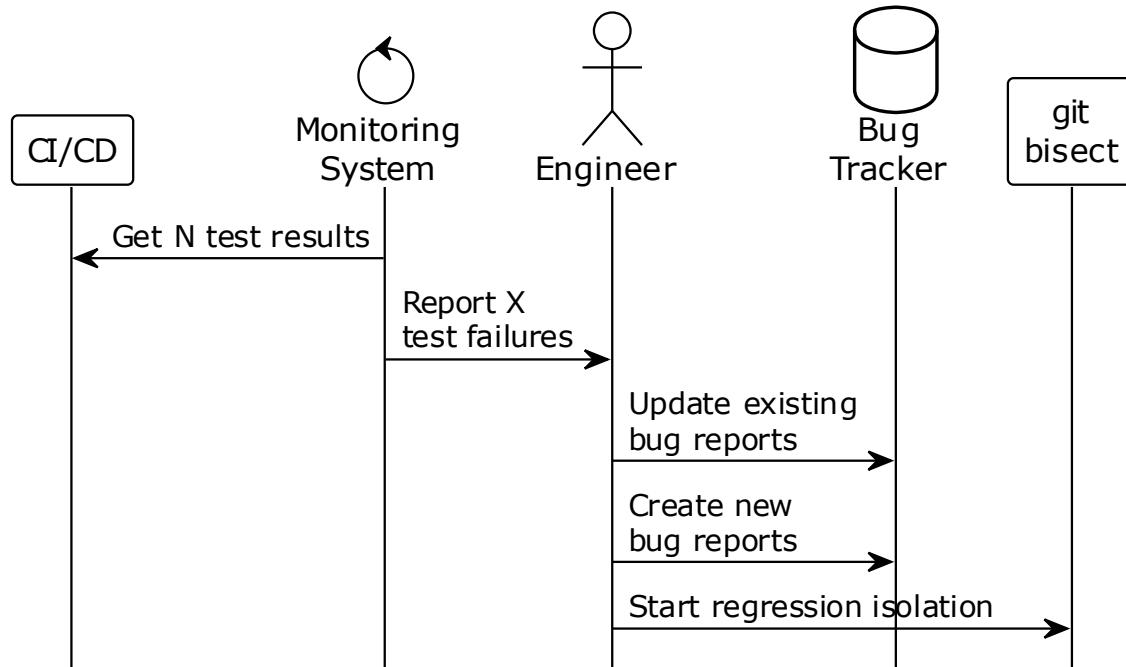


AI-based failure aggregation

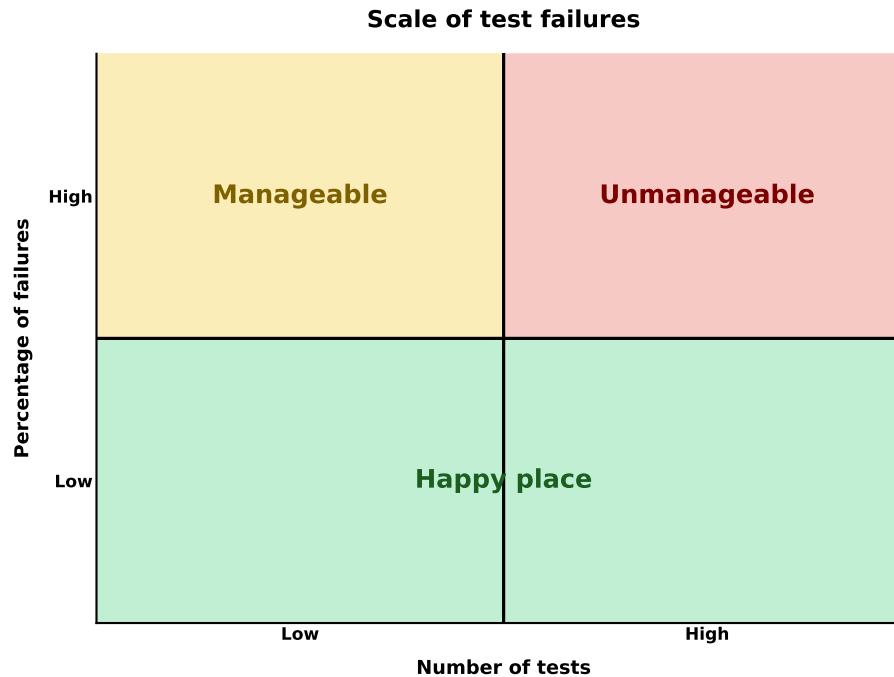
Łukasz Tawarek
FOSDEM 2026

Problem statement

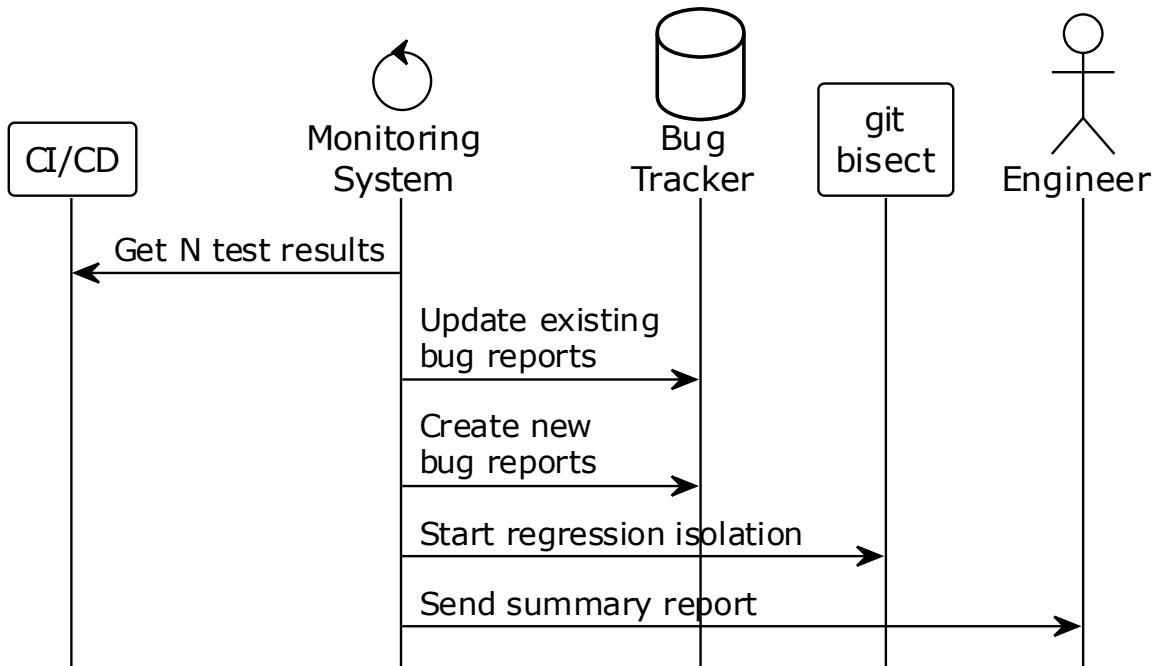
Original workflow



Scale



Desired workflow

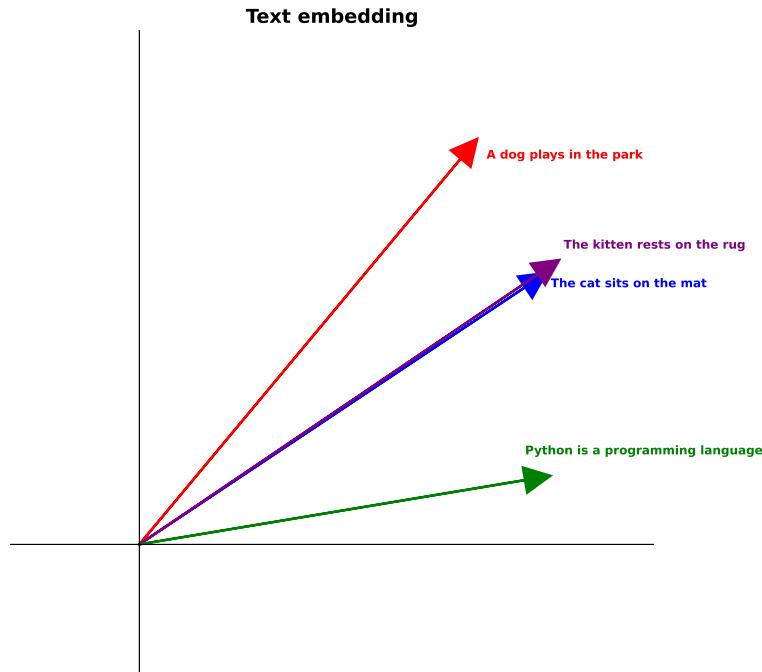


Potential solutions

- **Goal:**
 - Fully automated agent
- **Problem:**
 - How to determine if a failure is a new issue or an already reported bug?
- **Potential solutions:**
 - No aggregation:
 - Duplicates
 - Waste of resources
 - Aggregation per test case:
 - Duplicates across test cases
 - Missed nested regressions
 - Direct logs comparison:
 - Complex text cleaning
 - Train new ML model:
 - Time-consuming and error-prone preparation of a dataset
 - Expensive
- **There's another way**

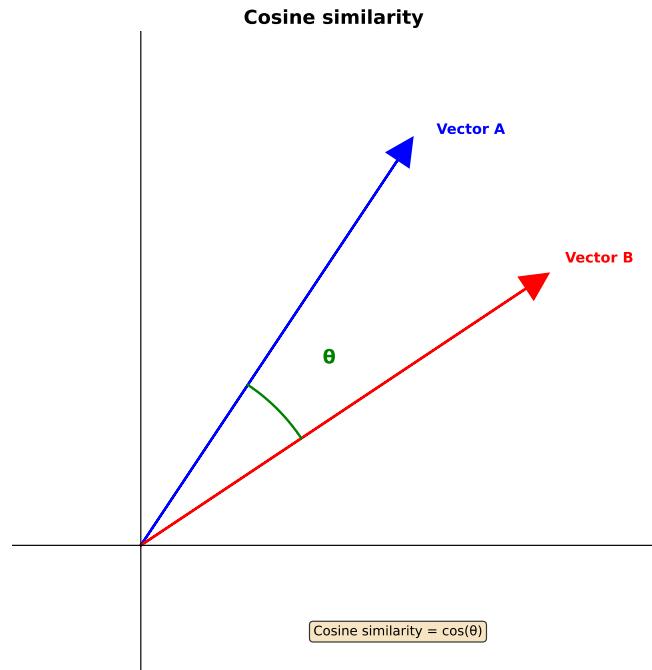
Solution - theory

Text embedding



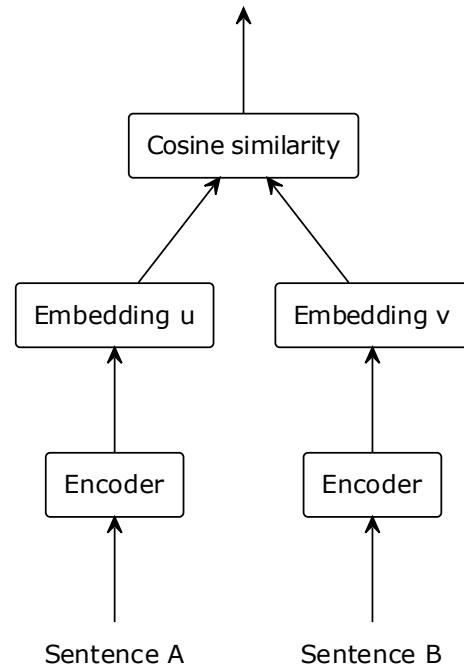
- **Text embedding:**
 - Numerical vectors
 - Multi-dimensional space
 - Similar meaning → similar vectors

Vector similarity search



- **Cosine similarity:**
 - 1 – highly similar
 - 0 – unrelated

Bi-Encoder



Solution - implementation

Sentence Transformers

PyPI

Pre-trained model

Embeddings (384D)

Similarity

```
from sentence_transformers import SentenceTransformer

# 1. Load a pretrained Sentence Transformer model
model = SentenceTransformer("all-MiniLM-L6-v2")

# The sentences to encode
sentences = [
    "The weather is lovely today.",
    "It's so sunny outside!",
    "He drove to the stadium.",
]

# 2. calculate embeddings by calling model.encode()
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 384]

# 3. Calculate the embedding similarities
similarities = model.similarity(embeddings, embeddings)
print(similarities)
# tensor([[1.0000, 0.6660, 0.1046],
#           [0.6660, 1.0000, 0.1411],
#           [0.1046, 0.1411, 1.0000]])
```

Text Embeddings Inference (TEI)

Docker

```
model=Qwen/Qwen3-Embedding-0.6B
volume=$PWD/data # share a volume with the Docker container to avoid downloading weights every run

docker run --gpus all -p 8080:80 -v $volume:/data --pull always ghcr.io/huggingface/text-embeddings-inf
```

And then you can make requests like

```
curl 127.0.0.1:8080/embed \
-X POST \
-d '{"inputs":"What is Deep Learning?"}' \
-H 'Content-Type: application/json'
```

Multilingual Text Embedding Benchmark (MTEB)

Rank (Borda)	Model	Memory Usage (MB)	Number of Parameters (B)	Embedding Dimensions	Max Tokens	Mean (Task)
1	KaLM-Embedding-Gemma3-12B-2511	44884	11.76	3840	32768	72.32
2	llama-embed-nemotron-8b	28629	7.505	4096	32768	69.46
3	Qwen3-Embedding-8B	14433	7.567	4096	32768	70.58
110	all-MiniLM-L12-v2	127	0.033	384	256	42.28

pgvector

Enable the extension (do this once in each database where you want to use it)

```
CREATE EXTENSION vector;
```

Create a vector column with 3 dimensions

```
CREATE TABLE items (id bigserial PRIMARY KEY, embedding vector(3));
```

Insert vectors

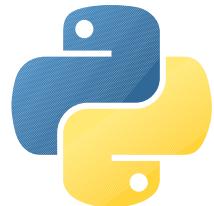
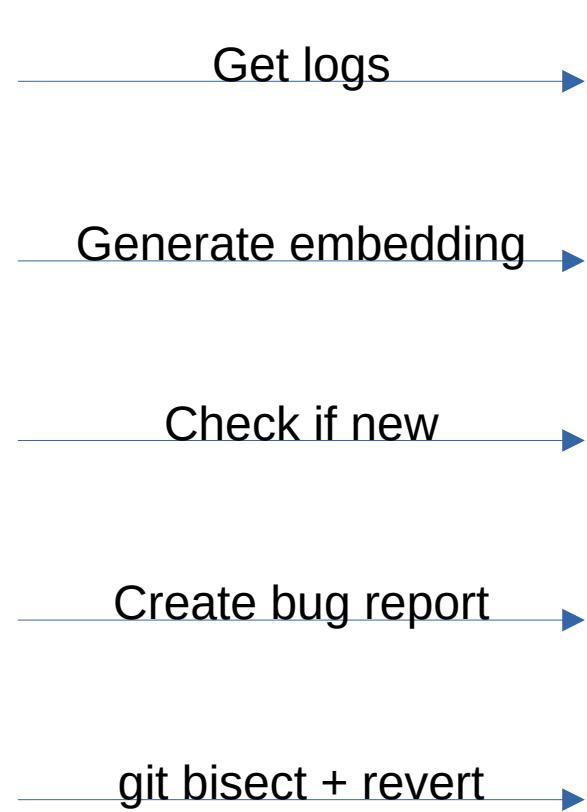
```
INSERT INTO items (embedding) VALUES ('[1,2,3]'), ('[4,5,6]');
```

Get the nearest neighbors by L2 distance

```
SELECT * FROM items ORDER BY embedding <-> '[3,1,2]' LIMIT 5;
```

Also supports inner product (`<#>`), cosine distance (`<=>`), and L1 distance (`<+>`)

Workflow



Potential improvements

- **Analyze more logs:**
 - Bigger input text
 - Truncate
 - Bigger model
 - Multiple log files
 - Merge logs
 - Select more important log
 - Embed only error signatures
- **Fine-tuning:**
 - Support domain-specific patterns e.g. numeric errors
- **Failure correlation:**
 - Link failures with different error messages, but related root cause

Summary

Text embedding for failure aggregation

Improve efficiency by minimizing noise
Low entry barrier (Open-source + Pre-Trained models)

**Text embedding is a low-effort way to turn CI noise
into signal**

Thank you

Credits

- <https://sbert.net>
- <https://github.com/huggingface/text-embeddings-inference>
- <https://huggingface.co/spaces/mteb/leaderboard>
- <https://github.com/pgvector/pgvector>
- <https://plantuml.com>
- <https://matplotlib.org>

