
Generating
Programmable NPUs
from Linalg
with MLIR and CIRCT

Josse Van Delm
1

LLVM dev room
FOSDEM 2026

whoami

Josse Van Delm

PhD Researcher at KU Leuven - MICAS research group

Working on compilers for AI hardware accelerators since 2021

Fun fact! Looking for a new job at the end of this year 😉

2

What you’ll learn in this talk

● What are NPUs?

● How do people design NPUs now?

● How people should design NPUs in the future (spoiler: with compilers!)

3

NPUs are processors to optimize dense linear algebra

4

void elementwise_mult(float* A, float* B, float* C) {
 for (int i = 0; i < 16; i++) {
 C[i] = A[i] * B[i];
 }
}

NPUs are processors to optimize dense linear algebra

5

void elementwise_mult(float* A, float* B, float* C) {
 for (int i = 0; i < 16; i++) {
 C[i] = A[i] * B[i];
 }
}

NPUs are processors to optimize dense linear algebra

6

void elementwise_mult(float* A, float* B, float* C) {
 for (int i = 0; i < 16; i++) {
 C[i] = A[i] * B[i];
 }
}

void matmul_16x16(float A[16][16], float B[16][16], float C[16][16]) {
 for (int i = 0; i < 16; i++) {
 for (int j = 0; j < 16; j++) {
 C[i][j] = 0;
 for (int k = 0; k < 16; k++) {
 C[i][j] += A[i][k] * B[k][j];
 }
 }
 }
}

NPUs are processors to optimize dense linear algebra

7

void softmax_16(float* input, float* output) {

 float sum = 0.0f;

 float max_val = input[0];

 for (int i = 1; i < 16; i++) {

 if (input[i] > max_val) max_val = input[i];

 }

 for (int i = 0; i < 16; i++) {

 output[i] = expf(input[i] - max_val);

 sum += output[i];

 }

 for (int i = 0; i < 16; i++) {

 output[i] /= sum;

 }

}

Aside: MLIR represents this in the “linalg” dialect

8

void elementwise_mult(float* A, float* B, float* C) {
 for (int i = 0; i < 16; i++) {
 C[i] = A[i] * B[i];
 }
}

%3 = linalg.mul ins(%arg0, %2 : tensor<16xf32>, tensor<16xf32>) outs(%0 : tensor<16xf32>) ->
tensor<16xf32>

#map = affine_map<(d0) -> (d0)>
%3 = linalg.generic {indexing_maps = [#map, #map, #map], iterator_types = ["parallel"]}
ins(%arg0, %2 : tensor<16xf32>, tensor<16xf32>) outs(%0 : tensor<16xf32>) {
 ^bb0(%in: f32, %in_0: f32, %out: f32):
 %5 = arith.mulf %in, %in_0 : f32
 linalg.yield %5 : f32
} -> tensor<16xf32>

9

[1] [2] [3]

[4]

Are they useful? According to research: yes!

10

There is more available
silicon area on chip for
specialized processors

TPU = much faster and
energy efficient at linear
algebra than CPUs or GPUs

[5] [6]

● Yes. … but mostly for marketing

In reality it is often too difficult to use them

● These units can be too specific for newer workloads

● Most compilers can’t leverage them

● Hardware, Firmware, Libraries often closed source!

But are they really useful?

11

There are multiple interdependent problems

New hardware:
Lacking Compiler

Support

No developer access:
Closed-source

Hardware +
Drivers +

…

New algorithms:
Lacking Hardware

Support

12

How did we get here?

13

How do people typically Create NPUs?

Select
algorithm to

optimize

Create
hardware for
the algorithm
to optimize

ISA specification
Library &
Compiler

Development

Ship to
users/customers

14

Algorithm
Selection

Initial
Hardware Design

~2 months*

~6 months*

~1 year*

~6 months*

How do people typically Create NPUs?

Select
algorithm to

optimize

Create
hardware for
the algorithm
to optimize

ISA specification
Library &
Compiler

Development

Ship to
users/customers

15

Algorithm
Selection

Initial
Hardware Design

*Very optimistic estimates!

~2 months*

~6 months*

~1 year*

~6 months*

2 years+*

Yes! With compilers we can enable programmable hardware synthesis

But how?

→ How do we quickly create an ML compiler? 🐉 MLIR
→ How do we quickly generate hardware? ⚡ CIRCT
→ How do we adapt the compiler to the hardware? 󰻁 Dynamic Backend
→ How do we quickly develop this? 🪄 Secret shortcuts

Fully Open source 🦾

This is too slow! Can we do this faster?

16

What are we trying to
create?

17

Anatomy of an NPU platform

CPU

Memory

Load unit

Processing
Element

Processing
Element

Processing
Element

Processing
Element

Processing
Element

Processing
Element

Processing
Element

Processing
Element

Store unit

18

ML compiler

The programmable hardware synthesis flow

Supported
Operations
(MLIR)

Backend
Information

Software Source
(MLIR)

19

Programmable NPU
(Simulation)

(e.g. verilator)
Software
Binary

PE Array
(SystemVerilog)

ML compiler

The programmable hardware synthesis flow

Supported
Operations
(MLIR)

Backend
Information

Software Source
(MLIR)

20

Programmable NPU
(Simulation)

(e.g. verilator)
Software
Binary

New hardware:
Lacking Compiler

Support

No developer access:
Closed-source Hardware +

Drivers +
…

New algorithms:
Lacking Hardware

Support

PE Array
(SystemVerilog)

ML compiler

The programmable hardware synthesis flow

Supported
Operations
(MLIR)

Backend
Information

Software Source
(MLIR)

21

Programmable NPU
(Simulation)

(e.g. verilator)
Software
Binary

New hardware:
Lacking Compiler

Support

No developer access:
Closed-source Hardware +

Drivers +
…

New algorithms:
Lacking Hardware

Support

PE Array
(SystemVerilog)

ML compiler

The programmable hardware synthesis flow

Supported
Operations
(MLIR)

Backend
Information

Software Source
(MLIR)

22

Programmable NPU
(Simulation)

(e.g. verilator)
Software
Binary

New hardware:
Lacking Compiler

Support

No developer access:
Closed-source Hardware +

Drivers +
…

New algorithms:
Lacking Hardware

Support

PE Array
(SystemVerilog)

ML compiler

The programmable hardware synthesis flow

Supported
Operations
(MLIR)

Backend
Information

Software Source
(MLIR)

23

Programmable NPU
(Simulation)

(e.g. verilator)
Software
Binary

2 minutes!

PE Array
(SystemVerilog)

ML compiler

Today we’ll talk about PE array conversion

Supported
Operations
(MLIR)

Backend
Information

Software Source
(MLIR)

24

Programmable NPU
(Simulation)

(e.g. verilator)
Software
Binary

PE Array
(SystemVerilog)

Today we’ll talk about PE array conversion

CPU

Memory

Load unit

Processing
Element

Processing
Element

Processing
Element

Processing
Element

Processing
Element

Processing
Element

Processing
Element

Processing
Element

Store unit

25

Supported
Operations
(MLIR)

Create a PE Array for these two supported operations

Supported
Operations
(MLIR)

PE Array
(SystemVerilog)

26

Linalg
Generic

A

Linalg
Generic

B

Supported
Operations
(MLIR)

Create a PE Array for these two supported operations

Supported
Operations
(MLIR)

PE Array
(SystemVerilog)

27

Convert each
operation to PE

Processing
Element

A

Processing
Element

B

Linalg
Generic

A

Linalg
Generic

B

Supported
Operations
(MLIR)

Create a PE Array for these two supported operations

Supported
Operations
(MLIR)

PE Array
(SystemVerilog)

28

Convert each
operation to PE

Aggregate Single PEs

Processing
Element

A

Processing
Element

B

Linalg
Generic

A

Linalg
Generic

B

Processing
Element

A + B

Supported
Operations
(MLIR)

Create a PE Array for these two supported operations

Supported
Operations
(MLIR)

PE Array
(SystemVerilog)

29

Convert each
operation to PE

Aggregate Single PEs

Create array of PEs

Processing
Element

A

Processing
Element

B

Linalg
Generic

A

Linalg
Generic

B

Processing
Element

A + B

Processing
Element

A + B

Processing
Element

A + B

Processing
Element

A + B

Processing
Element

A + B

Processing
Element

A + B

Processing
Element

A + B

Processing
Element

A + B

Processing
Element

A + B

This NPU now supports linalg.generic A and B

CPU

Memory

Load unit

Processing
Element

A+B

Processing
Element

A+B

Processing
Element

A+B

Processing
Element

A+B

Processing
Element

A+B

Processing
Element

A+B

Processing
Element

A+B

Processing
Element

A+B

Store unit

30

Software Source
(MLIR)

If the source contains supported operations, they are
guaranteed to work on this NPU!

Supported
Operations
(MLIR)

PE Array
(SystemVerilog)

31

Linalg
Generic

A

Linalg
Generic

B

Processing
Element

A + B

Processing
Element

A + B

Processing
Element

A + B

Processing
Element

A + B

Processing
Element

A + B

Processing
Element

A + B

Processing
Element

A + B

Processing
Element

A + B

Software Source
(MLIR)

Examples

32

Create a 4-way parallel PE array that supports Elementwise operations:

● Addition
● Subtraction
● Multiplication
● Bitwise Exclusive OR

33

Simple example no. 1

We want to support the following operations

#map = affine_map<(d0) -> (d0)>
module {
 func.func public @streamer_add(%arg0: tensor<16xi64>, %arg1: tensor<16xi64>) -> tensor<16xi64> {
 %0 = tensor.empty() : tensor<16xi64>
 %1 = linalg.add ins(%arg0, %arg1 : tensor<16xi64>, tensor<16xi64>) outs(%0 : tensor<16xi64>) ->
tensor<16xi64>
 %2 = linalg.sub ins(%arg0, %1 : tensor<16xi64>, tensor<16xi64>) outs(%0 : tensor<16xi64>) -> tensor<16xi64>
 %3 = linalg.mul ins(%arg0, %2 : tensor<16xi64>, tensor<16xi64>) outs(%0 : tensor<16xi64>) -> tensor<16xi64>
 %4 = linalg.generic {indexing_maps = [#map, #map, #map], iterator_types = ["parallel"]} ins(%arg0, %3 :
tensor<16xi64>, tensor<16xi64>) outs(%0 : tensor<16xi64>) {
 ^bb0(%in: i64, %in_0: i64, %out: i64):
 %5 = arith.xori %in, %in_0 : i64
 linalg.yield %5 : i64
 } -> tensor<16xi64>
 return %4 : tensor<16xi64>
 }
}

34

Create a single PE for each supported operation
#map = affine_map<(d0) -> (d0)>
module {
 func.func public @streamer_add(%arg0: tensor<16xi64>, %arg1: tensor<16xi64>) -> tensor<16xi64> {
 %0 = tensor.empty() : tensor<16xi64>
 %1 = linalg.generic {indexing_maps = [#map, #map, #map], iterator_types = ["parallel"]}
 ins(%arg0, %arg1 : tensor<16xi64>, tensor<16xi64>) outs(%0 : tensor<16xi64>) {
 ^bb0(%in: i64, %in_0: i64, %out: i64):
 %5 = arith.addi %in, %in_0 : i64
 linalg.yield %5 : i64
 } -> tensor<16xi64>
 %2 = linalg.generic {indexing_maps = [#map, #map, #map], iterator_types = ["parallel"]}
 ins(%arg0, %1 : tensor<16xi64>, tensor<16xi64>) outs(%0 : tensor<16xi64>) {
 ^bb0(%in: i64, %in_0: i64, %out: i64):
 %5 = arith.subi %in, %in_0 : i64
 linalg.yield %5 : i64
 } -> tensor<16xi64>
 %3 = linalg.generic {indexing_maps = [#map, #map, #map], iterator_types = ["parallel"]}
 ins(%arg0, %2 : tensor<16xi64>, tensor<16xi64>) outs(%0 : tensor<16xi64>) {
 ^bb0(%in: i64, %in_0: i64, %out: i64):
 %5 = arith.muli %in, %in_0 : i64
 linalg.yield %5 : i64
 } -> tensor<16xi64>
 %4 = linalg.generic {indexing_maps = [#map, #map, #map], iterator_types = ["parallel"]}
 ins(%arg0, %3 : tensor<16xi64>, tensor<16xi64>) outs(%0 : tensor<16xi64>) {
 ^bb0(%in: i64, %in_0: i64, %out: i64):
 %5 = arith.xori %in, %in_0 : i64
 linalg.yield %5 : i64
 } -> tensor<16xi64>
 return %4 : tensor<16xi64>
 }
} 35

Processing
Element

+

Processing
Element

-

Processing
Element

*

Processing
Element

^

Aggregate PEs into one

36

Processing
Element

+, -, *, ^

Processing
Element

+

Processing
Element

-

Processing
Element

*

Processing
Element

^

Create a 4-way array

37

Processing
Element

+, -, *, ^

Processing
Element

+, -, *, ^

Processing
Element

+, -, *, ^

Processing
Element

+

Processing
Element

-

Processing
Element

*

Processing
Element

^

Processing
Element

+, -, *, ^

Create a 4-way parallel PE array that supports Elementwise operations:

● Addition
● Subtraction
● Multiplication
● Bitwise Exclusive OR

38

Now deploy the algorithm on simple accelerator no.1

Deploy this on the simple 4-way array

#map = affine_map<(d0) -> (d0)>
module {
 func.func public @streamer_add(%arg0: tensor<16xi64>, %arg1: tensor<16xi64>) -> tensor<16xi64> {
 %0 = tensor.empty() : tensor<16xi64>
 %1 = linalg.add ins(%arg0, %arg1 : tensor<16xi64>, tensor<16xi64>) outs(%0 : tensor<16xi64>) ->
tensor<16xi64>
 %2 = linalg.sub ins(%arg0, %1 : tensor<16xi64>, tensor<16xi64>) outs(%0 : tensor<16xi64>) -> tensor<16xi64>
 %3 = linalg.mul ins(%arg0, %2 : tensor<16xi64>, tensor<16xi64>) outs(%0 : tensor<16xi64>) -> tensor<16xi64>
 %4 = linalg.generic {indexing_maps = [#map, #map, #map], iterator_types = ["parallel"]} ins(%arg0, %3 :
tensor<16xi64>, tensor<16xi64>) outs(%0 : tensor<16xi64>) {
 ^bb0(%in: i64, %in_0: i64, %out: i64):
 %5 = arith.xori %in, %in_0 : i64
 linalg.yield %5 : i64
 } -> tensor<16xi64>
 return %4 : tensor<16xi64>
 }
}

39

#map = affine_map<(d0) -> (d0)>
module {
 func.func public @streamer_add(%arg0: tensor<16xi64>, %arg1: tensor<16xi64>) -> tensor<16xi64> {
 %0 = tensor.empty() : tensor<16xi64>
 %1 = linalg.generic {indexing_maps = [#map, #map, #map], iterator_types = ["parallel"]}
 ins(%arg0, %arg1 : tensor<16xi64>, tensor<16xi64>) outs(%0 : tensor<16xi64>) {
 ^bb0(%in: i64, %in_0: i64, %out: i64):
 %5 = arith.addi %in, %in_0 : i64
 linalg.yield %5 : i64
 } -> tensor<16xi64>
 %2 = linalg.generic {indexing_maps = [#map, #map, #map], iterator_types = ["parallel"]}
 ins(%arg0, %1 : tensor<16xi64>, tensor<16xi64>) outs(%0 : tensor<16xi64>) {
 ^bb0(%in: i64, %in_0: i64, %out: i64):
 %5 = arith.subi %in, %in_0 : i64
 linalg.yield %5 : i64
 } -> tensor<16xi64>
 %3 = linalg.generic {indexing_maps = [#map, #map, #map], iterator_types = ["parallel"]}
 ins(%arg0, %2 : tensor<16xi64>, tensor<16xi64>) outs(%0 : tensor<16xi64>) {
 ^bb0(%in: i64, %in_0: i64, %out: i64):
 %5 = arith.muli %in, %in_0 : i64
 linalg.yield %5 : i64
 } -> tensor<16xi64>
 %4 = linalg.generic {indexing_maps = [#map, #map, #map], iterator_types = ["parallel"]}
 ins(%arg0, %3 : tensor<16xi64>, tensor<16xi64>) outs(%0 : tensor<16xi64>) {
 ^bb0(%in: i64, %in_0: i64, %out: i64):
 %5 = arith.xori %in, %in_0 : i64
 linalg.yield %5 : i64
 } -> tensor<16xi64>
 return %4 : tensor<16xi64>
 }
} 40

Processing
Element

+, -, *, ^

Processing
Element

+, -, *, ^

Processing
Element

+, -, *, ^

Processing
Element

+, -, *, ^

Deploy addition

#map = affine_map<(d0) -> (d0)>
module {
 func.func public @streamer_add(%arg0: tensor<16xi64>, %arg1: tensor<16xi64>) -> tensor<16xi64> {
 %0 = tensor.empty() : tensor<16xi64>
 %1 = linalg.generic {indexing_maps = [#map, #map, #map], iterator_types = ["parallel"]}
 ins(%arg0, %arg1 : tensor<16xi64>, tensor<16xi64>) outs(%0 : tensor<16xi64>) {
 ^bb0(%in: i64, %in_0: i64, %out: i64):
 %5 = arith.addi %in, %in_0 : i64
 linalg.yield %5 : i64
 } -> tensor<16xi64>
 %2 = linalg.generic {indexing_maps = [#map, #map, #map], iterator_types = ["parallel"]}
 ins(%arg0, %1 : tensor<16xi64>, tensor<16xi64>) outs(%0 : tensor<16xi64>) {
 ^bb0(%in: i64, %in_0: i64, %out: i64):
 %5 = arith.subi %in, %in_0 : i64
 linalg.yield %5 : i64
 } -> tensor<16xi64>
 %3 = linalg.generic {indexing_maps = [#map, #map, #map], iterator_types = ["parallel"]}
 ins(%arg0, %2 : tensor<16xi64>, tensor<16xi64>) outs(%0 : tensor<16xi64>) {
 ^bb0(%in: i64, %in_0: i64, %out: i64):
 %5 = arith.muli %in, %in_0 : i64
 linalg.yield %5 : i64
 } -> tensor<16xi64>
 %4 = linalg.generic {indexing_maps = [#map, #map, #map], iterator_types = ["parallel"]}
 ins(%arg0, %3 : tensor<16xi64>, tensor<16xi64>) outs(%0 : tensor<16xi64>) {
 ^bb0(%in: i64, %in_0: i64, %out: i64):
 %5 = arith.xori %in, %in_0 : i64
 linalg.yield %5 : i64
 } -> tensor<16xi64>
 return %4 : tensor<16xi64>
 }
}

Deploy addition

41

Processing
Element

+, -, *, ^

Processing
Element

+, -, *, ^

Processing
Element

+, -, *, ^

Processing
Element

+, -, *, ^

#map = affine_map<(d0) -> (d0)>
module {
 func.func public @streamer_add(%arg0: tensor<16xi64>, %arg1: tensor<16xi64>) -> tensor<16xi64> {
 %0 = tensor.empty() : tensor<16xi64>
 %1 = linalg.generic {indexing_maps = [#map, #map, #map], iterator_types = ["parallel"]}
 ins(%arg0, %arg1 : tensor<16xi64>, tensor<16xi64>) outs(%0 : tensor<16xi64>) {
 ^bb0(%in: i64, %in_0: i64, %out: i64):
 %5 = arith.addi %in, %in_0 : i64
 linalg.yield %5 : i64
 } -> tensor<16xi64>
 %2 = linalg.generic {indexing_maps = [#map, #map, #map], iterator_types = ["parallel"]}
 ins(%arg0, %1 : tensor<16xi64>, tensor<16xi64>) outs(%0 : tensor<16xi64>) {
 ^bb0(%in: i64, %in_0: i64, %out: i64):
 %5 = arith.subi %in, %in_0 : i64
 linalg.yield %5 : i64
 } -> tensor<16xi64>
 %3 = linalg.generic {indexing_maps = [#map, #map, #map], iterator_types = ["parallel"]}
 ins(%arg0, %2 : tensor<16xi64>, tensor<16xi64>) outs(%0 : tensor<16xi64>) {
 ^bb0(%in: i64, %in_0: i64, %out: i64):
 %5 = arith.muli %in, %in_0 : i64
 linalg.yield %5 : i64
 } -> tensor<16xi64>
 %4 = linalg.generic {indexing_maps = [#map, #map, #map], iterator_types = ["parallel"]}
 ins(%arg0, %3 : tensor<16xi64>, tensor<16xi64>) outs(%0 : tensor<16xi64>) {
 ^bb0(%in: i64, %in_0: i64, %out: i64):
 %5 = arith.xori %in, %in_0 : i64
 linalg.yield %5 : i64
 } -> tensor<16xi64>
 return %4 : tensor<16xi64>
 }
} 42

Processing
Element

+, -, *, ^

Processing
Element

+, -, *, ^

Processing
Element

+, -, *, ^

Processing
Element

+, -, *, ^

Processing
Element

+, -, *, ^

Processing
Element

+, -, *, ^

Processing
Element

+, -, *, ^

Processing
Element

+, -, *, ^

Deploy subtraction

#map = affine_map<(d0) -> (d0)>
module {
 func.func public @streamer_add(%arg0: tensor<16xi64>, %arg1: tensor<16xi64>) -> tensor<16xi64> {
 %0 = tensor.empty() : tensor<16xi64>
 %1 = linalg.generic {indexing_maps = [#map, #map, #map], iterator_types = ["parallel"]}
 ins(%arg0, %arg1 : tensor<16xi64>, tensor<16xi64>) outs(%0 : tensor<16xi64>) {
 ^bb0(%in: i64, %in_0: i64, %out: i64):
 %5 = arith.addi %in, %in_0 : i64
 linalg.yield %5 : i64
 } -> tensor<16xi64>
 %2 = linalg.generic {indexing_maps = [#map, #map, #map], iterator_types = ["parallel"]}
 ins(%arg0, %1 : tensor<16xi64>, tensor<16xi64>) outs(%0 : tensor<16xi64>) {
 ^bb0(%in: i64, %in_0: i64, %out: i64):
 %5 = arith.subi %in, %in_0 : i64
 linalg.yield %5 : i64
 } -> tensor<16xi64>
 %3 = linalg.generic {indexing_maps = [#map, #map, #map], iterator_types = ["parallel"]}
 ins(%arg0, %2 : tensor<16xi64>, tensor<16xi64>) outs(%0 : tensor<16xi64>) {
 ^bb0(%in: i64, %in_0: i64, %out: i64):
 %5 = arith.muli %in, %in_0 : i64
 linalg.yield %5 : i64
 } -> tensor<16xi64>
 %4 = linalg.generic {indexing_maps = [#map, #map, #map], iterator_types = ["parallel"]}
 ins(%arg0, %3 : tensor<16xi64>, tensor<16xi64>) outs(%0 : tensor<16xi64>) {
 ^bb0(%in: i64, %in_0: i64, %out: i64):
 %5 = arith.xori %in, %in_0 : i64
 linalg.yield %5 : i64
 } -> tensor<16xi64>
 return %4 : tensor<16xi64>
 }
}

Deploy subtraction

43

Processing
Element

+, -, *, ^

Processing
Element

+, -, *, ^

Processing
Element

+, -, *, ^

Processing
Element

+, -, *, ^

Processing
Element

+, -, *, ^

Processing
Element

+, -, *, ^

Processing
Element

+, -, *, ^

Processing
Element

+, -, *, ^

#map = affine_map<(d0) -> (d0)>
module {
 func.func public @streamer_add(%arg0: tensor<16xi64>, %arg1: tensor<16xi64>) -> tensor<16xi64> {
 %0 = tensor.empty() : tensor<16xi64>
 %1 = linalg.generic {indexing_maps = [#map, #map, #map], iterator_types = ["parallel"]}
 ins(%arg0, %arg1 : tensor<16xi64>, tensor<16xi64>) outs(%0 : tensor<16xi64>) {
 ^bb0(%in: i64, %in_0: i64, %out: i64):
 %5 = arith.addi %in, %in_0 : i64
 linalg.yield %5 : i64
 } -> tensor<16xi64>
 %2 = linalg.generic {indexing_maps = [#map, #map, #map], iterator_types = ["parallel"]}
 ins(%arg0, %1 : tensor<16xi64>, tensor<16xi64>) outs(%0 : tensor<16xi64>) {
 ^bb0(%in: i64, %in_0: i64, %out: i64):
 %5 = arith.subi %in, %in_0 : i64
 linalg.yield %5 : i64
 } -> tensor<16xi64>
 %3 = linalg.generic {indexing_maps = [#map, #map, #map], iterator_types = ["parallel"]}
 ins(%arg0, %2 : tensor<16xi64>, tensor<16xi64>) outs(%0 : tensor<16xi64>) {
 ^bb0(%in: i64, %in_0: i64, %out: i64):
 %5 = arith.muli %in, %in_0 : i64
 linalg.yield %5 : i64
 } -> tensor<16xi64>
 %4 = linalg.generic {indexing_maps = [#map, #map, #map], iterator_types = ["parallel"]}
 ins(%arg0, %3 : tensor<16xi64>, tensor<16xi64>) outs(%0 : tensor<16xi64>) {
 ^bb0(%in: i64, %in_0: i64, %out: i64):
 %5 = arith.xori %in, %in_0 : i64
 linalg.yield %5 : i64
 } -> tensor<16xi64>
 return %4 : tensor<16xi64>
 }
} 44

Processing
Element

+, -, *, ^

Processing
Element

+, -, *, ^

Processing
Element

+, -, *, ^

Processing
Element

+, -, *, ^

Processing
Element

+, -, *, ^

Processing
Element

+, -, *, ^

Processing
Element

+, -, *, ^

Processing
Element

+, -, *, ^

Processing
Element

+, -, *, ^

Processing
Element

+, -, *, ^

Processing
Element

+, -, *, ^

Processing
Element

+, -, *, ^

Deploy multiplication

#map = affine_map<(d0) -> (d0)>
module {
 func.func public @streamer_add(%arg0: tensor<16xi64>, %arg1: tensor<16xi64>) -> tensor<16xi64> {
 %0 = tensor.empty() : tensor<16xi64>
 %1 = linalg.generic {indexing_maps = [#map, #map, #map], iterator_types = ["parallel"]}
 ins(%arg0, %arg1 : tensor<16xi64>, tensor<16xi64>) outs(%0 : tensor<16xi64>) {
 ^bb0(%in: i64, %in_0: i64, %out: i64):
 %5 = arith.addi %in, %in_0 : i64
 linalg.yield %5 : i64
 } -> tensor<16xi64>
 %2 = linalg.generic {indexing_maps = [#map, #map, #map], iterator_types = ["parallel"]}
 ins(%arg0, %1 : tensor<16xi64>, tensor<16xi64>) outs(%0 : tensor<16xi64>) {
 ^bb0(%in: i64, %in_0: i64, %out: i64):
 %5 = arith.subi %in, %in_0 : i64
 linalg.yield %5 : i64
 } -> tensor<16xi64>
 %3 = linalg.generic {indexing_maps = [#map, #map, #map], iterator_types = ["parallel"]}
 ins(%arg0, %2 : tensor<16xi64>, tensor<16xi64>) outs(%0 : tensor<16xi64>) {
 ^bb0(%in: i64, %in_0: i64, %out: i64):
 %5 = arith.muli %in, %in_0 : i64
 linalg.yield %5 : i64
 } -> tensor<16xi64>
 %4 = linalg.generic {indexing_maps = [#map, #map, #map], iterator_types = ["parallel"]}
 ins(%arg0, %3 : tensor<16xi64>, tensor<16xi64>) outs(%0 : tensor<16xi64>) {
 ^bb0(%in: i64, %in_0: i64, %out: i64):
 %5 = arith.xori %in, %in_0 : i64
 linalg.yield %5 : i64
 } -> tensor<16xi64>
 return %4 : tensor<16xi64>
 }
}

Deploy multiplication

45

Processing
Element

+, -, *, ^

Processing
Element

+, -, *, ^

Processing
Element

+, -, *, ^

Processing
Element

+, -, *, ^

Processing
Element

+, -, *, ^

Processing
Element

+, -, *, ^

Processing
Element

+, -, *, ^

Processing
Element

+, -, *, ^

Processing
Element

+, -, *, ^

Processing
Element

+, -, *, ^

Processing
Element

+, -, *, ^

Processing
Element

+, -, *, ^

#map = affine_map<(d0) -> (d0)>
module {
 func.func public @streamer_add(%arg0: tensor<16xi64>, %arg1: tensor<16xi64>) -> tensor<16xi64> {
 %0 = tensor.empty() : tensor<16xi64>
 %1 = linalg.generic {indexing_maps = [#map, #map, #map], iterator_types = ["parallel"]}
 ins(%arg0, %arg1 : tensor<16xi64>, tensor<16xi64>) outs(%0 : tensor<16xi64>) {
 ^bb0(%in: i64, %in_0: i64, %out: i64):
 %5 = arith.addi %in, %in_0 : i64
 linalg.yield %5 : i64
 } -> tensor<16xi64>
 %2 = linalg.generic {indexing_maps = [#map, #map, #map], iterator_types = ["parallel"]}
 ins(%arg0, %1 : tensor<16xi64>, tensor<16xi64>) outs(%0 : tensor<16xi64>) {
 ^bb0(%in: i64, %in_0: i64, %out: i64):
 %5 = arith.subi %in, %in_0 : i64
 linalg.yield %5 : i64
 } -> tensor<16xi64>
 %3 = linalg.generic {indexing_maps = [#map, #map, #map], iterator_types = ["parallel"]}
 ins(%arg0, %2 : tensor<16xi64>, tensor<16xi64>) outs(%0 : tensor<16xi64>) {
 ^bb0(%in: i64, %in_0: i64, %out: i64):
 %5 = arith.muli %in, %in_0 : i64
 linalg.yield %5 : i64
 } -> tensor<16xi64>
 %4 = linalg.generic {indexing_maps = [#map, #map, #map], iterator_types = ["parallel"]}
 ins(%arg0, %3 : tensor<16xi64>, tensor<16xi64>) outs(%0 : tensor<16xi64>) {
 ^bb0(%in: i64, %in_0: i64, %out: i64):
 %5 = arith.xori %in, %in_0 : i64
 linalg.yield %5 : i64
 } -> tensor<16xi64>
 return %4 : tensor<16xi64>
 }
} 46

Processing
Element

+, -, *, ^

Processing
Element

+, -, *, ^

Processing
Element

+, -, *, ^

Processing
Element

+, -, *, ^

Processing
Element

+, -, *, ^

Processing
Element

+, -, *, ^

Processing
Element

+, -, *, ^

Processing
Element

+, -, *, ^

Processing
Element

+, -, *, ^

Processing
Element

+, -, *, ^

Processing
Element

+, -, *, ^

Processing
Element

+, -, *, ^

Processing
Element

+, -, *, ^

Processing
Element

+, -, *, ^

Processing
Element

+, -, *, ^

Processing
Element

+, -, *, ^

Deploy exclusive or

#map = affine_map<(d0) -> (d0)>
module {
 func.func public @streamer_add(%arg0: tensor<16xi64>, %arg1: tensor<16xi64>) -> tensor<16xi64> {
 %0 = tensor.empty() : tensor<16xi64>
 %1 = linalg.generic {indexing_maps = [#map, #map, #map], iterator_types = ["parallel"]}
 ins(%arg0, %arg1 : tensor<16xi64>, tensor<16xi64>) outs(%0 : tensor<16xi64>) {
 ^bb0(%in: i64, %in_0: i64, %out: i64):
 %5 = arith.addi %in, %in_0 : i64
 linalg.yield %5 : i64
 } -> tensor<16xi64>
 %2 = linalg.generic {indexing_maps = [#map, #map, #map], iterator_types = ["parallel"]}
 ins(%arg0, %1 : tensor<16xi64>, tensor<16xi64>) outs(%0 : tensor<16xi64>) {
 ^bb0(%in: i64, %in_0: i64, %out: i64):
 %5 = arith.subi %in, %in_0 : i64
 linalg.yield %5 : i64
 } -> tensor<16xi64>
 %3 = linalg.generic {indexing_maps = [#map, #map, #map], iterator_types = ["parallel"]}
 ins(%arg0, %2 : tensor<16xi64>, tensor<16xi64>) outs(%0 : tensor<16xi64>) {
 ^bb0(%in: i64, %in_0: i64, %out: i64):
 %5 = arith.muli %in, %in_0 : i64
 linalg.yield %5 : i64
 } -> tensor<16xi64>
 %4 = linalg.generic {indexing_maps = [#map, #map, #map], iterator_types = ["parallel"]}
 ins(%arg0, %3 : tensor<16xi64>, tensor<16xi64>) outs(%0 : tensor<16xi64>) {
 ^bb0(%in: i64, %in_0: i64, %out: i64):
 %5 = arith.xori %in, %in_0 : i64
 linalg.yield %5 : i64
 } -> tensor<16xi64>
 return %4 : tensor<16xi64>
 }
}

Deploy exclusive or

47

Processing
Element

+, -, *, ^

Processing
Element

+, -, *, ^

Processing
Element

+, -, *, ^

Processing
Element

+, -, *, ^

Processing
Element

+, -, *, ^

Processing
Element

+, -, *, ^

Processing
Element

+, -, *, ^

Processing
Element

+, -, *, ^

Processing
Element

+, -, *, ^

Processing
Element

+, -, *, ^

Processing
Element

+, -, *, ^

Processing
Element

+, -, *, ^

Processing
Element

+, -, *, ^

Processing
Element

+, -, *, ^

Processing
Element

+, -, *, ^

Processing
Element

+, -, *, ^

Performance

48

Load data * 4

Store data * 4

Program accelerator * 4

49

Simple example no. 2 operator fusion

We can make this much faster if we support operator fusion

● Addition
● Subtraction
● Multiplication
● Bitwise Exclusive OR

(A^(A*(A-(A+B))))

Deploy this on the simple 4-way array

#map = affine_map<(d0) -> (d0)>
module {
 func.func public @streamer_add(%arg0: tensor<16xi64>, %arg1: tensor<16xi64>) -> tensor<16xi64> {
 %0 = tensor.empty() : tensor<16xi64>
 %1 = linalg.add ins(%arg0, %arg1 : tensor<16xi64>, tensor<16xi64>) outs(%0 : tensor<16xi64>) ->
tensor<16xi64>
 %2 = linalg.sub ins(%arg0, %1 : tensor<16xi64>, tensor<16xi64>) outs(%0 : tensor<16xi64>) -> tensor<16xi64>
 %3 = linalg.mul ins(%arg0, %2 : tensor<16xi64>, tensor<16xi64>) outs(%0 : tensor<16xi64>) -> tensor<16xi64>
 %4 = linalg.generic {indexing_maps = [#map, #map, #map], iterator_types = ["parallel"]} ins(%arg0, %3 :
tensor<16xi64>, tensor<16xi64>) outs(%0 : tensor<16xi64>) {
 ^bb0(%in: i64, %in_0: i64, %out: i64):
 %5 = arith.xori %in, %in_0 : i64
 linalg.yield %5 : i64
 } -> tensor<16xi64>
 return %4 : tensor<16xi64>
 }
}

50

Deploy this on the simple 4-way array

#map = affine_map<(d0) -> (d0)>
module {
 func.func public @streamer_add(%arg0: tensor<16xi64>, %arg1: tensor<16xi64>) -> tensor<16xi64> {
 %0 = tensor.empty() : tensor<16xi64>
 %1 = linalg.generic {indexing_maps = [#map, #map, #map], iterator_types = ["parallel"]} ins(%arg0, %arg1 :
tensor<16xi64>, tensor<16xi64>) outs(%0 : tensor<16xi64>) {
 ^bb0(%in: i64, %in_0: i64, %out: i64):
 %2 = arith.addi %in, %in_0 : i64
 %3 = arith.subi %in, %2 : i64
 %4 = arith.muli %in, %3 : i64
 %5 = arith.xori %in, %4 : i64
 linalg.yield %5 : i64
 } -> tensor<16xi64>
 return %1 : tensor<16xi64>
 }
}

51

Processing
Element
(A^(A*(A-(A+B))))

Processing
Element
(A^(A*(A-(A+B))))

Processing
Element
(A^(A*(A-(A+B))))

Processing
Element
(A^(A*(A-(A+B))))

Deploy this on the simple 4-way array

#map = affine_map<(d0) -> (d0)>
module {
 func.func public @streamer_add(%arg0: tensor<16xi64>, %arg1: tensor<16xi64>) -> tensor<16xi64> {
 %0 = tensor.empty() : tensor<16xi64>
 %1 = linalg.generic {indexing_maps = [#map, #map, #map], iterator_types = ["parallel"]} ins(%arg0, %arg1 :
tensor<16xi64>, tensor<16xi64>) outs(%0 : tensor<16xi64>) {
 ^bb0(%in: i64, %in_0: i64, %out: i64):
 %2 = arith.addi %in, %in_0 : i64
 %3 = arith.subi %in, %2 : i64
 %4 = arith.muli %in, %3 : i64
 %5 = arith.xori %in, %4 : i64
 linalg.yield %5 : i64
 } -> tensor<16xi64>
 return %1 : tensor<16xi64>
 }
}

52

Processing
Element
(A^(A*(A-(A+B))))

Processing
Element
(A^(A*(A-(A+B))))

Processing
Element
(A^(A*(A-(A+B))))

Processing
Element
(A^(A*(A-(A+B))))

Performance

Store data * 1

Load data * 1

Program accelerator * 1

53

Discussion

Tradeoff - More specific accelerators or more performance?

54

How did we create this?

55

Shortcut no. 1 - xDSL for quick prototyping

56

xDSL, an open-source MLIR, CIRCT compatible framework in Python, to quickly
prototype new MLIR dialects and combinations of compiler passes.

github.com/xdslproject/xdsl

http://github.com/xdslproject/xdsl

Shortcut no. 2 - PE array + SNAX platform = NPU

CPU

Memory

Load unit

Processing
Element

Processing
Element

Processing
Element

Processing
Element

Processing
Element

Processing
Element

Processing
Element

Processing
Element

Store unit

57

SNAX platform to inlay
the generated PE array

github.com/KULeuven
-MICAS/snax_cluster

http://github.com/KULeuven-MICAS/snax_cluster
http://github.com/KULeuven-MICAS/snax_cluster

Shortcut no. 3 - SNAX-MLIR sw compilation toolchain

58

● Compatible with RISC-V control core (rv32imc)

● linalg.generic → loads/stores + program accelerators with dynamic
backends

github.com/KULeuven-MICAS/snax-mlir

http://github.com/KULeuven-MICAS/snax-mlir

In the future

● Overlay functionality on parts of the PE
● Support for multiple dataflows
● Multi-accelerator support
● Support for multi-cycle hardware (ready/valid)
● Floating-point support (not because I like FP, rather because I don’t like

quantization)

59

Takeaways of this talk
● NPUs are dedicated processors to accelerate dense linear algebra
● Properly using and and designing NPUS them requires an overhaul of the

design process
● We leverage MLIR, CIRCT, xDSL and SNAX to quickly create new NPUs and

compilers together through programmable hardware synthesis
60

Thank you!
Questions?

josse:matrix.org

linkedin.com/in/jossevandelm/

github.com/JosseVanDelm

vandelm.com

http://linkedin.com/in/jossevandelm/
http://github.com/JosseVanDelm
http://vandelm.com

References:

61

[1] “TPU v4” by Norman P. Jouppi, George Kurian, Sheng Li, Peter Ma, Rahul Nagarajan, Lifeng Nai,
Nishant Patil, Suvinay Subramanian, Andy Swing, Brian Towles, Cliff Young, Xiang Zhou, Zongwei Zhou,
and David Patterson licensed under Creative Commons Attribution 4.0 International license

[2] “Apple M1” by Henriok licensed under the Public Domain

[3] “AMD BC-160” by Мой Компьютер licensed under Creative Commons Attribution 3.0 Unported
license

[4] “NVIDIA H100” by Geekerwan licensed under Creative Commons Attribution 3.0 Unported

[5] “Microprocessor Trend Data” by “Karl Rupp” licensed under Creative Commons Attribution 4.0
International Public License

[6] Jouppi, Norman P., et al. "In-datacenter performance analysis of a tensor processing unit."
Proceedings of the 44th annual international symposium on computer architecture. 2017.

https://creativecommons.org/licenses/by/4.0/deed.en
https://creativecommons.org/publicdomain/zero/1.0/deed.en
https://creativecommons.org/licenses/by/3.0/deed.en
https://creativecommons.org/licenses/by/3.0/deed.en
https://creativecommons.org/licenses/by/4.0/deed.en
https://creativecommons.org/licenses/by/4.0/deed.en

A new dialect to create programmable* hardware

phs.pe:
An operation that represents what a PE of the NPU can do

phs.choose:
A named operation that represents a choice of operation in different MLIR operations

phs.mux:
“multiplexer” - an unnamed operation operation that represents a choice of dataflow
for the PE

phs.yield:
a terminator operation similar to scf.yield and linalg.yield.

Creating the hardware with the PHS dialect

62

To go from linalg to a programmable PE

1. Convert each linalg to a linalg.generic
2. Convert each linalg.generic to a phs.pe op
3. Aggregate all phs.pe ops through their named phs.choose_ops and

insert phs.mux_ops where necessary
4. Generate an array of phs.pe elements
5. Convert the aggregated phs.pe to systemverilog with CIRCT

63

2) Convert each linalg.generic to a phs.pe op

64

%1 = linalg.generic {indexing_maps = [#map, #map, #map], iterator_types = ["parallel"]}
ins(%arg0, %arg1 : tensor<16xi64>, tensor<16xi64>) outs(%0 : tensor<16xi64>) {
^bb0(%in: i64, %in_0: i64, %out: i64):
 %5 = arith.addi %in, %in_0 : i64
 linalg.yield %5 : i64
} -> tensor<16xi64>

phs.pe @acc1 with %0 (%in : i64, %in_1 : i64) {
 %1 = phs.choose @i_i64_i64_o_i64_0 with %0 (%in : i64, %in_1 : i64) -> i64
 0) {
 %2 = arith.addi %in, %in_1 : i64
 phs.yield %2 : i64
 }
 phs.yield %1 : i64

pe @acc1

2) Convert each linalg.generic to a phs.pe op

65

phs.pe @acc1 with %0 (%in : i64, %in_1 : i64) {
 %1 = phs.choose @i_i64_i64_o_i64_0 with %0 (%in : i64, %in_1 : i64) -> i64
 0) {
 %2 = arith.addi %in, %in_1 : i64
 phs.yield %2 : i64
 }
 phs.yield %1 : i64

%in : i64 %in_1 : i64

%0

%1 : i64

+@i_i64_i64_o_i64_0

2) Convert each linalg.generic to a phs.pe op

66

%2 = linalg.generic {indexing_maps = [#map, #map, #map], iterator_types = ["parallel"]}
ins(%arg0, %1 : tensor<16xi64>, tensor<16xi64>) outs(%0 : tensor<16xi64>) {
^bb0(%in: i64, %in_0: i64, %out: i64):
 %5 = arith.subi %in, %in_0 : i64
 linalg.yield %5 : i64
} -> tensor<16xi64>

phs.pe @acc1 with %0 (%in : i64, %in_1 : i64) {
 %1 = phs.choose @i_i64_i64_o_i64_0 with %0 (%in : i64, %in_1 : i64) -> i64
 0) {
 %2 = arith.subi %in, %in_1 : i64
 phs.yield %2 : i64
 }
 phs.yield %1 : i64

2) Convert each linalg.generic to a phs.pe op

67

phs.pe @acc1 with %0 (%in : i64, %in_1 : i64) {
 %1 = phs.choose @i_i64_i64_o_i64_0 with %0 (%in : i64, %in_1 : i64) -> i64
 0) {
 %2 = arith.subi %in, %in_1 : i64
 phs.yield %2 : i64
 }
 phs.yield %1 : i64

pe @acc1

%in : i64 %in_1 : i64

%0

%1 : i64

-@i_i64_i64_o_i64_0

3) Aggregate all phs.pe ops through their named
phs.choose_ops and insert phs.mux_ops where necessary

68

phs.pe @acc1 with %0 (%in : i64, %in_1 : i64) {
 %1 = phs.choose @i_i64_i64_o_i64_0 with %0
 (%in : i64, %in_1 : i64) -> i64
 0) {
 %2 = arith.subi %in, %in_1 : i64
 phs.yield %2 : i64
 }
 phs.yield %1 : i64

phs.pe @acc1 with %0 (%in : i64, %in_1 : i64) {
 %1 = phs.choose @i_i64_i64_o_i64_0 with %0
 (%in : i64, %in_1 : i64) -> i64
 0) {
 %2 = arith.addi %in, %in_1 : i64
 phs.yield %2 : i64
 }
 phs.yield %1 : i64

phs.pe @acc1 with %0 (%in : i64, %in_1 : i64) {
 %1 = phs.choose @i_i64_i64_o_i64_0 with %0
(%in : i64, %in_1 : i64) -> i64
 0) {
 %2 = arith.addi %in, %in_1 : i64
 phs.yield %2 : i64
 }
 1) {
 %3 = arith.subi %in, %in_1 : i64
 phs.yield %3 : i64
 }
 phs.yield %1 : i64
}

3) Aggregate all phs.pe ops through their named
phs.choose_ops and insert phs.mux_ops where necessary

69

phs.pe @acc1 with %0 (%in : i64, %in_1 : i64) {
 %1 = phs.choose @i_i64_i64_o_i64_0 with %0
(%in : i64, %in_1 : i64) -> i64
 0) {
 %2 = arith.addi %in, %in_1 : i64
 phs.yield %2 : i64
 }
 1) {
 %3 = arith.subi %in, %in_1 : i64
 phs.yield %3 : i64
 }
 phs.yield %1 : i64
}

pe @acc1

%in : i64 %in_1 : i64

%0

%1 : i64

+ or -@i_i64_i64_o_i64_0

70

phs.pe @acc1 with %0 (%in : i64, %in_1 : i64) {
 %1 = phs.choose @i_i64_i64_o_i64_0 with %0 (%in : i64, %in_1 : i64) -> i64
 0) {
 %2 = arith.addi %in, %in_1 : i64
 phs.yield %2 : i64
 }
 1) {
 %3 = arith.subi %in, %in_1 : i64
 phs.yield %3 : i64
 }
 2) {
 %4 = arith.muli %in, %in_1 : i64
 phs.yield %4 : i64
 }
 3) {
 %5 = arith.xori %in, %in_1 : i64
 phs.yield %5 : i64
 }
 phs.yield %1 : i64
}

pe @acc1

%in : i64 %in_1 : i64

%0

%1 : i64

+ or - or * or ^@i_i64_i64_o_i64_0

3) Aggregate all phs.pe ops through their named
phs.choose_ops and insert phs.mux_ops where necessary

71

pe @acc1

%in : i64 %in_1 : i64

%0

%1 : i64

+ or - or * or ^

4) Generate an array of
phs.pe elements

hw.module private @acc1(in %in data_0: i64, in %in_1 data_1: i64,
 in %0 switch_0: i2, out out_0: i64) {
 %1 = arith.addi %in, %in_1 : i64
 %2 = arith.subi %in, %in_1 : i64
 %3 = arith.muli %in, %in_1 : i64
 %4 = arith.xori %in, %in_1 : i64
 %5 = hw.array_create %4, %3, %2, %1 : i64
 %6 = hw.array_get %5[%0] : !hw.array<4xi64>, i2
 hw.output %6 : i64
}
hw.module @acc1_array(in %0 data_0: !hw.array<4xi64>,
 in %1 data_1: !hw.array<4xi64>,
 in %2 switch_0: i2, out out_0:
!hw.array<4xi64>) {
 %3 = arith.constant 0 : i2
 %4 = hw.array_get %0[%3] : !hw.array<4xi64>, i2
 %5 = arith.constant 0 : i2
 %6 = hw.array_get %1[%5] : !hw.array<4xi64>, i2
 %7 = hw.instance "acc1_pe_0" @acc1(data_0: %4: i64,
 data_1: %6: i64, switch_0: %2: i2) -> (out_0: i64)
 %8 = arith.constant 1 : i2
 %9 = hw.array_get %0[%8] : !hw.array<4xi64>, i2
 %10 = arith.constant 1 : i2
 %11 = hw.array_get %1[%10] : !hw.array<4xi64>, i2
 %12 = hw.instance "acc1_pe_1" @acc1(data_0: %9: i64,
 data_1: %11: i64, switch_0: %2: i2) -> (out_0: i64)
 …
 %23 = hw.array_create %22, %17, %12, %7 : i64
 hw.output %23 : !hw.array<4xi64>
}

pe @acc1

%in : i64 %in_1 : i64

%0

%1 : i64

+ or - or * or ^
pe @acc1

%in : i64 %in_1 : i64

%0

%1 : i64

+ or - or * or ^
pe @acc1

%in : i64 %in_1 : i64

%0

%1 : i64

+ or - or * or ^

