ETH:zurich

OpenCCA: An Open Framework to
Enable Research on Arm CCA

https://opencca.github.io FOSDEM2026
Andrin Bertschi

PhD Student
Secure & Trustworthy Systems Group

Spoiler: | brought the Box

L ater: Live Demo

Arm CCA Hardware, when?

Main Challenge on Arm CCA:
® No public Arm CCA hardware yet

Initial Rollout for Data Centers:

L]

Locked-Down? Documentation?
Flashable custom Technical reference
firmware? manuals?

Affordable?
Enterprise only?

FUJITSU: Monaka (2027)

Energy-Efficient Processor for Next-Gen Data Centers

FUJITSU-MONAKA

Microsoft: Cobalt 200 (2026)

Announcing Cobalt 200: Azure’s next cloud-native CPU

Likely: NV|d|a° Vera (2026)

@EANVIDIA DEVELOPER Home Blog Forums Do

Technical Blog

Data Center / Cloud

Inside the NVIDIA Rubin Platform: Six
New Chips, One Al Supercomputer

. htth:z(gIo bal.fujitsu/en-global/technology/research/fujitsu-monaka

h hcommunity.micr f m/bl zureinfrastr rebl nnouncin [t-200-
azure%E2%80%99s- next cloud- nat\ve cpu 4469807

Arm CCA, today?!

Main Challenge on Arm CCA:
® No public Arm CCA hardware yet

-
-
e
L
-

1. Under Simulation

Ef»; Arm FVP
QEMU
==

But how fast? c
No microarchitectural

effects of complex hardware

v" Functionality
v Compatibility

Arm CCA, today?!

Main Challenge on Arm CCA:
® No public Arm CCA hardware yet

For Research:
Approximate research design
on real Armv8 Hardware

1. Under Simulation 2. Under Custom Prototype

= o | ArmFv "6"“._{9 Custom
3 -H0C
== QMY WJI Armv8
v" Functionality & Closed Source
v Compatibility & Difficult to compare

< Difficult to reproduce
% Repeated engineering

Arm CCA, today?!

The Need for Open Framework
for Performance Evaluation

Main Challenge on Arm CCA:
® No public Arm CCA hardware yet

3. Under OpenCCA
4)

1. Under Simulation 2. Under Custom Prototype ®
[_] [] O I’ Opencca

= Arm FVP Custom
QEMU , Framework

= I' $ Ad-Hoc
,+ Armv8

v" Functionality & Closed Source

v Compatibility & Difficult to compare
< Difficult to reproduce
% Repeated engineering

_

OpenCCA Design Goals

H Minimal changes to CCA reference
stack — Preserve functionality

7

i |; Target: Affordable & Open Armv8

&
A
@ Boards
s

No security guarantees
Only for benchmarking & accelerator support

Focus on reusable Framework
Not specific to a board
Performance estimation

Step 1: Simulation

7

QEMU

= o | Arm FVP
JE==

~\

J

Validate design

l

Step 2: OpenCCA

7

ALl
ol-cg OpenCCA

.

‘mfz Framework
Sl

\

J

Approximate

Performance & Interact

with real HW

Background on Arm CCA

® Before Armv9: TrustZone

Normal world Secure world

Platform
Services

Trusted Firmware

Armv8 Hardware jerul

|||||

Background on Arm CCA

Realm world Normal world Secure world

Realm
VM

Platform
Services

Trusted
Hypervisor

Trusted Firmware

Armv8 Hardware jePut

|||||

Background on Arm CCA

Realm world Normal world Secure world

Realm
VM

Trusted
Hypervisor

Platform

Services

Armv9 Hardware with FEAT RME

|||||

Root
world

How do you even run Arm CCA on older Hardware?

Realm world Normal world Secure world Normal world Secure world
I ! . I I
Rf;;'nm L[vm v | L[wvm w | |
l j| Platform |:> l 1| Platform
= : Il Services : Il Services
T t o .
Hy;:iv?sor I Hypervisor : I Hypervisor :
. Root T dFi
Trusted Firmware world rusted Firmware
Armv9 Hardware with FEAT_RME GPU Armv8 Hardware GPU

Armv9 Armv8

How do you even run Arm CCA on older Hardware?

Realm world Normal world Secure world Normal world Secure world
I—-----------‘ ___§ B 5 N &N N § B &N & N BN N B N B §N &N &N _§N |
1 l : 1
I I
Rf;;'nm L[vm VM | ! VM VM |
1 j| Platform l 1| Platform
: Il Services : 1| Services
T t d o .
Hy:::v?sor I Hypervisor : I Hypervisor :
! J / J

. Root T d Fi
Trusted Firmware world rusted Firmware

Armv9 Hardware with FEAT_RME GPU Armv8 Hardware GPU

Armv9 Armv8

How do you even run Arm CCA on older Hardware?

Realm world

Realm
VM

Trusted
Hypervisor

Normal world

VM VM

Hypervisor

Secure world

Platform

Services

Trusted Firmware

Armv9 Hardware with FEAT_RME

Armv9

Root
world

Realm World
emulated

1

1

1

: Realm
| VM
i

1

1

1

1

1

Trusted
Hypervisor

Normal world

Secure world

VM

VM
Platform

Services

Hypervisor

Trusted Firmware

Armv8 Hardware

Armv8

How do you even run Arm CCA on older Hardware?

Realm World
Realm world Normal world Secure world emulated Normal world Secure world

i 1 i
| ! | i !
Realm | VM VM ! I i| Ream [VM VM '
VM | ! I | vm | l
I Platform I ! : I Platform
! Il Services : | 1| Services
izt I Hypervisor | I (| rusted Hypervisor |
Hypervisor | yp " I :Hyperwsorl Yp I
| ; L _ oo |

. Root T dFi
Trusted Firmware world rusted Firmware
Armv9 Hardware with FEAT_RME GPU Armv8 Hardware GPU

Armv9 Armv8

How do you even run Arm CCA on older Hardware?

Realm World
Realm world Normal world Secure world emulated Normal world Secure world

| H oo L et
| ! | i !
Realm 1| VM w || I i Realm | VM w ||
VM I l I HH vm | l
I Platform I ! : 1| Platform
! Il Services : | 1| Services
Lo I Hypervisor | I 1 Pl | Hypervisor |
Hypervisor | yp " I | | Hypervisor ! Yp I

Root world

Trusted Firmware
emulated

. Root
Trusted Firmware world

Armv9 Hardware with FEAT_RME CPU £ Armv8 Hardware {cruf

Emulate CCA in software within the constraints of Armv8 Hardware

Arm CCA on Armv8, what breaks?

e Tradeoff between Compatibility 1" W 7T .
1 v C I Hardware Debugger \
& Overhead i C %\ valuable D i
-1L J M ————_—_—____ ¥ _ /
e Fake missing parts in software while
keeping changes small ? Undefined Hardware
° Feature
e Return predefined values instead of N
querying the hardware
x CPU Stall or Instant
Reset

Preserve functionality without security

Arm CCA on Armv8, what breaks?

#tifdef ENABLE OPENCCA
/* re-implement or disable
for Arm v8.2 */
telse
/* upstream impl. */
tendif

Preserve functionality without security

Disable or re-implement in software:

FEAT_RME
FEAT_RNG
FEAT_S2FWB
FEAT_TTST
FEAT_ECV
FEAT_CSVZ2
FEAT_S2PIE
FEAT_GCS
FEAT_DIT
FEAT_PAuth
FEAT_EXS
FEAT_AMUv1
FEAT_SME
FEAT_SVE
FEAT_LPA2
FEAT_HPMNO
FEAT_MTE2

—————————————————————

S R R N S R R S S

Arm CCA on Armv8, what breaks?

#tifdef ENABLE OPENCCA
/* re-implement or disable
for Arm v8.2 */
telse
/* upstream impl. */
tendif

Preserve functionality without security

Disable or re-implement in software:

FEAT_RME
FEAT_RNG
FEAT_S2FWB
FEAT_TTST
FEAT_ECV
FEAT_CSVZ2
FEAT_S2PIE
FEAT_GCS
FEAT_DIT
FEAT_PAuth
FEAT_EXS
FEAT_AMUv1
FEAT_SME
FEAT_SVE
FEAT_LPA2
FEAT_HPMNO
FEAT_MTE2

—————————————————————

S R R N S R R S S

Example: Short Translation Tables (TTST)

High VA Region
OXFFFF-FFFF-FFFF-FFFF

Per CPU mappings -

Shared across CPUs
static (mostly flat) |

mappings

Low VA Region

» Stack
» Exception Stack
* Slots for dynamic

Mappings

Invalid Area

RMM Code (text)

RO (.ro)

RW (.rw)

Data (.data)

0x0000-0000-0000-0000 |

Uninitialized data (.bss)

TTBR1

TTBRO

Example: Short Translation Tables (TTST)

Memory Layout in Trusted Hypervisor
e Paging implicitly uses FEAT_TTST (Armv8.4)

e Decrease limit on size of VA region
o Fewer page walks needed (L3 -> Page)
e Not available on our hardware!

Workaround:
e Increase High VA region to 1GB
e Longer page table walk (L2 -> L3 -> Page)

High VA Region
OXFFFF-FFFF-FFFF-FFFF

P ——— -

High VA region only

’
|
I
‘\ 2MB large!

————————————

Per CPU mappings -

Shared across CPUs

static (mostly flat) |

mappings

Low VA Region

» Stack
» Exception Stack
* Slots for dynamic

Mappings

Invalid Area

RMM Code (text)

RO (.ro)

RW (.rw)

Data (.data)

0x0000-0000-0000-0000 |

Uninitialized data (.bss)

—————— ~

TTBR1

TTBRO

Hardware:

Key Specs: RK3588 SoC !_E' M

e Armv8.2 Architecture

No Vendor lock Documentation Affordable +
e CPU: 4x Cortex-A76 + 4x Cortex A55 Unlocked EL3 Technical Reference Manual Available + modern
e GPU: Arm Mali G610
e Upto 32 GB RAM
e |/O:PCle 3.0, USB, HDMI

E We looked into !
\ ~ 40 boards in 2025 i
} Radxa Rock5b RK3588 ~ 250 USD

https://radxa.com/products/rock5/5b/

An Open Framework to Enable Arm CCA Research

Current Status & Next Steps Q"

A 7 followers @ Switzerland @ https://opencca.github.io/

Current Status

& View as: Public ~

e Run confidential VMs with Arm reference e
stack I y [
. 1 . - \
. Ty [\Cpenecks-2skiee]
o Linux 6.12 (cca/full-v5+v7)
o Kvmtool (cca/v3) hatie OpenCeAT

Next Steps:
e Update to latest version of reference stack

https://opencca.github.io/

https://sectrs.ethz.ch/

https.//opencca.github.io

OpenCCA on RK3588

Ethernet Switch

e OpenCCA "Box” with support for firmware flashing and

power management

What this demo
shows:

1. Boota CVM on OpenCCA
2. Attach Mali GPU to CVM
3. X over VNC + OpenGL on Mali

,— _____________________ \
|
|
1

Demo Repo: i

\

——————————————————————

What this demo
prototypes:

e IRQ routing (VFIO inspired)

e Stage-2 MMIO mappings for GPU
Registers

e Run GPU driver inside CVM.

GPU MMIO remains hypervisor
shared.

"——————————~

Demo shows systems prototyping
\. workflow

~

[P p————

DEMO: Switch to UART now

Thank You

e Paper and source code is online
e Getin touch!

OpenCCA:
e Open Framework for Performance Estimations

e Enable CCA on commodity Armv8 hardware
for performance and accelerators support

OpPENCCA: An Open Framework to Enable Arm CCA Research

Andrin Bertschi
ETH Zurich
Zirsch, Swirzerland

andrin.bertschi@ inf ethz.ch

Abstroct—Confidential computing has galned traction across
major architectures with Intel TDX, AMD SEV-SNP, and
Arm CCAL Unlike TDX and SEV-SNP, a key challenge in
rescarching Arm CCA s the absence of hardware support,
forcing researchers 1o develop ad-hoc protetypes on CCA
emulators and pon-CCA Arm boards. This approach leads
10 high barriers to entry or duplicated efforts leading to
ansound and inconsistent comparisens, To address this, we
present OrenCOA, an open rescarch platform that esables
the execution of CCAbound code on commodity ArmvE2
Bardware, By sostematically adapting the software stack
(including bootleader, Nrmware, hypervisor, and Kernel),
OrexCOA emulates CCA operations for performance eval
wation while preserving functional correctaes, We demon-
strate its effectiveness with typical life-cycle measurements
and casestodies lnspired by prior CCA-based papers oo an
easdly avallable Arm v82 Rockohip board that costs S200,

Shweta Shinde
ETH Zurick

toolisg. The RKISSE comects over elernet 1o 4
wpbony Pik It coomrods & MOSFET and power circus o
wponan UART acoem

X: andrinbertschi

email: andrin.bertschi@inf.ethz.ch

web: https://opencca.github.io

Backup

o - —— -,

v
_____________________________ N r 1
v Not vendor locked \\\ RK3588
v' Documentation ']

. v Affordable & Available 5

Suitable Workloads on RK3588 and
Porting Work to other boards

d

D s Armvs8.2
4x Cortex A-76
4x Cortex A-55

Mobile+Edge
Workloads

Cloud
Workloads?

B
-~
~

Faster bring-up on

newer Hardware

» Subset of our changes
needed if > Armv8.2

%+ |Initial bulk engineering

\ done by OpenCCA

’—_-————————~

Nh
———————————————————————

-
N e e e e e e e

Real Hardware =
Real Accelerators

OpenCCA runs on real hardware and can interact
with real devices.

e RK3588 exposes PCle lanes over NVMe slot
e Example: Research on Arm CCA with PCle
devices

Connect Discrete GPU to OpenCCA

What about OpenCCA once we have CCA Hardware?

OpenCCA bridges Gap between Specification and Hardware Catch-Up for
Performance Estimation

(=

0
[
_ _J

Arm CCA

Specification update

fast

slow

.

zg

J

Update in
Simulation

0]

\

Update In
Hardware

New FEAT _features take time
until implemented in HW

Estimate in Software with

|:> OpenCCA to experiment with
firmware stack & estimate

overheads

How we evaluate Designs with OpenCCA

Step 1:
Simulation
()
= o | Arm FVP
— QEMU
. J

Validate design

Step 3:

Benchmark design

e

~N
AllLL
o@OpenCCA

.

Step 2:

Benchmark Baseline

7

.

For
Comparison

\

J

Unmodified OpenCCA stack

“rnfz Framework
A y

New research design

Step 4:
Analyze Results
()
s
. J

Example Benchmark Campaign Case Study . :

See paper
TABLE 6. EVALUATION, RT: ROUND TRIP, DELEGATE: 4KB \
Benchmark Mean Scale CVMB RAM
Instr Cycles oot CVM Delegate 4KB
3500
OPENCCA 1 29 10000 8%
3000 +1.6% 9000
CVM Boot 256 MB 1900 2647 1M 8000
CVM Boot 1 GB 2015 2869 1M = 2500 7000
RMI Delegate 2865 7988 1 g 200 g ©000
RMI Version 994 3583 1 S 1500 Q jggg
RMI RT 932 3370 1 S Lo ©
SMC RT 182 421 1 jggg
Two-GPT Case Study o0 1000
0 0
CVM Boot 256 MB 1928 2690 IM Boot 256 MB Boot 1 GB RMI Delegate
CVM Boot 1 GB 2039 2902 1M
B Baseline m2GPT B Baseline m2GPT

RMI Delegate 3488 8654 1

—————————————————————

TABLE 6. EVALUATION, RT: ROUND TRIP, DELEGATE: 4KB :'— h
| See paper

Benchmark Mean Stdev Scale TTTmTTmTmTmm s
Instr Cycles Instr Cycles
OPENCCA
CVM Boot 256 MB 1900 2647 6 15 1M
CVM Boot 1 GB 2015 2869 8 18 1M
RMI Delegate 2865 7988 187 365 1
RMI Version 994 3583 120 222 1
RMI RT 932 3370 115 209 1
SMC RT 182 421 44 68 1
Two-GPT Case Study

CVM Boot 256 MB 1928 2690 9 10 1M
CVM Boot 1 GB 2039 2902 7 18 1M

RMI Delegate 3488 8654 182 372 |

