Al-based failure aggregation

t.ukasz Towarek
FOSDEM 2026

Problem statement

Original workflow

j 8
. "
Monitoring Bug g
/b System Engineer Tracker bisect

Get N test results
<€

Report X
test failures
>

Update existing
bug reports

Create new
bug reports

Start regression isplation

—

Percentage of failures

High

Scale of test failures

Manageable

Unmanageable

Happy| place

Number of tests

High

Desired workflow

.C). 8 git %
1/CD Monitoring Bug bisect

System Tracker Engineer

Get N test results

Update existing
bug reports

Create new
bug reports

Start regression isplation

Send summary report

—

Potential solutions

e Goal: * Potential solutions:
— No aggregation:
— Fully automated agent * Duplicates

* Waste of resources
— Aggregation per test case:
* Duplicates across test cases

o P]_"Oblem: * Missed nested regressions
— Direct logs comparison:
— How to determine if a failure is a * Complex text cleaning
new issue or an already reported - Train new ML model:
> * Time-consuming and error-prone preparation
bug ! of a dataset

* Expensive
* There’s another way

—

Solution - theory

Text embedding

e emhene * Text embedding:

— Numerical vectors

A dog plays in the park

— Multi-dimensional space

— Similar meaning — similar
vectors

thon is a programming language

Vector similarity search

* Cosine similarity:
° 1 —highly similar

° (0 —unrelated

Bi-Encoder

‘ Cosine similarity ’

Embedding u

‘ Embedding v

Encoder Encoder

Sentence A Sentence B

Solution - implementation

Sentence Transformers

PyPI

Pre-trained m I

Em in 4D

Similarity

from sentence_transformers import SentenceTranstformer

1. Load a pretrained Sentence Transformer model
model = SentenceTranstormer("all-MinilM-L6-v2")

The sentences to encode

sentences = [
"The weather is lovely today."”,
"It's so sunny outside!”,
"He drove to the stadium.”,

2. Calculate embeddings by calling model.encode()
embeddings = model.encode(sentences)
print(embeddings.shape)

[3, 384]

3. Calculate the embedding similarities

similarities = model.similarity(embeddings, embeddings)
print(similarities)

tensor([[1.0008, 0.6660, 0.1046],

[0.6660, 1.0008, 6.1411],

[6.1646, ©.1411, 1.6000]])

Text Embeddings Inference (TEI)

Docker

model=Qwen/Qwen3-Embedding-©.6B
volume=$PWD/data # share a volume with the Docker container to avoid downloading weights every run

docker run --gpus all -p 8080:80 -v $volume:/data --pull always ghcr.io/huggingface/text-embeddings-inf

And then you can make requests like

curl 127.9.0.1:8088/embed \
-X POST \
-d '{"inputs":"What is Deep Learning?"}"' \
-H 'Content-Type: application/json'

—

Multilingual Text Embedding Benchmark (MTEB)

KaLM-Embedding-Gemma3-12B-2511 44884 11.76 3840 32768 72.32

2 llama-embed-nemotron-8b 28629 7.505 4096 32768 69.46

3 Qwen3-Embedding-8B 14433 7.567 4096 32768 70.58

110 all-MiniLM-L12-v2 127 0.033 384 256 42.28
HW type Storage Text length

—

pgvector

Enable the extension (do this once in each database where you want to use it)

CREATE EXTENSION vector;

Create a vector column with 3 dimensions

CREATE TABLE items (id bigserial PRIMARY KEY, embedding vector(3));

Insert vectors

INSERT INTO items (embedding) VALUES ('[1,2,31'), ('[4.5,61');

Get the nearest neighbors by L2 distance

SELECT * FROM items ORDER BY embedding <-> '[3,1,2]' LIMIT 5;

Also supports inner product (<#>), cosine distance (<=>), and L1 distance (<+>)

Workflow

)

nerate em INn o

P Check if new >

r r r 9

ATLASSIAN
Jira

©

Get logs > @
i‘:@
A/

Potential improvements

Analyze more logs:
Bigger input text

Truncate
Bigger model

~ Multiple log files
* Merge logs
Select more important log
Embed only error signatures
Fine-tuning:
Support domain-specific patterns e.g. numeric errors
Failure correlation:

Link failures with different error messages, but related root cause

—

Summary

Text embedding for failure aggregation

Improve efficiency by minimizing noise
Low entry barrier (Open-source + Pre-Trained models)

Text embedding is a low-effort way to turn CI noise
into signal

—

Thank you

Credits

* https://sbert.net

* https://github.com/huggingface/text-embeddings-inference
 https://huggingface.co/spaces/mteb/leaderboard

* https://github.com/pgvector/pgvector

* https://plantuml.com
* https://matplotlib.org

—

https://sbert.net/
https://github.com/huggingface/text-embeddings-inference
https://huggingface.co/spaces/mteb/leaderboard
https://github.com/pgvector/pgvector
https://plantuml.com/
https://matplotlib.org/

	Title
	Problem statement section
	Original workflow
	Scale
	Desired workflow
	Potential solutions
	Solution theory section
	Text embedding
	Vector similarity search
	Bi-Encoder
	Solution implementation section
	Sentence Transformers
	Text Embeddings Inference (TEI)
	MTEB
	pgvector
	Workflow
	Potential improvements
	Summary section
	Key takeaways
	Thank you
	Credits

