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PhD Researcher at KU Leuven - MICAS research group

Working on compilers for AI hardware accelerators since 2021

Fun fact!  Looking for a new job at the end of this year 😉
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What you’ll learn in this talk

● What are NPUs?

● How do people design NPUs now?

● How people should design NPUs in the future (spoiler: with compilers!)
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NPUs are processors to optimize dense linear algebra
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void elementwise_mult(float* A, float* B, float* C) {
   for (int i = 0; i < 16; i++) {
       C[i] = A[i] * B[i];
   }
}
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NPUs are processors to optimize dense linear algebra
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void elementwise_mult(float* A, float* B, float* C) {
   for (int i = 0; i < 16; i++) {
       C[i] = A[i] * B[i];
   }
}

void matmul_16x16(float A[16][16], float B[16][16], float C[16][16]) {
   for (int i = 0; i < 16; i++) {
       for (int j = 0; j < 16; j++) {
           C[i][j] = 0;
           for (int k = 0; k < 16; k++) {
               C[i][j] += A[i][k] * B[k][j];
           }
       }
   }
}



NPUs are processors to optimize dense linear algebra
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void softmax_16(float* input, float* output) {

   float sum = 0.0f;

   float max_val = input[0];

   for (int i = 1; i < 16; i++) {

       if (input[i] > max_val) max_val = input[i];

   }

   for (int i = 0; i < 16; i++) {

       output[i] = expf(input[i] - max_val);

       sum += output[i];

   }

   for (int i = 0; i < 16; i++) {

       output[i] /= sum;

   }

}



Aside: MLIR represents  this in the “linalg” dialect
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void elementwise_mult(float* A, float* B, float* C) {
   for (int i = 0; i < 16; i++) {
       C[i] = A[i] * B[i];
   }
}

%3 = linalg.mul ins(%arg0, %2 : tensor<16xf32>, tensor<16xf32>) outs(%0 : tensor<16xf32>) -> 
tensor<16xf32>

#map = affine_map<(d0) -> (d0)>
%3 = linalg.generic {indexing_maps = [#map, #map, #map], iterator_types = ["parallel"]} 
ins(%arg0, %2 : tensor<16xf32>, tensor<16xf32>) outs(%0 : tensor<16xf32>) {
 ^bb0(%in: f32, %in_0: f32, %out: f32):
   %5 = arith.mulf %in, %in_0 : f32
   linalg.yield %5 : f32
} -> tensor<16xf32>
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Are they useful? According to research: yes!
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There is more available 
silicon area on chip for 
specialized processors 

TPU = much faster and 
energy efficient at linear 
algebra than CPUs or GPUs
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● Yes. … but mostly for marketing

In reality it is often too difficult to use them

● These units can be too specific for newer workloads

● Most compilers can’t leverage them

● Hardware, Firmware, Libraries often closed source!

But are they really useful?
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There are multiple interdependent problems

New hardware:
Lacking Compiler 

Support

No developer access:
Closed-source 

Hardware +
Drivers +

…

New algorithms:
Lacking Hardware 

Support
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How did we get here?
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How do people typically Create NPUs?

Select 
algorithm to 

optimize

Create 
hardware for 
the algorithm 
to optimize

ISA specification
Library &
Compiler 

Development

Ship to 
users/customers
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Algorithm 
Selection

Initial 
Hardware Design

~2 months*

~6 months*

~1 year*

~6 months*
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Yes! With compilers we can enable programmable hardware synthesis

But how?

→ How do we quickly create an ML compiler? 🐉 MLIR
→ How do we quickly generate hardware? ⚡ CIRCT
→ How do we adapt the compiler to the hardware? 󰻁 Dynamic Backend
→ How do we quickly develop this? 🪄 Secret shortcuts

Fully Open source 🦾

This is too slow! Can we do this faster?
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What are we trying to 
create?
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Anatomy of an NPU platform

CPU

Memory

Load unit

Processing 
Element

Processing 
Element

Processing 
Element

Processing 
Element

Processing 
Element

Processing 
Element

Processing 
Element

Processing 
Element

Store unit
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ML compiler

The programmable hardware synthesis flow

Supported 
Operations
(MLIR)

Backend 
Information

Software Source
(MLIR)
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ML compiler

The programmable hardware synthesis flow
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ML compiler

Today we’ll talk about PE array conversion
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Today we’ll talk about PE array conversion
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Supported 
Operations
(MLIR)

Create a PE Array for these two supported operations

Supported 
Operations
(MLIR)

PE Array
(SystemVerilog)
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Supported 
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Create a PE Array for these two supported operations
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PE Array
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This NPU now supports linalg.generic A and B
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Software Source
(MLIR)

If the source contains supported operations, they are 
guaranteed to work on this NPU!

Supported 
Operations
(MLIR)

PE Array
(SystemVerilog)
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Examples
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Create a 4-way parallel PE array that supports Elementwise operations:

● Addition
● Subtraction
● Multiplication
● Bitwise Exclusive OR

33

Simple example no. 1



We want to support the  following operations

#map = affine_map<(d0) -> (d0)>
module {
 func.func public @streamer_add(%arg0: tensor<16xi64>, %arg1: tensor<16xi64>) -> tensor<16xi64> {
   %0 = tensor.empty() : tensor<16xi64>
   %1 = linalg.add ins(%arg0, %arg1 : tensor<16xi64>, tensor<16xi64>) outs(%0 : tensor<16xi64>) -> 
tensor<16xi64>
   %2 = linalg.sub ins(%arg0, %1 : tensor<16xi64>, tensor<16xi64>) outs(%0 : tensor<16xi64>) -> tensor<16xi64>
   %3 = linalg.mul ins(%arg0, %2 : tensor<16xi64>, tensor<16xi64>) outs(%0 : tensor<16xi64>) -> tensor<16xi64>
   %4 = linalg.generic {indexing_maps = [#map, #map, #map], iterator_types = ["parallel"]} ins(%arg0, %3 : 
tensor<16xi64>, tensor<16xi64>) outs(%0 : tensor<16xi64>) {
   ^bb0(%in: i64, %in_0: i64, %out: i64):
     %5 = arith.xori %in, %in_0 : i64
     linalg.yield %5 : i64
   } -> tensor<16xi64>
   return %4 : tensor<16xi64>
 }
}
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Create a single PE for each supported operation
#map = affine_map<(d0) -> (d0)>
module {
 func.func public @streamer_add(%arg0: tensor<16xi64>, %arg1: tensor<16xi64>) -> tensor<16xi64> {
   %0 = tensor.empty() : tensor<16xi64>
   %1 = linalg.generic {indexing_maps = [#map, #map, #map], iterator_types = ["parallel"]} 
        ins(%arg0, %arg1 : tensor<16xi64>, tensor<16xi64>) outs(%0 : tensor<16xi64>) {
   ^bb0(%in: i64, %in_0: i64, %out: i64):
     %5 = arith.addi %in, %in_0 : i64
     linalg.yield %5 : i64
   } -> tensor<16xi64>
   %2 = linalg.generic {indexing_maps = [#map, #map, #map], iterator_types = ["parallel"]} 
        ins(%arg0, %1 : tensor<16xi64>, tensor<16xi64>) outs(%0 : tensor<16xi64>) {
   ^bb0(%in: i64, %in_0: i64, %out: i64):
     %5 = arith.subi %in, %in_0 : i64
     linalg.yield %5 : i64
   } -> tensor<16xi64>
   %3 = linalg.generic {indexing_maps = [#map, #map, #map], iterator_types = ["parallel"]} 
        ins(%arg0, %2 : tensor<16xi64>, tensor<16xi64>) outs(%0 : tensor<16xi64>) {
   ^bb0(%in: i64, %in_0: i64, %out: i64):
     %5 = arith.muli %in, %in_0 : i64
     linalg.yield %5 : i64
   } -> tensor<16xi64>
   %4 = linalg.generic {indexing_maps = [#map, #map, #map], iterator_types = ["parallel"]} 
        ins(%arg0, %3 : tensor<16xi64>, tensor<16xi64>) outs(%0 : tensor<16xi64>) {
   ^bb0(%in: i64, %in_0: i64, %out: i64):
     %5 = arith.xori %in, %in_0 : i64
     linalg.yield %5 : i64
   } -> tensor<16xi64>
   return %4 : tensor<16xi64>
 }
} 35
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Aggregate PEs into one

36

Processing 
Element

+, -, *, ^

Processing 
Element

+

Processing 
Element

-

Processing 
Element

*

Processing 
Element

^



Create a 4-way array
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Create a 4-way parallel PE array that supports Elementwise operations:

● Addition
● Subtraction
● Multiplication
● Bitwise Exclusive OR

38

Now deploy the algorithm on simple accelerator no.1



Deploy this on the simple 4-way array

#map = affine_map<(d0) -> (d0)>
module {
 func.func public @streamer_add(%arg0: tensor<16xi64>, %arg1: tensor<16xi64>) -> tensor<16xi64> {
   %0 = tensor.empty() : tensor<16xi64>
   %1 = linalg.add ins(%arg0, %arg1 : tensor<16xi64>, tensor<16xi64>) outs(%0 : tensor<16xi64>) -> 
tensor<16xi64>
   %2 = linalg.sub ins(%arg0, %1 : tensor<16xi64>, tensor<16xi64>) outs(%0 : tensor<16xi64>) -> tensor<16xi64>
   %3 = linalg.mul ins(%arg0, %2 : tensor<16xi64>, tensor<16xi64>) outs(%0 : tensor<16xi64>) -> tensor<16xi64>
   %4 = linalg.generic {indexing_maps = [#map, #map, #map], iterator_types = ["parallel"]} ins(%arg0, %3 : 
tensor<16xi64>, tensor<16xi64>) outs(%0 : tensor<16xi64>) {
   ^bb0(%in: i64, %in_0: i64, %out: i64):
     %5 = arith.xori %in, %in_0 : i64
     linalg.yield %5 : i64
   } -> tensor<16xi64>
   return %4 : tensor<16xi64>
 }
}
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#map = affine_map<(d0) -> (d0)>
module {
 func.func public @streamer_add(%arg0: tensor<16xi64>, %arg1: tensor<16xi64>) -> tensor<16xi64> {
   %0 = tensor.empty() : tensor<16xi64>
   %1 = linalg.generic {indexing_maps = [#map, #map, #map], iterator_types = ["parallel"]} 
        ins(%arg0, %arg1 : tensor<16xi64>, tensor<16xi64>) outs(%0 : tensor<16xi64>) {
   ^bb0(%in: i64, %in_0: i64, %out: i64):
     %5 = arith.addi %in, %in_0 : i64
     linalg.yield %5 : i64
   } -> tensor<16xi64>
   %2 = linalg.generic {indexing_maps = [#map, #map, #map], iterator_types = ["parallel"]} 
        ins(%arg0, %1 : tensor<16xi64>, tensor<16xi64>) outs(%0 : tensor<16xi64>) {
   ^bb0(%in: i64, %in_0: i64, %out: i64):
     %5 = arith.subi %in, %in_0 : i64
     linalg.yield %5 : i64
   } -> tensor<16xi64>
   %3 = linalg.generic {indexing_maps = [#map, #map, #map], iterator_types = ["parallel"]} 
        ins(%arg0, %2 : tensor<16xi64>, tensor<16xi64>) outs(%0 : tensor<16xi64>) {
   ^bb0(%in: i64, %in_0: i64, %out: i64):
     %5 = arith.muli %in, %in_0 : i64
     linalg.yield %5 : i64
   } -> tensor<16xi64>
   %4 = linalg.generic {indexing_maps = [#map, #map, #map], iterator_types = ["parallel"]} 
        ins(%arg0, %3 : tensor<16xi64>, tensor<16xi64>) outs(%0 : tensor<16xi64>) {
   ^bb0(%in: i64, %in_0: i64, %out: i64):
     %5 = arith.xori %in, %in_0 : i64
     linalg.yield %5 : i64
   } -> tensor<16xi64>
   return %4 : tensor<16xi64>
 }
} 40
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#map = affine_map<(d0) -> (d0)>
module {
 func.func public @streamer_add(%arg0: tensor<16xi64>, %arg1: tensor<16xi64>) -> tensor<16xi64> {
   %0 = tensor.empty() : tensor<16xi64>
   %1 = linalg.generic {indexing_maps = [#map, #map, #map], iterator_types = ["parallel"]} 
        ins(%arg0, %arg1 : tensor<16xi64>, tensor<16xi64>) outs(%0 : tensor<16xi64>) {
   ^bb0(%in: i64, %in_0: i64, %out: i64):
     %5 = arith.addi %in, %in_0 : i64
     linalg.yield %5 : i64
   } -> tensor<16xi64>
   %2 = linalg.generic {indexing_maps = [#map, #map, #map], iterator_types = ["parallel"]} 
        ins(%arg0, %1 : tensor<16xi64>, tensor<16xi64>) outs(%0 : tensor<16xi64>) {
   ^bb0(%in: i64, %in_0: i64, %out: i64):
     %5 = arith.subi %in, %in_0 : i64
     linalg.yield %5 : i64
   } -> tensor<16xi64>
   %3 = linalg.generic {indexing_maps = [#map, #map, #map], iterator_types = ["parallel"]} 
        ins(%arg0, %2 : tensor<16xi64>, tensor<16xi64>) outs(%0 : tensor<16xi64>) {
   ^bb0(%in: i64, %in_0: i64, %out: i64):
     %5 = arith.muli %in, %in_0 : i64
     linalg.yield %5 : i64
   } -> tensor<16xi64>
   %4 = linalg.generic {indexing_maps = [#map, #map, #map], iterator_types = ["parallel"]} 
        ins(%arg0, %3 : tensor<16xi64>, tensor<16xi64>) outs(%0 : tensor<16xi64>) {
   ^bb0(%in: i64, %in_0: i64, %out: i64):
     %5 = arith.xori %in, %in_0 : i64
     linalg.yield %5 : i64
   } -> tensor<16xi64>
   return %4 : tensor<16xi64>
 }
}

Deploy addition
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#map = affine_map<(d0) -> (d0)>
module {
 func.func public @streamer_add(%arg0: tensor<16xi64>, %arg1: tensor<16xi64>) -> tensor<16xi64> {
   %0 = tensor.empty() : tensor<16xi64>
   %1 = linalg.generic {indexing_maps = [#map, #map, #map], iterator_types = ["parallel"]} 
        ins(%arg0, %arg1 : tensor<16xi64>, tensor<16xi64>) outs(%0 : tensor<16xi64>) {
   ^bb0(%in: i64, %in_0: i64, %out: i64):
     %5 = arith.addi %in, %in_0 : i64
     linalg.yield %5 : i64
   } -> tensor<16xi64>
   %2 = linalg.generic {indexing_maps = [#map, #map, #map], iterator_types = ["parallel"]} 
        ins(%arg0, %1 : tensor<16xi64>, tensor<16xi64>) outs(%0 : tensor<16xi64>) {
   ^bb0(%in: i64, %in_0: i64, %out: i64):
     %5 = arith.subi %in, %in_0 : i64
     linalg.yield %5 : i64
   } -> tensor<16xi64>
   %3 = linalg.generic {indexing_maps = [#map, #map, #map], iterator_types = ["parallel"]} 
        ins(%arg0, %2 : tensor<16xi64>, tensor<16xi64>) outs(%0 : tensor<16xi64>) {
   ^bb0(%in: i64, %in_0: i64, %out: i64):
     %5 = arith.muli %in, %in_0 : i64
     linalg.yield %5 : i64
   } -> tensor<16xi64>
   %4 = linalg.generic {indexing_maps = [#map, #map, #map], iterator_types = ["parallel"]} 
        ins(%arg0, %3 : tensor<16xi64>, tensor<16xi64>) outs(%0 : tensor<16xi64>) {
   ^bb0(%in: i64, %in_0: i64, %out: i64):
     %5 = arith.xori %in, %in_0 : i64
     linalg.yield %5 : i64
   } -> tensor<16xi64>
   return %4 : tensor<16xi64>
 }
} 42
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#map = affine_map<(d0) -> (d0)>
module {
 func.func public @streamer_add(%arg0: tensor<16xi64>, %arg1: tensor<16xi64>) -> tensor<16xi64> {
   %0 = tensor.empty() : tensor<16xi64>
   %1 = linalg.generic {indexing_maps = [#map, #map, #map], iterator_types = ["parallel"]} 
        ins(%arg0, %arg1 : tensor<16xi64>, tensor<16xi64>) outs(%0 : tensor<16xi64>) {
   ^bb0(%in: i64, %in_0: i64, %out: i64):
     %5 = arith.addi %in, %in_0 : i64
     linalg.yield %5 : i64
   } -> tensor<16xi64>
   %2 = linalg.generic {indexing_maps = [#map, #map, #map], iterator_types = ["parallel"]} 
        ins(%arg0, %1 : tensor<16xi64>, tensor<16xi64>) outs(%0 : tensor<16xi64>) {
   ^bb0(%in: i64, %in_0: i64, %out: i64):
     %5 = arith.subi %in, %in_0 : i64
     linalg.yield %5 : i64
   } -> tensor<16xi64>
   %3 = linalg.generic {indexing_maps = [#map, #map, #map], iterator_types = ["parallel"]} 
        ins(%arg0, %2 : tensor<16xi64>, tensor<16xi64>) outs(%0 : tensor<16xi64>) {
   ^bb0(%in: i64, %in_0: i64, %out: i64):
     %5 = arith.muli %in, %in_0 : i64
     linalg.yield %5 : i64
   } -> tensor<16xi64>
   %4 = linalg.generic {indexing_maps = [#map, #map, #map], iterator_types = ["parallel"]} 
        ins(%arg0, %3 : tensor<16xi64>, tensor<16xi64>) outs(%0 : tensor<16xi64>) {
   ^bb0(%in: i64, %in_0: i64, %out: i64):
     %5 = arith.xori %in, %in_0 : i64
     linalg.yield %5 : i64
   } -> tensor<16xi64>
   return %4 : tensor<16xi64>
 }
}

Deploy subtraction
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#map = affine_map<(d0) -> (d0)>
module {
 func.func public @streamer_add(%arg0: tensor<16xi64>, %arg1: tensor<16xi64>) -> tensor<16xi64> {
   %0 = tensor.empty() : tensor<16xi64>
   %1 = linalg.generic {indexing_maps = [#map, #map, #map], iterator_types = ["parallel"]} 
        ins(%arg0, %arg1 : tensor<16xi64>, tensor<16xi64>) outs(%0 : tensor<16xi64>) {
   ^bb0(%in: i64, %in_0: i64, %out: i64):
     %5 = arith.addi %in, %in_0 : i64
     linalg.yield %5 : i64
   } -> tensor<16xi64>
   %2 = linalg.generic {indexing_maps = [#map, #map, #map], iterator_types = ["parallel"]} 
        ins(%arg0, %1 : tensor<16xi64>, tensor<16xi64>) outs(%0 : tensor<16xi64>) {
   ^bb0(%in: i64, %in_0: i64, %out: i64):
     %5 = arith.subi %in, %in_0 : i64
     linalg.yield %5 : i64
   } -> tensor<16xi64>
   %3 = linalg.generic {indexing_maps = [#map, #map, #map], iterator_types = ["parallel"]} 
        ins(%arg0, %2 : tensor<16xi64>, tensor<16xi64>) outs(%0 : tensor<16xi64>) {
   ^bb0(%in: i64, %in_0: i64, %out: i64):
     %5 = arith.muli %in, %in_0 : i64
     linalg.yield %5 : i64
   } -> tensor<16xi64>
   %4 = linalg.generic {indexing_maps = [#map, #map, #map], iterator_types = ["parallel"]} 
        ins(%arg0, %3 : tensor<16xi64>, tensor<16xi64>) outs(%0 : tensor<16xi64>) {
   ^bb0(%in: i64, %in_0: i64, %out: i64):
     %5 = arith.xori %in, %in_0 : i64
     linalg.yield %5 : i64
   } -> tensor<16xi64>
   return %4 : tensor<16xi64>
 }
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Deploy multiplication



#map = affine_map<(d0) -> (d0)>
module {
 func.func public @streamer_add(%arg0: tensor<16xi64>, %arg1: tensor<16xi64>) -> tensor<16xi64> {
   %0 = tensor.empty() : tensor<16xi64>
   %1 = linalg.generic {indexing_maps = [#map, #map, #map], iterator_types = ["parallel"]} 
        ins(%arg0, %arg1 : tensor<16xi64>, tensor<16xi64>) outs(%0 : tensor<16xi64>) {
   ^bb0(%in: i64, %in_0: i64, %out: i64):
     %5 = arith.addi %in, %in_0 : i64
     linalg.yield %5 : i64
   } -> tensor<16xi64>
   %2 = linalg.generic {indexing_maps = [#map, #map, #map], iterator_types = ["parallel"]} 
        ins(%arg0, %1 : tensor<16xi64>, tensor<16xi64>) outs(%0 : tensor<16xi64>) {
   ^bb0(%in: i64, %in_0: i64, %out: i64):
     %5 = arith.subi %in, %in_0 : i64
     linalg.yield %5 : i64
   } -> tensor<16xi64>
   %3 = linalg.generic {indexing_maps = [#map, #map, #map], iterator_types = ["parallel"]} 
        ins(%arg0, %2 : tensor<16xi64>, tensor<16xi64>) outs(%0 : tensor<16xi64>) {
   ^bb0(%in: i64, %in_0: i64, %out: i64):
     %5 = arith.muli %in, %in_0 : i64
     linalg.yield %5 : i64
   } -> tensor<16xi64>
   %4 = linalg.generic {indexing_maps = [#map, #map, #map], iterator_types = ["parallel"]} 
        ins(%arg0, %3 : tensor<16xi64>, tensor<16xi64>) outs(%0 : tensor<16xi64>) {
   ^bb0(%in: i64, %in_0: i64, %out: i64):
     %5 = arith.xori %in, %in_0 : i64
     linalg.yield %5 : i64
   } -> tensor<16xi64>
   return %4 : tensor<16xi64>
 }
}

Deploy multiplication
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#map = affine_map<(d0) -> (d0)>
module {
 func.func public @streamer_add(%arg0: tensor<16xi64>, %arg1: tensor<16xi64>) -> tensor<16xi64> {
   %0 = tensor.empty() : tensor<16xi64>
   %1 = linalg.generic {indexing_maps = [#map, #map, #map], iterator_types = ["parallel"]} 
        ins(%arg0, %arg1 : tensor<16xi64>, tensor<16xi64>) outs(%0 : tensor<16xi64>) {
   ^bb0(%in: i64, %in_0: i64, %out: i64):
     %5 = arith.addi %in, %in_0 : i64
     linalg.yield %5 : i64
   } -> tensor<16xi64>
   %2 = linalg.generic {indexing_maps = [#map, #map, #map], iterator_types = ["parallel"]} 
        ins(%arg0, %1 : tensor<16xi64>, tensor<16xi64>) outs(%0 : tensor<16xi64>) {
   ^bb0(%in: i64, %in_0: i64, %out: i64):
     %5 = arith.subi %in, %in_0 : i64
     linalg.yield %5 : i64
   } -> tensor<16xi64>
   %3 = linalg.generic {indexing_maps = [#map, #map, #map], iterator_types = ["parallel"]} 
        ins(%arg0, %2 : tensor<16xi64>, tensor<16xi64>) outs(%0 : tensor<16xi64>) {
   ^bb0(%in: i64, %in_0: i64, %out: i64):
     %5 = arith.muli %in, %in_0 : i64
     linalg.yield %5 : i64
   } -> tensor<16xi64>
   %4 = linalg.generic {indexing_maps = [#map, #map, #map], iterator_types = ["parallel"]} 
        ins(%arg0, %3 : tensor<16xi64>, tensor<16xi64>) outs(%0 : tensor<16xi64>) {
   ^bb0(%in: i64, %in_0: i64, %out: i64):
     %5 = arith.xori %in, %in_0 : i64
     linalg.yield %5 : i64
   } -> tensor<16xi64>
   return %4 : tensor<16xi64>
 }
} 46
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Deploy exclusive or



#map = affine_map<(d0) -> (d0)>
module {
 func.func public @streamer_add(%arg0: tensor<16xi64>, %arg1: tensor<16xi64>) -> tensor<16xi64> {
   %0 = tensor.empty() : tensor<16xi64>
   %1 = linalg.generic {indexing_maps = [#map, #map, #map], iterator_types = ["parallel"]} 
        ins(%arg0, %arg1 : tensor<16xi64>, tensor<16xi64>) outs(%0 : tensor<16xi64>) {
   ^bb0(%in: i64, %in_0: i64, %out: i64):
     %5 = arith.addi %in, %in_0 : i64
     linalg.yield %5 : i64
   } -> tensor<16xi64>
   %2 = linalg.generic {indexing_maps = [#map, #map, #map], iterator_types = ["parallel"]} 
        ins(%arg0, %1 : tensor<16xi64>, tensor<16xi64>) outs(%0 : tensor<16xi64>) {
   ^bb0(%in: i64, %in_0: i64, %out: i64):
     %5 = arith.subi %in, %in_0 : i64
     linalg.yield %5 : i64
   } -> tensor<16xi64>
   %3 = linalg.generic {indexing_maps = [#map, #map, #map], iterator_types = ["parallel"]} 
        ins(%arg0, %2 : tensor<16xi64>, tensor<16xi64>) outs(%0 : tensor<16xi64>) {
   ^bb0(%in: i64, %in_0: i64, %out: i64):
     %5 = arith.muli %in, %in_0 : i64
     linalg.yield %5 : i64
   } -> tensor<16xi64>
   %4 = linalg.generic {indexing_maps = [#map, #map, #map], iterator_types = ["parallel"]} 
        ins(%arg0, %3 : tensor<16xi64>, tensor<16xi64>) outs(%0 : tensor<16xi64>) {
   ^bb0(%in: i64, %in_0: i64, %out: i64):
     %5 = arith.xori %in, %in_0 : i64
     linalg.yield %5 : i64
   } -> tensor<16xi64>
   return %4 : tensor<16xi64>
 }
}

Deploy exclusive or
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Performance
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Load data * 4

Store data * 4

Program accelerator * 4
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Simple example no. 2 operator fusion

We can make this much faster if we support operator fusion

● Addition
● Subtraction
● Multiplication
● Bitwise Exclusive OR

(A^(A*(A-(A+B))))



Deploy this on the simple 4-way array

#map = affine_map<(d0) -> (d0)>
module {
 func.func public @streamer_add(%arg0: tensor<16xi64>, %arg1: tensor<16xi64>) -> tensor<16xi64> {
   %0 = tensor.empty() : tensor<16xi64>
   %1 = linalg.add ins(%arg0, %arg1 : tensor<16xi64>, tensor<16xi64>) outs(%0 : tensor<16xi64>) -> 
tensor<16xi64>
   %2 = linalg.sub ins(%arg0, %1 : tensor<16xi64>, tensor<16xi64>) outs(%0 : tensor<16xi64>) -> tensor<16xi64>
   %3 = linalg.mul ins(%arg0, %2 : tensor<16xi64>, tensor<16xi64>) outs(%0 : tensor<16xi64>) -> tensor<16xi64>
   %4 = linalg.generic {indexing_maps = [#map, #map, #map], iterator_types = ["parallel"]} ins(%arg0, %3 : 
tensor<16xi64>, tensor<16xi64>) outs(%0 : tensor<16xi64>) {
   ^bb0(%in: i64, %in_0: i64, %out: i64):
     %5 = arith.xori %in, %in_0 : i64
     linalg.yield %5 : i64
   } -> tensor<16xi64>
   return %4 : tensor<16xi64>
 }
}
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Deploy this on the simple 4-way array

#map = affine_map<(d0) -> (d0)>
module {
 func.func public @streamer_add(%arg0: tensor<16xi64>, %arg1: tensor<16xi64>) -> tensor<16xi64> {
   %0 = tensor.empty() : tensor<16xi64>
   %1 = linalg.generic {indexing_maps = [#map, #map, #map], iterator_types = ["parallel"]} ins(%arg0, %arg1 : 
tensor<16xi64>, tensor<16xi64>) outs(%0 : tensor<16xi64>) {
   ^bb0(%in: i64, %in_0: i64, %out: i64):
     %2 = arith.addi %in, %in_0 : i64
     %3 = arith.subi %in, %2 : i64
     %4 = arith.muli %in, %3 : i64
     %5 = arith.xori %in, %4 : i64
     linalg.yield %5 : i64
   } -> tensor<16xi64>
   return %1 : tensor<16xi64>
 }
}
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Deploy this on the simple 4-way array

#map = affine_map<(d0) -> (d0)>
module {
 func.func public @streamer_add(%arg0: tensor<16xi64>, %arg1: tensor<16xi64>) -> tensor<16xi64> {
   %0 = tensor.empty() : tensor<16xi64>
   %1 = linalg.generic {indexing_maps = [#map, #map, #map], iterator_types = ["parallel"]} ins(%arg0, %arg1 : 
tensor<16xi64>, tensor<16xi64>) outs(%0 : tensor<16xi64>) {
   ^bb0(%in: i64, %in_0: i64, %out: i64):
     %2 = arith.addi %in, %in_0 : i64
     %3 = arith.subi %in, %2 : i64
     %4 = arith.muli %in, %3 : i64
     %5 = arith.xori %in, %4 : i64
     linalg.yield %5 : i64
   } -> tensor<16xi64>
   return %1 : tensor<16xi64>
 }
}
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Store data * 1

Load data * 1

Program accelerator * 1
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Discussion

Tradeoff - More specific accelerators or more performance?

54



How did we create this?
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Shortcut no. 1 - xDSL for quick prototyping

56

xDSL, an open-source MLIR, CIRCT compatible framework in Python, to quickly 
prototype new MLIR dialects and combinations of compiler passes. 

github.com/xdslproject/xdsl

http://github.com/xdslproject/xdsl


Shortcut no. 2 - PE array + SNAX platform = NPU

CPU

Memory

Load unit
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Element

Store unit

57

SNAX platform to inlay 
the generated PE array

github.com/KULeuven
-MICAS/snax_cluster

http://github.com/KULeuven-MICAS/snax_cluster
http://github.com/KULeuven-MICAS/snax_cluster


Shortcut no. 3 - SNAX-MLIR sw compilation toolchain 

58

● Compatible with RISC-V control core (rv32imc)

● linalg.generic → loads/stores + program accelerators with dynamic 
backends

github.com/KULeuven-MICAS/snax-mlir

http://github.com/KULeuven-MICAS/snax-mlir


In the future

● Overlay functionality on parts of the PE
● Support for multiple dataflows
● Multi-accelerator support
● Support for multi-cycle hardware (ready/valid)
● Floating-point support (not because I like FP, rather because I don’t like 

quantization)
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Takeaways of this talk 
● NPUs are dedicated processors  to accelerate dense linear algebra
● Properly using and and designing NPUS them requires an overhaul of the 

design process
● We leverage MLIR, CIRCT, xDSL and SNAX to quickly create new NPUs and 

compilers together through programmable hardware synthesis
60

Thank you!
Questions?

josse:matrix.org

linkedin.com/in/jossevandelm/

github.com/JosseVanDelm

vandelm.com

http://linkedin.com/in/jossevandelm/
http://github.com/JosseVanDelm
http://vandelm.com
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A new dialect to create programmable* hardware 

phs.pe: 
An operation that represents what a PE of the NPU can do

phs.choose: 
A named operation that represents a choice of operation in different MLIR operations

phs.mux: 
“multiplexer” - an unnamed operation operation that represents a choice of dataflow 
for the PE 

phs.yield: 
a terminator operation similar to scf.yield and linalg.yield.

Creating the hardware with the PHS dialect

62



To go from linalg to a programmable PE

1. Convert each linalg to a linalg.generic
2. Convert each linalg.generic to a phs.pe op
3. Aggregate all phs.pe ops through their named phs.choose_ops and 

insert phs.mux_ops where necessary
4. Generate an array of phs.pe elements
5. Convert the aggregated phs.pe to systemverilog with CIRCT

63



2) Convert each linalg.generic to a phs.pe op

64

%1 = linalg.generic {indexing_maps = [#map, #map, #map], iterator_types = ["parallel"]} 
ins(%arg0, %arg1 : tensor<16xi64>, tensor<16xi64>) outs(%0 : tensor<16xi64>) {
^bb0(%in: i64, %in_0: i64, %out: i64):
 %5 = arith.addi %in, %in_0 : i64
 linalg.yield %5 : i64
} -> tensor<16xi64>

phs.pe @acc1 with %0 (%in : i64, %in_1 : i64) {
 %1 = phs.choose @i_i64_i64_o_i64_0 with %0 (%in : i64, %in_1 : i64) -> i64
   0) {
     %2 = arith.addi %in, %in_1 : i64
     phs.yield %2 : i64
   }
 phs.yield %1 : i64



pe @acc1

2) Convert each linalg.generic to a phs.pe op

65

phs.pe @acc1 with %0 (%in : i64, %in_1 : i64) {
 %1 = phs.choose @i_i64_i64_o_i64_0 with %0 (%in : i64, %in_1 : i64) -> i64
   0) {
     %2 = arith.addi %in, %in_1 : i64
     phs.yield %2 : i64
   }
 phs.yield %1 : i64

%in : i64 %in_1 : i64

%0

%1 : i64

+@i_i64_i64_o_i64_0



2) Convert each linalg.generic to a phs.pe op

66

%2 = linalg.generic {indexing_maps = [#map, #map, #map], iterator_types = ["parallel"]} 
ins(%arg0, %1 : tensor<16xi64>, tensor<16xi64>) outs(%0 : tensor<16xi64>) {
^bb0(%in: i64, %in_0: i64, %out: i64):
 %5 = arith.subi %in, %in_0 : i64
 linalg.yield %5 : i64
} -> tensor<16xi64>

phs.pe @acc1 with %0 (%in : i64, %in_1 : i64) {
 %1 = phs.choose @i_i64_i64_o_i64_0 with %0 (%in : i64, %in_1 : i64) -> i64
   0) {
     %2 = arith.subi %in, %in_1 : i64
     phs.yield %2 : i64
   }
 phs.yield %1 : i64



2) Convert each linalg.generic to a phs.pe op

67

phs.pe @acc1 with %0 (%in : i64, %in_1 : i64) {
 %1 = phs.choose @i_i64_i64_o_i64_0 with %0 (%in : i64, %in_1 : i64) -> i64
   0) {
     %2 = arith.subi %in, %in_1 : i64
     phs.yield %2 : i64
   }
 phs.yield %1 : i64

pe @acc1

%in : i64 %in_1 : i64

%0

%1 : i64

-@i_i64_i64_o_i64_0



3) Aggregate all phs.pe ops through their named 
phs.choose_ops and insert phs.mux_ops where necessary

68

phs.pe @acc1 with %0 (%in : i64, %in_1 : i64) {
 %1 = phs.choose @i_i64_i64_o_i64_0 with %0 
 (%in : i64, %in_1 : i64) -> i64
   0) {
     %2 = arith.subi %in, %in_1 : i64
     phs.yield %2 : i64
   }
 phs.yield %1 : i64

phs.pe @acc1 with %0 (%in : i64, %in_1 : i64) {
 %1 = phs.choose @i_i64_i64_o_i64_0 with %0 
      (%in : i64, %in_1 : i64) -> i64
   0) {
     %2 = arith.addi %in, %in_1 : i64
     phs.yield %2 : i64
   }
 phs.yield %1 : i64

phs.pe @acc1 with %0 (%in : i64, %in_1 : i64) {
 %1 = phs.choose @i_i64_i64_o_i64_0 with %0 
(%in : i64, %in_1 : i64) -> i64
   0) {
     %2 = arith.addi %in, %in_1 : i64
     phs.yield %2 : i64
   }
   1) {
     %3 = arith.subi %in, %in_1 : i64
     phs.yield %3 : i64
   }
 phs.yield %1 : i64
}



3) Aggregate all phs.pe ops through their named 
phs.choose_ops and insert phs.mux_ops where necessary

69

phs.pe @acc1 with %0 (%in : i64, %in_1 : i64) {
 %1 = phs.choose @i_i64_i64_o_i64_0 with %0 
(%in : i64, %in_1 : i64) -> i64
   0) {
     %2 = arith.addi %in, %in_1 : i64
     phs.yield %2 : i64
   }
   1) {
     %3 = arith.subi %in, %in_1 : i64
     phs.yield %3 : i64
   }
 phs.yield %1 : i64
}

pe @acc1

%in : i64 %in_1 : i64

%0

%1 : i64

+ or -@i_i64_i64_o_i64_0
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phs.pe @acc1 with %0 (%in : i64, %in_1 : i64) {
 %1 = phs.choose @i_i64_i64_o_i64_0 with %0 (%in : i64, %in_1 : i64) -> i64
   0) {
     %2 = arith.addi %in, %in_1 : i64
     phs.yield %2 : i64
   }
   1) {
     %3 = arith.subi %in, %in_1 : i64
     phs.yield %3 : i64
   }
   2) {
     %4 = arith.muli %in, %in_1 : i64
     phs.yield %4 : i64
   }
   3) {
     %5 = arith.xori %in, %in_1 : i64
     phs.yield %5 : i64
   }
 phs.yield %1 : i64
}

pe @acc1

%in : i64 %in_1 : i64

%0

%1 : i64

+ or - or * or ^@i_i64_i64_o_i64_0

3) Aggregate all phs.pe ops through their named 
phs.choose_ops and insert phs.mux_ops where necessary
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pe @acc1

%in : i64 %in_1 : i64

%0

%1 : i64

+ or - or * or ^

4) Generate an array of 
phs.pe elements

hw.module private @acc1(in %in data_0: i64, in %in_1 data_1: i64, 
                        in %0 switch_0: i2, out out_0: i64) {
  %1 = arith.addi %in, %in_1 : i64
  %2 = arith.subi %in, %in_1 : i64
  %3 = arith.muli %in, %in_1 : i64
  %4 = arith.xori %in, %in_1 : i64
  %5 = hw.array_create %4, %3, %2, %1 : i64
  %6 = hw.array_get %5[%0] : !hw.array<4xi64>, i2
  hw.output %6 : i64
}
hw.module @acc1_array(in %0 data_0: !hw.array<4xi64>, 
                      in %1 data_1: !hw.array<4xi64>, 
                      in %2 switch_0: i2, out out_0: 
!hw.array<4xi64>) {
  %3 = arith.constant 0 : i2
  %4 = hw.array_get %0[%3] : !hw.array<4xi64>, i2
  %5 = arith.constant 0 : i2
  %6 = hw.array_get %1[%5] : !hw.array<4xi64>, i2
  %7 = hw.instance "acc1_pe_0" @acc1(data_0: %4: i64, 
        data_1: %6: i64, switch_0: %2: i2) -> (out_0: i64)
  %8 = arith.constant 1 : i2
  %9 = hw.array_get %0[%8] : !hw.array<4xi64>, i2
  %10 = arith.constant 1 : i2
  %11 = hw.array_get %1[%10] : !hw.array<4xi64>, i2
  %12 = hw.instance "acc1_pe_1" @acc1(data_0: %9: i64, 
        data_1: %11: i64, switch_0: %2: i2) -> (out_0: i64)
  …
  %23 = hw.array_create %22, %17, %12, %7 : i64
  hw.output %23 : !hw.array<4xi64>
}

pe @acc1

%in : i64 %in_1 : i64

%0

%1 : i64

+ or - or * or ^
pe @acc1

%in : i64 %in_1 : i64

%0

%1 : i64

+ or - or * or ^
pe @acc1

%in : i64 %in_1 : i64

%0

%1 : i64

+ or - or * or ^


