted

Hypervisor

Realm

VM

Realm World

emulated

Root world

 emulated

Emulate CCA in software within the constraints of Armv8 Hardware

Arm CCA on Armv8, what breaks?

Hardware Debugger

valuable
CPU

Undefined Hardware

Feature

CPU Stall or Instant

Reset

● Tradeoff between Compatibility

& Overhead

● Fake missing parts in software while

keeping changes small

● Return predefined values instead of

querying the hardware

Preserve functionality without security

Arm CCA on Armv8, what breaks?

#ifdef ENABLE_OPENCCA

 /* re-implement or disable

 for Arm v8.2 */

#else

 /* upstream impl. */

#endif

Disable or re-implement in software:

• FEAT_RME

• FEAT_RNG

• FEAT_S2FWB

• FEAT_TTST

• FEAT_ECV

• FEAT_CSV2

• FEAT_S2PIE

• FEAT_GCS

• FEAT_DIT

• FEAT_PAuth

• FEAT_ExS

• FEAT_AMUv1

• FEAT_SME

• FEAT_SVE

• FEAT_LPA2

• FEAT_HPMN0

• FEAT_MTE2

Preserve functionality without security

See code & paper

Arm CCA on Armv8, what breaks?

#ifdef ENABLE_OPENCCA

 /* re-implement or disable

 for Arm v8.2 */

#else

 /* upstream impl. */

#endif

Disable or re-implement in software:

• FEAT_RME

• FEAT_RNG

• FEAT_S2FWB

• FEAT_TTST

• FEAT_ECV

• FEAT_CSV2

• FEAT_S2PIE

• FEAT_GCS

• FEAT_DIT

• FEAT_PAuth

• FEAT_ExS

• FEAT_AMUv1

• FEAT_SME

• FEAT_SVE

• FEAT_LPA2

• FEAT_HPMN0

• FEAT_MTE2

Preserve functionality without security

See code & paper

Example: Short Translation Tables (TTST)

TTBR1

TTBR0
Low VA Region

High VA Region
0xFFFF-FFFF-FFFF-FFFF

0x0000-0000-0000-0000
Uninitialized data (.bss)

Data (.data)

RW (.rw)

RO (.ro)

RMM Code (.text)

Invalid Area

Shared across CPUs

static (mostly flat)
mappings

Per CPU mappings

• Stack

• Exception Stack

• Slots for dynamic

Mappings

Memory Layout in Trusted Hypervisor

● Paging implicitly uses FEAT_TTST (Armv8.4)

● Decrease limit on size of VA region

○ Fewer page walks needed (L3 -> Page)

● Not available on our hardware!

Example: Short Translation Tables (TTST)

TTBR1

TTBR0
Low VA Region

High VA Region
0xFFFF-FFFF-FFFF-FFFF

0x0000-0000-0000-0000
Uninitialized data (.bss)

Data (.data)

RW (.rw)

RO (.ro)

RMM Code (.text)

Invalid Area

Shared across CPUs

static (mostly flat)
mappings

Per CPU mappings

• Stack

• Exception Stack

• Slots for dynamic

Mappings

High VA region only

2MB large!

Workaround:

● Increase High VA region to 1GB

● Longer page table walk (L2 -> L3 -> Page)

Key Specs: RK3588 SoC

● Armv8.2 Architecture

● CPU: 4x Cortex-A76 + 4x Cortex A55

● GPU: Arm Mali G610

● Up to 32 GB RAM

● I/O: PCIe 3.0, USB, HDMI

https://radxa.com/products/rock5/5b/

Radxa Rock5b RK3588 ~ 250 USD

We looked into

~ 40 boards in 2025

Hardware:

Documentation

Technical Reference Manual

Affordable +

Available + modern

No Vendor lock

Unlocked EL3

Current Status

● Run confidential VMs with Arm reference

stack

○ TF-A: v2.11

○ RMM: v0.5.0

○ Linux 6.12 (cca/full-v5+v7)

○ Kvmtool (cca/v3)

Next Steps:

● Update to latest version of reference stack

Current Status & Next Steps

https://opencca.github.io

OpenCCA: + ~2.5k LoC

OpenCCA on RK3588

● OpenCCA “Box” with support for firmware flashing and

power management

1. Boot a CVM on OpenCCA

2. Attach Mali GPU to CVM

3. X over VNC + OpenGL on Mali

What this demo

shows:

● IRQ routing (VFIO inspired)

● Stage-2 MMIO mappings for GPU

Registers

● Run GPU driver inside CVM.

Demo Repo:

What this demo

prototypes:

GPU MMIO remains hypervisor

shared.

Demo shows systems prototyping

workflow

DEMO: Switch to UART now

● Paper and source code is online

● Get in touch!

OpenCCA:

● Open Framework for Performance Estimations

● Enable CCA on commodity Armv8 hardware

for performance and accelerators support

Thank You

X: andrinbertschi

email: andrin.bertschi@inf.ethz.ch

web: https://opencca.github.io

Backup

Suitable Workloads on RK3588 and

Porting Work to other boards

RK3588

Armv8.2

4x Cortex A-76

4x Cortex A-55

Mobile+Edge

Workloads✓ Not vendor locked

✓ Documentation

✓ Affordable & Available

Cloud

Workloads?

Faster bring-up on

newer Hardware

• Subset of our changes

needed if > Armv8.2

• Initial bulk engineering
done by OpenCCA

OpenCCA runs on real hardware and can interact

with real devices.

● RK3588 exposes PCIe lanes over NVMe slot

● Example: Research on Arm CCA with PCIe

devices

Real Hardware =

Real Accelerators

Connect Discrete GPU to OpenCCA

What about OpenCCA once we have CCA Hardware?

OpenCCA bridges Gap between Specification and Hardware Catch-Up for

Performance Estimation

Arm CCA

Specification update

Update in

Simulation

Update In

Hardware

fast

slow

New FEAT_ features take time

until implemented in HW

Estimate in Software with

OpenCCA to experiment with

firmware stack & estimate

overheads

How we evaluate Designs with OpenCCA

Validate design

Step 1:

 Simulation

Arm FVP

QEMU

New research design

Step 3:

Benchmark design

OpenCCA
Framework

Unmodified OpenCCA stack

Step 2:

Benchmark Baseline

For

Comparison

Step 4:

Analyze Results

Example Benchmark Campaign Case Study
See paper

See paper

