
Lwresd:
how can be obsolete daemon reused for new

features?
Petr Menšík <pemensik@redhat.com>

FOSDEM 2026

2

Who am I?

● Linux user since ~2000, started with Monkey Linux
● Debian user during study at FIT University of Technology,

Brno
● Red Hatter since 2016, switched to Fedora, where I

maintain packages in work and free time
● Avahi upstream maintainer for ~2 years

3

Motivation

● Typical application does not use DNS directly
● Applications should use getaddrinfo() library call
● Applications specify what address family they want

– Defaults to AF_UNSPEC, AF_INET and AF_INET6 are other variants
– Required for link-local IPv6 addresses with interface index

● ping -c3 fe80::105a:412a:503e:8660%enp0s20f0u14
– ping -4, curl -6, dig -4 changes only used AF

4

What can I pass into getaddrinfo?

 /* man 3 getaddrinfo */
 #include <netdb.h>
 int getaddrinfo(const char *restrict node,
 const char *restrict service,
 const struct addrinfo *restrict hints,
 struct addrinfo **restrict res);
// added by ipv6 wg RFC 3493:
https://www.rfc-editor.org/rfc/rfc3493.html#section-6

https://www.rfc-editor.org/rfc/rfc3493.html#section-6

5

What can I pass in struct addrinfo?

struct addrinfo {
 int ai_flags; // AI_NUMERICHOST, AI_PASSIVE, ...
 int ai_family; // AF_UNSPEC, AF_INET, AF_INET6
 int ai_socktype; // SOCK_STREAM or SOCK_DGRAM
 int ai_protocol; // usually 0?
 socklen_t ai_addrlen;
 struct sockaddr *ai_addr;
 char *ai_canonname; // ~ final host name
 struct addrinfo *ai_next; // can be more than 1 address
};

6

Motivation #2

● Why does my IPv4-only network generate so many AAAA
requests?
– Why does it generate both A and AAAA query on each AF_UNSPEC

request?
● Supressing AAAA? on IPv4-only networks is done already on Windows and

MacOS
● Filtering on DNS cache does not receive original address family requested

– The same applies for IPv6-only networks, not a legacy-only problem
– Fake empty AAAA responses break DNSSEC

7

Motivation #3

● What if my machine asked only queries it needs?
– connect() to any not localhost or link-local IPv6 address will always

fail, unless there is at least somesome route
● Systemd-resolved had it controlled by default route, but they removed the

functionality
● Proposed change in glibc to use resolv.conf options ipv4, ipv6

(https://sourceware.org/bugzilla/show_bug.cgi?id=30544)
● Not asking will not break caches or DNSSEC validation
● On mobile devices dynamic network changes might need fast reaction

https://sourceware.org/bugzilla/show_bug.cgi?id=30544

8

Motivation #4

● Dynamic changes will work best when handled by a common
localhost service

● getaddrinfo() calls are stateless, no autodiscovered state
remain for requests made later
– option edns0 – we could autodetect support after 1st response
– Multi-qtype support needs the same kind of autodetection

● Proposed for SRV+TXT queries, used by DNS-SD queries
● The same support would be useful for A+AAAA+HTTPS queries done by any

web client
● https://datatracker.ietf.org/doc/draft-ietf-dnssd-multi-qtypes/

https://datatracker.ietf.org/doc/draft-ietf-dnssd-multi-qtypes/

9

What can we use to cache getaddrinfo calls?

● nscd exists, never had a port domain network socket
– But obsoleted by glibc already

● systemd-resolved has also resolve plugin
– Uses unix domain socket by own protocol
– But pushing them to fix some bugs is very difficult

● lwres had also own nss plugin in Debian 3.0
– Its sources are not in Debian anymore, found them in Ubuntu!

10

Missing parameters

● Glibc plugin interface for getaddrinfo lack address family
and ai_flags!
– Without new glibc interface we cannot make some decisions

● No direct address family
● No ai_flags passed into plugin function
● AI_PASSIVE flag may affect what addresses we provide

11

What can nss plugin implement?

enum nss_status _nss_gethostbyname4_r(
 const char* name,
 struct gaih_addrtuple** pat,
 char* buffer, size_t buflen,
 int* errnop, int* h_errnop,
 int32_t* ttlp);
/* used by getent ahosts example.org */

12

gethostbyname4_r() parameters

/* Data structure used for the 'gethostbyname4_r' function. */
struct gaih_addrtuple
 {
 struct gaih_addrtuple *next;
 char *name;
 int family;
 uint32_t addr[4];
 uint32_t scopeid;
 };

13

What is needed then?

● Send requests from stateless application to caching
daemon as specified by API calls

● Use unix-socket for communication with local-only service
● Local sockets have separate namespace!

– Separate users can have own instance not colliding with main
system daemon!

– Users can have own customized instances of name resolver

14

What did libnss_lwres implement?

● Version 0.93
● enum nss_status

_nss_lwres_gethostbyname2_r (const char *name, int af,
 struct hostent *result,
 char *buffer, size_t buflen, int *errnop,
 int *herrnop);

● lwres_getipnodebyname (name, af, mapped_flags,
herrnop);

15

What did lwresd implement?

● Bin 9.11 still had unix domain sockets support!
● lwresd never used it for queries
● Iteration from built-in root servers hints supported
● It was ~ special named service

– Listening on custom binary protocol, localhost UDP port 921
– I still maintain it on RHEL8!
– BIND 9.11 ARM, supports views

https://downloads.isc.org/isc/bind9/9.11.37/doc/arm/Bv9ARM.ch05.html

16

What it should implement?

● No root hints iteration – protective DNS should see all
queries

● Small default cache size
● No crypto stuff – DNSSEC validation should be handled by

DNS proxy, separate service
● Unix domain port listening in /run, SOCK_STREAM
● Smart defaults, no configuration needed

17

Why unix domain sockets?

● struct sockaddr_un {
 sa_family_t sun_family; /* AF_UNIX */
 char sun_path[108]; /* Pathname */
};

● getsockopt SO_PEERCRED, SO_PEERSEC
● https://github.com/avahi/avahi/pull/808

https://github.com/avahi/avahi/pull/808

18

Why unix domain sockets? #2

● struct ucred {
 pid_t pid; /* Process ID of the sending process */
 uid_t uid; /* User ID of the sending process */
 gid_t gid; /* Group ID of the sending process */
};

● man 7 unix, Linux specific only!

19

Why unix domain sockets? #3

● FreeBSD: LOCAL_PEERCRED
● struct xucred {

 u_int cr_version; /* structure layout version */
 uid_t cr_uid; /* effective user id */
 short cr_ngroups; /* number of groups */
 gid_t cr_groups[XU_NGROUPS]; /* groups */
 pid_t cr_pid; /* process id of the sending process */
};

● man 4 unix, FreeBSD specific only!
● Different struct cmsgcred for SOCK_DGRAM

20

How to log unix domain socket request?

● struct sockaddr_un is the same as server’s, not interesting
● Uid is more useful, but readable user name needs

getpwent_r()
● Pid allows fetching more details, but cannot be atomic

– Will work best if details are fetched before the response is sent
– /proc/$pid/cmdline
– /proc/$pid/cgroup (Linux specific again?)

● Can use sd_pid_get_cgroup, sd_pid_get_slice or sd_pid_get_unit from
libsystemd

21

What could it provide?

● Optional caching even before nss_dns plugin
(/etc/resolv.conf)

● User owned ~/.config/hosts file
– Even better ~/.config/hosts.d/*.host
– Dynamic reconfiguration from other services events
– Automatic /etc/resolv.conf change monitoring

● Filtering internet access similar to SELinux on filesystem
● Caching for LLMNR or mDNS requests too

22

Questions?

Petr Menšík
Mail:
pemensik@redhat.com
Mattermost:
pemensik@chat.dns-oarc.net
Matrix: pemensik:fedora.im

mailto:pemensik@redhat.com
https://chat.dns-oarc.net/

	Snímek 1
	Snímek 2
	Snímek 3
	Snímek 4
	Snímek 5
	Snímek 6
	Snímek 7
	Snímek 8
	Snímek 9
	Snímek 10
	Snímek 11
	Snímek 12
	Snímek 13
	Snímek 14
	Snímek 15
	Snímek 16
	Snímek 17
	Snímek 18
	Snímek 19
	Snímek 20
	Snímek 21
	Snímek 22

