Petr MenSik <pemensik@redhat.com>

FOSDEM 2026

Who am I?

* Linux user since ~2000, started with Monkey Linux

* Debian user during study at FIT University of Technology,
Brno

* Red Hatter since 2016, switched to Fedora, where I
maintain packages in work and free time

* Avahi upstream maintainer for ~2 years

—

Motivation

* Typical application does not use DNS directly
* Applications should use getaddrinfo() library cali

* Applications specify what address family they want
- Defaults to AF_UNSPEC, AF_ INET and AF INET6 are other variants

- Required for link-local IPv6 addresses with interface index
* ping -c3 fe80::105a:412a:503e:8660%enp0s20f0u14
- ping -4, curl -6, dig -4 changes only used AF

—

What can I pass into getaddrinfo?

/* man 3 getaddrinfo */
#include <netdb.h>

int getaddrinfo(const char *restrict node,
const char *restrict service,
const struct addrinfo *restrict hints,
struct addrinfo **restrict res);

// added by ipv6 wg RFC 3493:
https://www.rfc-editor.org/rfc/rfc3493.html#section-6

—

https://www.rfc-editor.org/rfc/rfc3493.html#section-6

What can I pass in struct addrinfo?

struct addrinfo {

int ai_flags; // AI_NUMERICHOST, AI_PASSIVE, ...
int ai_family; // AF_UNSPEC, AF_INET, AF_INET6
int ai_socktype; // SOCK_STREAM or SOCK_DGRAM
int ai_protocol; // usually 0?

socklen t ai_addrlen;

struct sockaddr *ai_addr;

char *ai_canonname; // ~ final host name

struct addrinfo *ai_next; // can be more than 1 address

 »
—

Motivation »

* Why does my IPv4-only network generate so many AAAA
requests?

- Why does it generate both A and AAAA query on each AF_UNSPEC
request?

* Supressing AAAA? on IPv4-only networks is done already on Windows and
MacQOS

* Filtering on DNS cache does not receive original address family requested

- The same applies for IPv6-only networks, not a legacy-only problem
- Fake empty AAAA responses break DNSSEC

Motivation i3

 What if my machine asked only queries it needs?

— connect() to any not localhost or link-local IPv6 address will always
fail, unless there is at least some route

* Systemd-resolved had it controlled by default route, but they removed the
functionality

* Proposed change in glibc to use resolv.conf options ipv4, ipvé6
(https://sourceware.org/bugzilla/show_bug.cqi?id=30544)

* Not asking will not break caches or DNSSEC validation

* On mobile devices dynamic network changes might need fast reaction

—

https://sourceware.org/bugzilla/show_bug.cgi?id=30544

Motivation 4.

* Dynamic changes will work best when handled by a common
localhost service

* getaddrinfo() calls are stateless, no autodiscovered state
remain for requests made later

~ option ednsO - we could autodetect support after 1st response
~ Multi-qtype support needs the same kind of autodetection

* Proposed for SRV+TXT queries, used by DNS-SD queries

* The same support would be useful for A+AAAA+HTTPS queries done by any
web client
* https://datatracker.ietf.org/doc/draft-ietf-dnssd-multi-qtypes/

—

https://datatracker.ietf.org/doc/draft-ietf-dnssd-multi-qtypes/

What can we use to cache getaddrinfo calls?

* nscd exists, never had a port domain network socket
- But obsoleted by glibc already
* systemd-resolved has also resolve plugin

- Uses unix domain socket by own protocol

- But pushing them to fix some bugs is very difficult
* lwres had also own nss plugin in Debian 3.0

- Its sources are not in Debian anymore, found them in Ubuntu!

—

Missing parameters

* Glibc plugin interface for getaddrinfo lack address family
and ai_flags!

- Without new glibc interface we cannot make some decisions

* No direct address family
* No ai_flags passed into plugin function

* AI_PASSIVE flag may affect what addresses we provide

ﬂ

What can nss plugin implement?

enum nss_status _nss_gethostbyname4 r(
const char* name,
struct gaih_addrtuple** pat,
char* buffer, size t buflen,
int* errnop, int* h_errnop,
int32_t* ttip);

/* used by getent ahosts example.org */

~

gethostbyname4 r() parameters

/* Data structure used for the 'gethostbyname4_r' function. */
struct gaih_addrtuple
{
struct gaih_addrtuple *next;
char *name;
int family;
uint32_t addr[4];
uint32_t scopeid;
Y

ﬁ

What is needed then?

* Send requests from stateless application to caching
daemon as specified by API calls

* Use unix-socket for communication with local-only service

* Local sockets have separate namespace!

- Separate users can have own instance not colliding with main
system daemon!

— Users can have own customized instances of name resolver

ﬂ

What did libnss_lwres implement?

* Version 0.93

°* enum nss_status
_nss_lwres_gethostbyname2_r (const char *name, int af,
struct hostent *result,
char *buffer, size_t buflen, int *errnop,
int *herrnop);

* lwres_getipnodebyname (name, af, mapped_flags,
herrnop);

ﬁ

What did lwresd implement?

* Bin 9.11 still had unix domain sockets support!

Iwresd never used it for queries

Iteration from built-in root servers hints supported

* It was ~ special named service

— Listening on custom binary protocol, localhost UDP port 921
- I still maintain it on RHELS!
— BIND 9.11 ARM, supports views

ﬂ

https://downloads.isc.org/isc/bind9/9.11.37/doc/arm/Bv9ARM.ch05.html

What it should implement?

* No root hints iteration - protective DNS should see all
gueries

 Small default cache size

* No crypto stuff - DNSSEC validation should be handled by
DNS proxy, separate service

* Unix domain port listening in /run, SOCK_STREAM

* Smart defaults, no configuration needed

ﬂ

Why unix domain sockets?

e struct sockaddr un {
sa_family_t sun_family; /* AF_UNIX */
char sun_path[108]; /* Pathname */
5
* getsockopt SO_PEERCRED, SO_PEERSEC
* https://github.com/avahi/avahi/pull/808

ﬁ

https://github.com/avahi/avahi/pull/808

Why unix domain sockets? 4

e struct ucred {
pid_t pid; /* Process ID of the sending process */
uid_t uid; /* User ID of the sending process */
gid_t gid; /* Group ID of the sending process */
Y

* man 7 unix, Linux specific only!

ﬂ

Why unix domain sockets? 4

* FreeBSD: LOCAL_PEERCRED
struct xucred {

u_int cr_version; /* structure layout version */

uid _t cr uid; /* effective user id */

short cr_ngroups; /* number of groups */

gid_t cr_groups[XU_NGROUPS]; /* groups */

pid_t cr_pid; /* process id of the sending process */
h

man 4 unix, FreeBSD specific only!
* Different struct cmsgcred for SOCK_DGRAM

ﬂ

How to log unix domain socket request?

* struct sockaddr_un is the same as server’s, not interesting

°* Uid is more useful, but readable user name needs
getpwent_r()

* Pid allows fetching more details, but cannot be atomic

~ Will work best if details are fetched before the response is sent
~ /proc/$pid/cmdline
~ /proc/$pid/cgroup (Linux specific again?)

* Canuse sd_pid_get_cgroup, sd_pid_get_slice or sd_pid_get_unit from
libsystemd

ﬂ

What could it provide?

Optional caching even before nss_dns plugin
(/etc/resolv.conf)

* User owned ~/.config/hosts file

~ Even better ~/.config/hosts.d/*.host
~ Dynamic reconfiguration from other services events
~ Automatic /etc/resolv.conf change monitoring

Filtering internet access similar to SELinux on filesystem

Caching for LLMNR or mDNS requests too

ﬂ

Petr Mensik
\YEILE

Mattermost:
pemensik@
Matrix: pemensik:fedora.im

22

mailto:pemensik@redhat.com
https://chat.dns-oarc.net/

	Snímek 1
	Snímek 2
	Snímek 3
	Snímek 4
	Snímek 5
	Snímek 6
	Snímek 7
	Snímek 8
	Snímek 9
	Snímek 10
	Snímek 11
	Snímek 12
	Snímek 13
	Snímek 14
	Snímek 15
	Snímek 16
	Snímek 17
	Snímek 18
	Snímek 19
	Snímek 20
	Snímek 21
	Snímek 22

