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What you'll learn in this talk

e What are NPUs?
e How do people design NPUs now?

e How people should design NPUs in the future (spoiler: with compilers!)



NPUs are processors to optimize dense linear algebra

void elementwise_mult(float* A, floatx B, float* C) {
for (int 1 = 0; 1 < 16; i+) {
Cli] = A[i] = B[il;
}
}
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NPUs are processors to optimize dense linear algebra

void elementwise_mult(float* A, floatx B, float* C) {
for (int 1 = 0; i < 16; i+) {
C[i] = A[i]f*B[i];
}

void matmul_16x16(float A[16]1[16], float B[16]1[16], float C[16][16]) {
for (int i = 0; i < 16; i+) {
for (int j = 0; j < 165 j+) {
Clil[3] = o;
for (int k = 0; k < 16; k+) {
Clil[j] = A[i]1[KkIENBIKI[F]1;
}



NPUs are processors to optimize dense linear algebra

void softmax 16 (float* input, float* output) {
float sum = 0.0f;

float max val = input[0];
for (int i = 1; i < 16; i++) {
if (input[i][Bmax_val) max val = input[i];

output[i] = - input [1i -max val) ;

sum += output[i];
}
_ {
output [1] S sum;
}



Aside: MLIR represents this in the “Linalg” dialect

void elementwise_mult(float* A, floatx B, floatx C) {
for (int i = 0; i < 16; i+) {
Cl[il] = A[i1@B[1i];
}
}

%3 = linalg.mul ins(%arg0d, %2 : tensor<16xf32>, tensor<16xf32>) outs(%0 : tensor<16xf32>) —
tensor<16xf32>

‘#map = affine_map<(do) — (de)>
%3 = linalg.generic {indexing maps = [#nap, #map, #map], iterator types = ["parallel’]}
ins(%argo, %2 : [(CHSOFICKISZENNENSOrRIGRBS2S) outs(%0 : tensor<16xf32>) {
“bb0(%in: f32, %in_0: 32, %out: f32):
%5 = [AEIChemUle %in, %in_0 : f32
linalg.yield %5 : f32
} — tensor<16xf32>






Are they useful? According to research: yes!
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There is more available
silicon area on chip for
specialized processors

Performance/Watt Relative to CPU or GPU

- GPU/CPU . TPU/CPU | TPU/GPU . TPU'/CPU TPU'/GPU
s 196
150
100 86
50 31.

Total Perf./Watt GM Total Perf./Watt WM Incremental

Perf./Watt GM

Incremental
Perf./Watt WM 6

TPU = much faster and
energy efficient at linear
algebra than CPUs or GPUs
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But are they really useful?

e Yes.... but mostly for marketing
In reality it is often too difficult to use them
e These units can be too specific for newer workloads

e Most compilers can't leverage them

e Hardware, Firmware, Libraries often closed source!

11



There are multiple interdependent problems

New algorithms:
Lacking Hardware
Support

No developer access:
New hardware: Closed-source

Lacking Compiler Hardware +
Support Drivers +

12



How did we get here?



How do people typically Create NPUs?

Algorithm
Selection

~2 months*

~6 months*

Initial

Hardware Design

ISA specification

~6 months*

~1 year*

Library &
Compiler

Development

Ship to
users/customers

15



How do people typically Create NPUs?

Algorithm ~2 months* Initial

Selection Hardware Design
~6 months* 2 years+*
~6 months* Library &

ISA specification Compiler
Development
~1 year*
Ship to \4

users/customers

*Very optimistic estimates!




This is too slow! Can we do this faster?

Yes! With compilers we can enable programmable hardware synthesis

But how?

- How do we quickly create an ML compiler? o8 MLIR

- How do we quickly generate hardware? CIRCT

- How do we adapt the compiler to the hardware? X Dynamic Backend
- How do we quickly develop this? ~ Secret shortcuts

Fully Open source Lo
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What are we trying to
create?



Anatomy of an NPU platform

Load unit

Store unit

Processing Processing
Element Element

Processing Processing
Element Element

Processing
Element

Processing
Element

Processing
Element

Processing
Element
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The programmable hardware synthesis flow

(S)L;ZF;;&?:S Software Source
( ML R) (M LI R)

ML compiler

Backend
Information

PE Array
(SystemVerilog)

Programmable NPU

(Simulation)
: Software
(e.g. verilator) EETPYY




The programmable hardware synthesis flow
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(MLIR) (MLIR)

New algorithms:
Lacking Hardware
Support

ML compiler

Backend
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No developer access:
Closed-source Hardware +
Drivers +

New hardware:
Lacking Compiler
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The programmable hardware synthesis flow
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The programmable hardware synthesis flow
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ML compiler

Backend
Information

PE Array
(SystemVerilog)
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The programmable hardware synthesis flow

Supported
Operations
(MLIR)

Software Source
(MLIR)

PE Array
(SystemVerilog)

Programmable NPU

(Simulation)
: Software
(e.g. verilator) Sy

ML compiler

Backend
Information

2 minutes!
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Today we’ll talk about PE array conversion

(S)L;ZF;;&?:S Software Source
( MLI R) (M LI R)

ML compiler

Backend
Information

PE Array
(SystemVerilog)

Programmable NPU

(Simulation)
: Software
(e.g. verilator) EETPYY




Today we’ll talk about PE array conversion

Load unit Store unit

Processing
Element

Processing
Element

Processing
Element

Processing
Element

Processing
Element

Processing
Element

Processing
Element

Processing
Element
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Create a PE Array for these two supported operations

Supported
Operations
(MLIR)

y

PE Array
(SystemVerilog)

—————————————————————————

Supported Linalg
Operations Generic Generic
(MLIR)

o o o e e e e e e e e e e o

—— = —
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Create a PE Array for these two supported operatlons

I

: Supported Linalg Linalg
Supported 1 Operations Ger;‘erlc Generic
0 ; I (MLIR)
perations 1
(MLIR) | -
Convert each Processing Processing
_______ . Element Element
operation to PE A B
y

PE Array
(SystemVerilog)
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Create a PE Array for these two supported operatlons

Supported
Operations
(MLIR)

0~
I
I
I
I
I
\
e A
Convert each
operation to PE
. y,
e A

PE Array
(SystemVerilog)

\_

Aggregate Single PEs

J

Supported Linalg Linalg
Operations Generic Generic
(MLIR) e

——————

e o = o e = =

Processing Processing
Element Element
A B

Processing
Element
A+B
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Create a PE Array for these two supported operatlons

I

e
: Supported Linalg Linalg :
Supported : Operations Ger;‘erlc Generic |
. 1
Operations 1 (MLIR) |
(MLIR) Ve e s e s = e /
4 )
Convert each Processing Processing
———————— . Element Element
operation to PE A B
\_ J
4 )
Processing
———————— Aggregate Single PEs Element
A+B
\ J
4 N\
________ Processing [l Processing [ Processing [ Processing
v Create array of PEs Element Element Element Element
% ) A+B A+B A+B A+B
PE Array
(System Veril Og) Processing [l Processing [ Processing [ Processing
Element Element Element Element
A+B A+B A+B A+B




This NPU now supports linalg.generic A and B

Load unit Store unit

Processing Processing Processing Processing
Element Element Element Element
A+B A+B A+B A+B

Processing Processing Processing Processing
Element Element Element Element
A+B A+B A+B A+B
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If the source contains supported operations, they are
guaranteed to work on this NPU!

Supported ST T TT ST s T T s T T T T T ~
. \
Operations (SA(;E\;;? & SIS Software Source 1
(MLIR) 1 (MLIR) :
1
1 |
I Linalg Linalg :
: Generic Generic |
I A B 1
\ /
S o e e N 4
Processing [l Processing [ Processing [ Processing
Element Element Element Element
A+B A+B A+B A+B
PE Array
(System Veril Og) Processing [l Processing [ Processing [ Processing
Element Element Element Element
A+B A+B A+B A+B




Examples



Simple example no. 1

Create a 4-way parallel PE array that supports Elementwise operations:

Addition
Subtraction
Multiplication
Bitwise Exclusive OR
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We want to support the following operations

#map = affine_map<(do) — (do)>
module {
func.func public @streamer_add(%arg0d: tensor<l16xi64>, %argl: tensor<16xi64>) — tensor<16xi64> {
%0 = tensor.empty() : tensor<16xi64>
%1 = [UEIRalgNadd) ins(%argd, %argl : tensor<16xi64>, tensor<16xi64>) outs(%@ : tensor<16xi6s>) —
tensor<16xi64>
%2 = (INSUENSHED) ins(%argd, %1 : tensor<16xib4>, tensor<16xi64>) outs(%0 : tensor<16xi64>) —> tensor<16xi64>
%3 =_ins(%arg0, %2 : tensor<16xi64>, tensor<16xi64>) outs(%@ : tensor<16xi64>) — tensor<16xi64>
%4 = [Linalg.generic) {indexing_maps = [#map, #map, #map], iterator_types = ["parallel"]} ins(%arg0, %3
tensor<16xi64>, tensor<16xi64>) outs(%0 : tensor<16xi64>) {
“bbO(%in: 164, %in_0: 164, %out: 164):
%5 = [@RIEANXOEE %in, %in_0 : i6s4
linalg.yield %5 : i64
} > tensor<16xi64>
return %4 : tensor<16xi64>
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Create a single PE for each supported operation

#map = affine_map<(do) — (do)>
module {
func.func public @streamer_add(%argd: tensor<16xi64>, %argl: tensor<16xi64>) —> tensor<16xi64> {
%0 = tensor.empty() : tensor<16xi64>
%1 = [iAalgYEeneric {indexing_maps = [#map, #map, #map], iterator_types = ["parallel"l}
ins(%argd, %argl : tensor<16xi64>, tensor<16xi64>) outs(%0 : tensor<16xi64>) { Processing
“bbo(%in: i64, %in_0: 164, %out: i64): Element
%5 =_%in, %in_0 : i64 n
linalg.yield %5 : i64
} > tensor<16xi64>
%2 = [linalgigeneric) {indexing_maps = [#map, #map, #map], iterator_types = ["parallel"]} o
ins(%argd, %1 : tensor<16xib64>, tensor<16xi64>) outs(%0 : tensor<16xi64>) { Processing
Abbo(%in: i64, %in 0: i64, %out: i64): Element
%5 = _%in, %in_0 : i64 =
linalg.yield %5 : i64
} > tensor<16xi64>
%3 = [Linalg.generic {indexing_maps = [#map, #map, #map], iterator_types = ["parallel"]}
ins(%argd, %2 : tensor<16xi64>, tensor<16xi64>) outs(%0 : tensor<16xi64>) {
“bb0(%in: 164, %in_0: 164, %out: i64):
%5 =_%in, %in_0 : i64
linalg.yield %5 : i64
} > tensor<16xi64>

%4 = [Linalgigeneri {indexing_maps = [#map, #map, #map], iterator_types = ["parallel"]} Processing
ins(%argd, %3 : tensor<16xi64>, tensor<16xi64>) outs(%0 : tensor<16xi64>) { Element
“bb0(%in: 164, %in_0: 164, %out: i64): ~

%5 = *%in, %in_0 : 164
linalg.yield %5 : 164

} — tensor<16xi64>
return %4 : tensor<16xi64>
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Aggregate PEs into one

Processing
Element
+

Processing
Element

Processing

Element

- % N
He5

Processing
Element

N
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Create a 4-way array

Processing
Element
+

Processing

Element

Processing Processing Processing Processing
Element Element Element Element

- % N - % N N _ %k N
+1'1 +ll' +ll' +111

Processing
Element

N




Now deploy the algorithm on simple accelerator no.1

Create a 4-way parallel PE array that supports Elementwise operations:

Addition
Subtraction
Multiplication
Bitwise Exclusive OR
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Deploy this on the simple 4-way array

#map = affine_map<(do) — (do)>
module {
func.func public @streamer_add(%arg0d: tensor<l16xi64>, %argl: tensor<16xi64>) — tensor<16xi64> {
%0 = tensor.empty() : tensor<16xi64>
%1 = [UEIRalgNadd) ins(%argd, %argl : tensor<16xi64>, tensor<16xi64>) outs(%@ : tensor<16xi6s>) —
tensor<16xi64>
%2 =
%3 =
%4 = [Linalg.generic) {indexing_maps = [#map, #map, #map], iterator_types = ["parallel"]} ins(%arg0, %3
tensor<16xi64>, tensor<16xi64>) outs(%0 : tensor<16xi64>) {
“bbO(%in: 164, %in_0: 164, %out: 164):
%5 = [@RIEANXOEE %in, %in_0 : i6s4
linalg.yield %5 : i64
} > tensor<16xi64>
return %4 : tensor<16xi64>

(BERATENSUD) ins(%argd, %1 : tensor<16xi64>, tensor<16xib4>) outs(%@ : tensor<16xi64>) — tensor<16xi64>
_ins(%arg@, %2 : tensor<16xi64>, tensor<16xi64>) outs(%@ : tensor<16xi64>) — tensor<16xi64>

39



Deploy addition

#map = affine_map<(do) — (do)>
module { Processing Processing Processing
func.func public @streamer_add(%argd: tensor<16xi64>, %argl: tensor<16xi64>) — tensor<16xi64 Element Element Element
%0 = tensor.empty() : tensor<16xi64>
%1 = [linalg.generic) {indexing_maps = [#map, #map, #map], iterator_types = ["parallel"]}
ins(%argd, %argl : tensor<16xi64>, tensor<16xi64>) outs(%0 : tensor<16xi64>) {
“bb0(%in: 164, %in_0: 164, %out: i64):
%5 = larith.addi| %in, %in_0 : i64
linalg.yield %5 : i64
} = tensor<16xi64>
%2 = [linalgigeneric) {indexing_maps = [#map, #map, #map], iterator_types = ["parallel"]}
ins(%argd, %1 : tensor<16xib64>, tensor<16xi64>) outs(%0 : tensor<16xi64>) {
“bb0(%in: 164, %in_0: i64, %out: 164):
%5 = lapith.subi|%in, %in_0 : i64
linalg.yield %5 : i64
} — tensor<16xi64>
%3 = [Linalg.generic {indexing_maps = [#map, #map, #map], iterator_types = ["parallel"]}
ins(%argd, %2 : tensor<16xi64>, tensor<16xi64>) outs(%0 : tensor<16xi64>) {
“bb0(%in: 164, %in_0: i64, %out: 164):
%5 = lagith.muli %in, %in_0 : i64
linalg.yield %5 : i64
} = tensor<16xi64>
%4 = (linalgigeneri@ {indexing_maps = [#map, #map, #map], iterator_types = ["parallel"]}
ins(%argd, %3 : tensor<16xi64>, tensor<16xi64>) outs(%0 : tensor<16xi64>) {
“bb0(%in: 164, %in_0: i64, %out: 164):
%5 = [apith.Xori|%in, %in_0 : i64
linalg.yield %5 : i64
} — tensor<16xi64>
return %4 : tensor<16xi64>

I I % N
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Deploy addition

#map = affine_map<(do) — (do)>
module {
func.func public @streamer_add(%argd: tensor<16xi64>, %argl: tensor<16xi64>) — tensor<16xi64
%0 = tensor.empty() : tensor<16xi64>
%1 = [linalg.generic) {indexing_maps = [#map, #map, #map], iterator_types = ["parallel"]}
ins(%argd, %argl : tensor<16xi64>, tensor<16xi64>) outs(%0 : tensor<16xi64>) {
“bb0(%in: 164, %in_0: 164, %out: i64):
%5 = larith.addi| %in, %in_0 : i64
linalg.yield %5 : 164
} > tensor<16xi64>
%2 = [linalgigeneric) {indexing_maps = [#map, #map, #map], iterator_types = ["parallel"]}
ins(%argd, %1 : tensor<16xib64>, tensor<16xi64>) outs(%0 : tensor<16xi64>) {
“bb0(%in: 164, %in_0: 164, %out: i64):
%5 = larith.subi %in, %in_0 : i64
linalg.yield %5 : i64
} — tensor<16xi64>
%3 = [Linalg.generic {indexing_maps = [#map, #map, #map], iterator_types = ["parallel"]}
ins(%argd, %2 : tensor<16xi64>, tensor<16xi64>) outs(%0 : tensor<16xi64>) {
“bb0(%in: 164, %in_0: 164, %out: i64):
%5 = lapith.muli %in, %in_0 : i64
linalg.yield %5 : i64
} > tensor<16xi64>
%4 = (linalgigeneric {indexing_maps = [#map, #map, #map], iterator_types = ["parallel"]}
ins(%argd, %3 : tensor<16xi64>, tensor<16xi64>) outs(%0 : tensor<16xi64>) {
“bb0(%in: 164, %in_0: i64, %out: 164):
%5 = [@PTERATXOrEN %in, %in_0 : i64
linalg.yield %5 : i64
} > tensor<16xi64>
return %4 : tensor<16xi64>

Processing Processing Processing

Element Element Element

- N - % N - N
55 55 a5
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Deploy subtraction

#map = affine_map<(do) — (do)>
module { Processing Processing Processing
func.func public @streamer_add(%argd: tensor<16xi64>, %argl: tensor<16xi64>) — tensor<16xi64 Element Element Element
%0 = tensor.empty() : tensor<16xi64> oA ok A o ® A
%1 = [linalg.generic) {indexing_maps = [#map, #map, #map], iterator_types = ["parallel"]} T T e
ins(%argd, %argl : tensor<16xi64>, tensor<16xi64>) outs(%0 : tensor<16xi64>) {
“bb0(%in: 164, %in_0: 164, %out: i64):
%5 = larith.addi| %in, %in_0 : i64
linalg.yield %5 : i64
} = tensor<16xi64>
%2 = [linalgigeneric) {indexing_maps = [#map, #map, #map], iterator_types = ["parallel"]}
ins(%argd, %1 : tensor<16xib64>, tensor<16xi64>) outs(%0 : tensor<16xi64>) {
“bb0(%in: 164, %in_0: 164, %out: i64):
%5 = larith.subi %in, %in_0 : i64
linalg.yield %5 : i64
} — tensor<16xi64>
%3 = [Linalg.generic {indexing_maps = [#map, #map, #map], iterator_types = ["parallel"]}
ins(%argd, %2 : tensor<16xi64>, tensor<16xi64>) outs(%0 : tensor<16xi64>) {
“bb0(%in: 164, %in_0: i64, %out: 164):
%5 = lagith.muli %in, %in_0 : i64
linalg.yield %5 : i64
} = tensor<16xi64>
%4 = (linalgigeneri@ {indexing_maps = [#map, #map, #map], iterator_types = ["parallel"]}
ins(%argd, %3 : tensor<16xi64>, tensor<16xi64>) outs(%0 : tensor<16xi64>) {
“bb0(%in: 164, %in_0: i64, %out: 164):
%5 = [@PIthoXori %in, %in_0 : i64
linalg.yield %5 : i64
} > tensor<l6xi6s4>
return %4 : tensor<16xi64>

Processing Processing Processing
Element Element Element

_ % N % N
+111 +1'1

%2



Deploy subtraction

#map = affine_map<(do) — (do)>
module { Processing Processing Processing
func.func public @streamer_add(%argd: tensor<16xi64>, %argl: tensor<16xi64>) — tensor<16xi64 Element Element Element
%0 = tensor.empty() : tensor<16xi64>
%1 = [iAalgYEeneric {indexing_maps = [#map, #map, #map], iterator_types = ["parallel"l}
ins(%argd, %argl : tensor<16xi64>, tensor<16xi64>) outs(%0 : tensor<16xi64>) {
“bb0(%in: 164, %in_0: 164, %out: 164):
%5 =_%in, %in_0 : i64
Uinalg.yaleld #5564 Processing Processing Processing
e , Element Element Element
%2 = [linalgigeneric) {indexing_maps = [#map, #map, #map], iterator_types = ["parallel"]} ok A ok A ok A
ins(%argd, %1 : tensor<16xi64>, tensor<16xi64>) outs(%@ : tensor<16xi64>) { A A A
“bb0(%in: 164, %in_0: 164, %out: i64): .
%5 = _%in, %in_0 : i64
linalg.yield %5 : i64
} — tensor<16xi64>
%3 = [Linalg.generic {indexing_maps = [#map, #map, #map], iterator_types = ["parallel"]}
ins(%argd, %2 : tensor<16xi64>, tensor<16xi64>) outs(%0 : tensor<16xi64>) {
“bb0(%in: 164, %in_0: 164, %out: i64):
%5 =_%in, %in_0 : i64
linalg.yield %5 : i64
} — tensor<16xi64>
%4 = [Linalgigeneri {indexing_maps = [#map, #map, #map], iterator_types = ["parallel"]}
ins(%argd, %3 : tensor<16xi64>, tensor<16xi64>) outs(%0 : tensor<16xi64>) {
“bb0(%in: 164, %in_0: 164, %out: i64):

%5 = *%in, %in_0 : 164
linalg.yield %5 : 164

} — tensor<16xi64>
return %4 : tensor<16xi64>

-k N - % N - % N
55 55 a5




Deploy multiplication

#map = affine_map<(do) — (do)>
module { Processing Processing Processing
func.func public @streamer_add(%argd: tensor<16xi64>, %argl: tensor<16xi64>) — tensor<16xi64 Element Element Element
%0 = tensor.empty() : tensor<16xi64> oA oA o ® A
%1 = [linalg.generic) {indexing_maps = [#map, #map, #map], iterator_types = ["parallel"]} T T T
ins(%argd, %argl : tensor<16xi64>, tensor<16xi64>) outs(%0 : tensor<16xi64>) {

“bb0(%in: 164, %in_0: 164, %out: i64):
%5 = larith.addi| %in, %in_0 : i64

linalg.yield %5 : 164 Processing Processing Processing

e , Element Element Element
%2 = [linalgigeneric) {indexing_maps = [#map, #map, #map], iterator_types = ["parallel"]}

ins(%argd, %1 : tensor<16xib64>, tensor<16xi64>) outs(%0 : tensor<16xi64>) {
“bb0(%in: 164, %in_0: 164, %out: i64):
%5 = larith.subi %in, %in_0 : i64
linalg.yield %5 : i64

o O SN ERA SN ERA
H5 5 He Heh

} = tensor<16xi64> Processing Processing Processing
%3 = [Linalg.generic {indexing_maps = [#map, #map, #map], iterator_types = ["parallel"]} Element Element Element
ins(%argd, %2 : tensor<16xi64>, tensor<16xi64>) outs(%0 : tensor<16xi64>) { +'-,*1“ +,_,*'“

“bb0(%in: 164, %in_0: 164, %out: i64):
%5 = lapith.muli %in, %in_0 : i64 '
linalg.yield %5 : i64

} — tensor<16xi64>

%4 = (linalgigeneric {indexing_maps = [#map, #map, #map], iterator_types = ["parallel"]}

ins(%argd, %3 : tensor<16xi64>, tensor<16xi64>) outs(%0 : tensor<16xi64>) {
“bb0(%in: 164, %in_0: i64, %out: 164):
%5 = [@PIthoXori %in, %in_0 : i64
linalg.yield %5 : i64
} > tensor<16xi64>
return %4 : tensor<16xi64>
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Deploy multiplication

#map = affine_map<(do) — (do)>

module { Processing Processing Processing
func.func public @streamer_add(%argd: tensor<16xi64>, %argl: tensor<16xi64>) — tensor<16xi64 Element Element Element
%0 = tensor.empty() : tensor<16xi64> oA oA o kA
r ?r ? T T ?

%1 = [iAalgYEeneric {indexing_maps = [#map, #map, #map], iterator_types = ["parallel"l}
ins(%arg0, %argl : tensor<16xi64>, tensor<16xi64>) outs(%0 : tensor<16xi64>) {
“bb0(%in: 164, %in_0: 164, %out: 164):
%5 =_%in, %in_0 : i64
Uinalg.yaleld #5564 Processing Processing Processing
} - tensor<iéxi6s> , Element Element Element
%2 = [linalgigeneric) {indexing_maps = [#map, #map, #map], iterator_types = ["parallel"]} oA ok A ok A
ins(%argd, %1 : tensor<l6xib4>, tensor<16xi64>) outs(%0 : tensor<16xi64>) { 1 o e
“bb0(%in: 164, %in_0: 164, %out: i64):
%5 = _%in, %in_0 : i64
linalg.yield %5 : i64
} = tensor<16xi64> Processing Processing Processing
%3 = [Linalg.generic {indexing_maps = [#map, #map, #map], iterator_types = ["parallel"]} Element Element Element
ins(%arg0, %2 : tensor<16xi64>, tensor<16xi64>) outs(%0 : tensor<16xi64>) { .|.'_'*"‘ .|.'_'*”‘ .|.'_'*,"
“bb0(%in: 164, %in_0: 164, %out: i64):
%5 =_%in, %in_0 : i64 '
linalg.yield %5 : i64
} > tensor<16xi64>
%4 = [Linalgigeneri {indexing_maps = [#map, #map, #map], iterator_types = ["parallel"]}
ins(%arg0, %3 : tensor<16xi64>, tensor<16xi64>) outs(%0 : tensor<16xi64>) {
“bb0(%in: 164, %in_0: 164, %out: i64):

%5 = *%in, %in_0 : 164
linalg.yield %5 : 164

} —> tensor<16xi64>
return %4 : tensor<16xi64>




Deploy exclusive or

#map = affine_map<(do) — (do)>
module {

func.func public @streamer_add(%argd: tensor<16xi64>, %argl: tensor<16xi64>) — tensor<16xi64

%0 = tensor.empty() : tensor<16xi64>
%1 = [linalg.generic) {indexing_maps = [#map, #map, #map], iterator_types = ["parallel"]}
ins(%argd, %argl : tensor<16xi64>, tensor<16xi64>) outs(%0 : tensor<16xi64>) {
“bb0(%in: 164, %in_0: 164, %out: i64):
%5 = larith.addi| %in, %in_0 : i64
linalg.yield %5 : i64
} > tensor<16xi64>
%2 = [linalgigeneric) {indexing_maps = [#map, #map, #map], iterator_types = ["parallel"]}
ins(%argd, %1 : tensor<16xib64>, tensor<16xi64>) outs(%0 : tensor<16xi64>) {
“bb0(%in: 164, %in_0: 164, %out: i64):
%5 = larith.subi %in, %in_0 : i64
linalg.yield %5 : i64
} > tensor<16xi64>
%3 = [Linalg.generic {indexing_maps = [#map, #map, #map], iterator_types = ["parallel"]}
ins(%argd, %2 : tensor<16xi64>, tensor<16xi64>) outs(%0 : tensor<16xi64>) {
“bb0(%in: 164, %in_0: 164, %out: i64):
%5 = lapith.muli %in, %in_0 : i64
linalg.yield %5 : i64
} > tensor<16xi64>
%4 = (linalgigeneric {indexing_maps = [#map, #map, #map], iterator_types = ["parallel"]}
ins(%argd, %3 : tensor<16xi64>, tensor<16xi64>) outs(%0 : tensor<16xi64>) {
“bb0(%in: 164, %in_0: i64, %out: 164):
%5 = [@PIthoXori %in, %in_0 : i64
linalg.yield %5 : i64
} > tensor<16xi64>
return %4 : tensor<16xi64>
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Deploy exclusive or

#map = affine_map<(do) — (do)>
module { Processing Processing Processing
func.func public @streamer_add(%arg@: tensor<16xi64>, %argl: tensor<16xi64>) — tensor<16xi64 Element Element Element
%0 = tensor.empty() : tensor<16xi64> oA oA o kA
%1 = [JERaUEUEENerie) {indexing_maps = [#map, #map, #map], iterator_types = ["parallel"]} e e e
ins(%arg0, %argl : tensor<16xi64>, tensor<16xi64>) outs(%0 : tensor<16xi64>) {

“bb0(%in: 164, %in_0: 164, %out: 164):
%5 =_%in, %in_0 : i64
Uinalg.yaleld #5564 Processing Processing Processing

} - tensor<iéxi6s> , Element Element Element
%2 = [linalgigeneric) {indexing_maps = [#map, #map, #map], iterator_types = ["parallel"]} oA ok A ok A
ins(%argd, %1 : tensor<l6xib4>, tensor<16xi64>) outs(%0 : tensor<16xi64>) { 1 o e
“bb0(%in: 164, %in_0: 164, %out: i64):
%5 = _%in, %in_0 : i64
linalg.yield %5 : i64
} = tensor<16xi64> Processing Processing Processing
%3 = [Linalg.generic {indexing_maps = [#map, #map, #map], iterator_types = ["parallel"]} Element Element Element
ins(%arg0, %2 : tensor<16xi64>, tensor<16xi64>) outs(%0 : tensor<16xi64>) { .|.'_'*"‘ .|.'_'*”‘ .|.'_'*”‘
“bb0(%in: 164, %in_0: 164, %out: i64):
%5 =_%in, %in_0 : i64
linalg.yield %5 : i64
} > tensor<16xi64>
%4 = (Linalgigenerig {indexing_maps = [#map, #map, #map], iterator_types = ["parallel"]} Processing Processing Processing
ins(%arg@, %3 : tensor<16xi64>, tensor<16xi64>) outs(%@ : tensor<16xi64>) { Element Element Element
“bb0(%in: 164, %in_0: 164, %out: i64): 4o %" 4 - %" + - %0

%5 = *%in, %in_0 : 164
linalg.yield %5 : 164 '

} —> tensor<16xi64>
return %4 : tensor<16xi64>




Performance

Load data * 4
Store data * 4

Program accelerator * 4
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Simple example no. 2 operator fusion

We can make this much faster if we support operator fusion

Addition
Subtraction
Multiplication
Bitwise Exclusive OR

(A"(A*(A-(A+B))))
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Deploy this on the simple 4-way array

#map = affine_map<(do) — (do)>
module {
func.func public @streamer_add(%arg0d: tensor<l16xi64>, %argl: tensor<16xi64>) — tensor<16xi64> {
%0 = tensor.empty() : tensor<16xi64>
%1 = [UEIRalgNadd) ins(%argd, %argl : tensor<16xi64>, tensor<16xi64>) outs(%@ : tensor<16xi6s>) —
tensor<16xi64>
%2 =
%3 =
%4 = [Linalg.generic) {indexing_maps = [#map, #map, #map], iterator_types = ["parallel"]} ins(%arg0, %3
tensor<16xi64>, tensor<16xi64>) outs(%0 : tensor<16xi64>) {
“bbO(%in: 164, %in_0: 164, %out: 164):
%5 = [@RIEANXOEE %in, %in_0 : i6s4
linalg.yield %5 : i64
} > tensor<16xi64>
return %4 : tensor<16xi64>

(BERATENSUD) ins(%argd, %1 : tensor<16xi64>, tensor<16xib4>) outs(%@ : tensor<16xi64>) — tensor<16xi64>
_ins(%arg@, %2 : tensor<16xi64>, tensor<16xi64>) outs(%@ : tensor<16xi64>) — tensor<16xi64>
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Deploy this on the simple 4-way array

#map = affine_map<(do) — (do)>
module {
func.func public @streamer_add(%arg@: tensor<16xi64>, %argl: tensor<16xi64>) — tensor<16xi64> {
%0 = tensor.empty() : tensor<16xi64>
%1 = linalg.generic {indexing_maps = [#map, #map, #map], iterator_types = ["parallel"]} ins(%arg@, %argl :
tensor<16xi64>, tensor<16xi64>) outs(%@ : tensor<16xi64>) {
“bbo(%in: 164, %in_@: 164, %out: 164):

%2 =farith.addi %in, %in_0 : i64

%3 =farithysubi %in, %2 : 164 Processing Processing Processing Processing
%4 =farithomuli %in, %3 : i64 Element Element Element Element
%5 =[JEFERROEE %in, %4 : 164 (A~(A*(A-(A+B)))) (A"(A*(A-(A+B)))) (A™(A*(A-(A+B)))) (A" (A*(A-(A+B))))

linalg.yield %5 : 164

} > tensor<16xi64>
return %1 : tensor<16xi64>
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Deploy this on the simple 4-way array

#map = affine_map<(do) — (do)>
module {
func.func public @streamer_add(%arg@: tensor<16xi64>, %argl: tensor<16xi64>) — tensor<16xi64> {
%0 = tensor.empty() : tensor<16xi64>
%1 = linalg.generic {indexing_maps = [#map, #map, #map], iterator_types = ["parallel"]} ins(%arg@, %argl :
tensor<16xi64>, tensor<16xi64>) outs(%@ : tensor<16xi64>) {
“bbO(%in: 164, %in_@: i64, %out: i64):

%2 =farith.addi %in, %in_0 : i64

%3 =[arith.subi %in, %2 : i64 Processing Processing Processing Processing
%4 =farithomulti %in, %3 : 164 Element Element Element Element
%5 =[JEFERROEE %in, %4 : 164 (A~(A*(A-(A+B)))) (A"(A*(A-(A+B)))) (A™(A*(A-(A+B)))) (A" (A*(A-(A+B))))

linalg.yield %5 : i64

} > tensor<16xi64>
return %1 : tensor<16xi64>
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Performance

Store data * 1
Load data * 1

Program accelerator * 1
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Discussion

Tradeoff - More specific accelerators or more performance?
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How did we create this?



Shortcut no. 1 - xDSL for quick prototyping

xDSL, an open-source MLIR, CIRCT compatible framework in Python, to quickly
prototype new MLIR dialects and combinations of compiler passes.

github.com/xdslproject/xdsl
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http://github.com/xdslproject/xdsl

Shortcut no.

SNAX platform to inlay
the generated PE array

github.com/KULeuven
-MICAS /snax_cluster

2 - PE array + SNAX platform = NPU

Load unit

Store unit

Processing
Element

Processing
Element

Processing
Element

Processing
Element

Processing
Element

Processing
Element

Processing
Element

Processing
Element
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http://github.com/KULeuven-MICAS/snax_cluster
http://github.com/KULeuven-MICAS/snax_cluster

Shortcut no. 3 - SNAX-MLIR sw compilation toolchain

e Compatible with RISC-V control core (rv32imc)

e linalg.generic - loads/stores + program accelerators with dynamic
backends

github.com/KULeuven-MICAS/snax-mlir
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http://github.com/KULeuven-MICAS/snax-mlir

In the future

Overlay functionality on parts of the PE

Support for multiple dataflows

Multi-accelerator support

Support for multi-cycle hardware (ready/valid)

Floating-point support (not because I like FP, rather because | don’t like
quantization)
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Than I( you! josse:matrix.org

linkedin.com/in/jossevandelm/

[ ?
Qu EStIOHS. github.com/JosseVanDelm

vandelm.com

Takeaways of this talk

e NPUs are dedicated processors to accelerate dense linear algebra

e Properly using and and designing NPUS them requires an overhaul of the
design process

e We leverage MLIR, CIRCT, xDSL and SNAX to quicRly create new NPUs and
compilers together through programmable hardware synthesis
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Creating the hardware with the PHS dialect

A new dialect to create programmable* hardware

phs.pe:
An operation that represents what a PE of the NPU can do

phs.choose:
A named operation that represents a choice of operation in different MLIR operations

phs .mux:
“multiplexer” - an unnamed operation operation that represents a choice of dataflow
for the PE

phs.yield:
a terminator operation similarto scf.yield and linalg.yield.
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To go from linalg to a programmable PE

1. Convert each 1inalg to a linalg.generic

2. Convert each linalg.generic to a phs.pe op

3. Aggregate all phs.pe ops through their named phs.choose_ops and
insert phs.mux_ops where necessary

4. Generate an array of phs.pe elements

5. Convert the aggregated phs.pe to systemverilog with CIRCT
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2) Convert each linalg.generic to a phs.pe op

//;1 = linalg.generic {indexing_maps = [#map, #map, #map], iterator_types = ["parallel"]} ‘\\
ins(%argd, %argl : tensor<16xi64>, tensor<16xi64>) outs(%0 : tensor<16xi64>) {

"bb0(%in: i64, %in_0: 164, %out: 164):

%5 = [@ritheaddd %in, %in 0 : i64

linalg.yield %5 : i64

} = tensor<16xi64>
\ )

A A

//;hs.pe Maccl with %0 (%in : 164, %in_1 : i64) { <\\\
%1 = phs.choose Qi_i64_i64_o_i64_0 with %0 (%in : 164, %in_1 : i64) — i64
0) {

%2 = @ritheaddd) %in, %in_1 : i64

phs.yield %2 : 164
}

\\\phs.yield %1 : 164 4///




2) Convert each linalg.generic to a phs.pe op

fphs.pe @accl with %0 (%in : i64, %in_1 : i64) {
%1 = phs.choose @i_i64_i64_o_i64_0 with %0 (%in : i64, %in_1 : i64) — 1i64
0) {
%2 = @pitheadddy %in, %in_1 : 164
phs.yield %2 : i64
}

Kphs.yield %1 : 164

~

[%in : i6l+] [ %in 1 : i64 ]

pe @accl

M1_164_164_0_164_0
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2) Convert each linalg.generic to a phs.pe op

//;2 = linalg.generic {indexing_maps = [#map, #map, #map], iterator_types = ["parallel"]} ‘\\
ins(%argd, %1 : tensor<16xi64>, tensor<16xi64>) outs(%@ : tensor<16xi64>) {

"bb0(%in: i64, %in_0: 164, %out: 164):

%5 = [@rdthesubd %in, %in_0 : i64

linalg.yield %5 : i64

} = tensor<16xi64>
\ )

A A

//;hs.pe Maccl with %0 (%in : 164, %in_1 : i64) { <\\\
%1 = phs.choose Qi_i64_i64_o_i64_0 with %0 (%in : 164, %in_1 : i64) — i64
0) {

%2 = [AFIEANSEBY %in, %in_1 : i64
phs.yield %2 : 164
}

\\\phs.yield %1 : 164 4///




2) Convert each linalg.generic to a phs.pe op

//;hs.pe @accl with %0 (%in : i64, %in_1 : i64) {
%1 = phs.choose @i_i64_i64_o_i64_0 with %0 (%in : i64, %in_1 : i64) — 1i64
0) {
%2 = [@Eithysubd %in, %in_1 : i64

phs.yield %2 : i64
}

\\\Phs.yield %1 : 164

~

[%in : i6l+] [ %in 1 : i64 ]

pe @accl

M1_164_164_0_164_0
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3) Aggregate all phs.pe ops through their named
phs.choose_ops and insert phs.mux_ops where necessary

/,phs.pe @daccl with %0 (%in : i64, %in_1 : i64) {
%1 = phs.choose @i_164_i64_o_i64_0 with %0
(%in : i64, %in_1 : i64) — i64
0) {
%2 = [@pitheaddd %in, %in_1 : i64
phs.yield %2 : 164
}

hs.yield %1 : i64
\_ p y

~

( phs.pe @accl with %0 (%in : i64, %in 1 : i64) {
%1 = phs.choose @i_164_i64_o_i64_0 with %0
(%in : 164, %in_1 : i64) — i64

0) {
%2 = [@rithesub® %in, %in_1 : i64
phs.yield %2 : 164
}
Y phs.yield %1 : 164

J
~

phs.pe @accl with %0 (%in : 164, %in_1 : i64) {
%1 = phs.choose @i_i164_i64_o_i64_0 with %0
(%in : 164, %in_1 : 164) — 164
0) {
%2 - dpdtheaddd %in, %in_1 : i6s4
phs.yield %2 : i64
}
1) {
%3 = @EICANSUB %in, %in_1 : i64
phs.yield %3 : i64
}
phs.yield %1 : i64

}
o

~
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3) Aggregate all phs.pe ops through their named
phs.choose_ops and insert phs.mux_ops where necessary

phs.pe @accl with %0 (%in : 164, %in_1 : i64) {
%1 = phs.choose @i_i164_i64_o_i64_0 with %0
(%in : i64, %in_1 : i64) — i64 [%in : 164] [ %in_1 : i64 ]
0) {
%2 - dpdtheaddd %in, %in_1 : i6s4
phs.yield %2 : i64
}
1) {
%3 = Eraehesubd %in, %in_1 : i64
phs.yield %3 : i64
}
phs.yield %1 : 164

pe aaccl

M1_164_164_0_164_0

}
o
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3) Aggregate all phs.pe ops through their named
phs.choose_ops and insert phs.mux_ops where necessary

ﬂhs.pe Daccl with %0 (%in : 164, %in_1 : i64) {
%1 = phs.choose @i_i64_i64_0_i64_0 with %0 (%in : 164, %in_1 : 164) — 164
0) {

%2 = %in, %in_1 : i64 g i i i
O e BT

phs.yield %2 : i64

}
1) {
%3 :_%1n, %in_1 : 164 pe daccl \ t
phs.yield %3 : i64
}

2) { Di_i64_i64_o0_i64_0 + or - or * or "
%4 = [EEEERARMULE %in, %in_1 : i64
phs.yield %4 : i64

}

3) {

%5 = [EEEERRXOTE) %in, %in_1 : i64
phs.yield %5 : i64

}

phs.yield %1 : i64

\
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hw.module private @accl(in %in data_@: i64, in %in_1 data_1: i64,
in %0 switch_0: i2, out out_@: i64) {
%1 = arith.addi %in, %in_1 : i64
%2 = arith.subi %in, %in_1 : i64
%3 = arith.muli %in, %in_1 : 164
%4 = arith.xori %in, %in_1 : 164
%5 = hw.array_create %4, %3, %2, %1 : i64
%6 = hw.array_get %5[%0]
hw.output %6 : i64
}

hw.module @accl_array(in %0 data_0: !'hw.array<4xi64>,

'hw.array<4xi64>, i2

in %1 data_1: 'hw.array<4xi64>,
in %2 switch_0: i2, out out_0:
lhw.array<4xi64>) {
%3 = arith.constant @ : i2
%4 = hw.array_get %0[%3]
%5 = arith.constant @ : i2
%6 = hw.array_get %1[%5] 'hw.array<4xi64>, i2
%7 = hw.instance "accl_pe_0" ®accl(data_0: %&4: 164,
data_1: %6: 164, switch_@: %2: i2) — (out_0: 164)
%8 = arith.constant 1 : i2
%9 = hw.array_get %0[%8]
%10 = arith.constant 1 : i2
%11 = hw.array_get %1[%10] lhw.array<4xi64>, i2
%12 = hw.instance "accl_pe_1" @accl(data_0: %9: i64,
data_1: %11: 164, switch_0: %2: i2) — (out_0: i64)

'hw.array<4xi64>, i2

'hw.array<4xi64>, i2

%23 = hw.array_create %22, %17, %12, %7 : i64

hw.output %23 : 'hw.array<4xi64>

U

~

4) Generate an array of
phs.pe elements

Yan - L ] ][ Sin 1 . G4/ 1

Yin 1 3 1

. a8/

. a8/ Sin 1

%in : 164 : 164

+ or - or * or "
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