AMUTABLE

Path Safety
“in the Trenches”

Aleksa Sarai — github.com/cyphar
Founding Engineer @ Amutable
FOSDEM 2026-01-31

http://github.com/cyphar
https://www.cyphar.com/talks

runc

P kubernetes SR

/// SAa
- e cri-o
containerd SN PPt
A .
D (UNC ot buildah

i podman

S cat config.json
{
"process": { ... },
"root": { "path": "path/to/rootfs" },
"mounts": [
{ "destination": "/proc", "type": "proc" },

1,

"Tinux": {
"resources": { "devices": [...] },
"namespaces": [...],

}

S cat config.json

{ ...}

S runc run ctr-name
ctr# ...

“regular” path safety

path safety R e e

regular path safety

e When operating on a path, a path component might be
swapped with a symlink or moved.

e Classic time-of-check-to-time-of-use attacks abound.

example: regular path (un)safety

fd1
fd2

open(
open(

mkdir(
mkdir(

1ink(

unlink(

)s

)s

, O_CREAT|O_TRUNC|O_RDWR,

, O_NOFOLLOW|O_RDONLY);

)s

example: regular path (un)safety

fd1
fd2

open(
open(

mkdir(
mkdir(

1ink(

unlink(

)s

)s

, O_CREAT|O_TRUNC|O_RDWR,

, O_NOFOLLOW|O_RDONLY);

)s

surely this isn’t that common...

surely this isn't that common...

e CVE-2017-1002101 e (CVE-2024-45310
e CVE-2018-15664 e CVE-2024-0132
e (CVE-2019-16884 e (CVE-2024-0133
e CVE-2019-19921 e CVE-2024-9676
o (CVE-2021-30465 o (CVE-2025-31133
o C(CVE-2023-27561 e (CVE-2025-52565
e CVE-2023-28642 e ...andsoon...

e (CVE-2024-1753

https://github.com/kubernetes/kubernetes/issues/60813
https://www.openwall.com/lists/oss-security/2019/05/28/1
https://github.com/advisories/GHSA-fgv8-vj5c-2ppq
https://github.com/opencontainers/runc/security/advisories/GHSA-fh74-hm69-rqjw
https://github.com/opencontainers/runc/security/advisories/GHSA-c3xm-pvg7-gh7r
https://github.com/opencontainers/runc/security/advisories/GHSA-g2j6-57v7-gm8c
https://github.com/opencontainers/runc/security/advisories/GHSA-g2j6-57v7-gm8c
https://github.com/containers/podman/security/advisories/GHSA-874v-pj72-92f3
https://github.com/opencontainers/runc/security/advisories/GHSA-jfvp-7x6p-h2pv
https://github.com/NVIDIA/libnvidia-container/security/advisories/GHSA-q2v4-jw5g-9xxj
https://github.com/NVIDIA/libnvidia-container/security/advisories/GHSA-xff4-h7r9-vrpf
https://github.com/advisories/GHSA-wq2p-5pc6-wpgf
https://github.com/opencontainers/runc/security/advisories/GHSA-9493-h29p-rfm2
https://github.com/opencontainers/runc/security/advisories/GHSA-qw9x-cqr3-wc7r

regular path safety — openat2

openat2(dirfd, *path,
open_how *how, size);
open_how {
flags; [* 0_* flags */
mode; /* O _CREAT file mode */

resolve; /* resolution flags */

s

regular path safety — openat2

e Most programs can make do with one of the following:
o RESOLVE_IN_ROOT - chroot(2)-like lookups
o RESOLVE_BENEATH —restricted lookups
o RESOLVE_NO_SYMLINKS — better 0_NOFOLLOW (/ still escapes)

e Requires the program to primarily use file descriptors.

example: regular path safety (i)

how.
how.

how.
how.

root = open(R O_DIRECTORYlo_PATH);

open_how how = { .resolve = RESOLVE_IN ROOT };

flags = O_CREAT|O_TRUNC|O_RDWR;

mode = ;

fd1l = openat2(root, , &how, (how));
flags = O_NOFOLLOW|O_TRUNC|O_RDWR;

mode = 0;
fd2 = openat2(root, , &how, (how));

example: regular path safety (ii

root = open(R O_DIRECTORYlo_PATH);

open_how how =
{ .flags = O_DIRECTORY|O_PATH,
.resolve = RESOLVE_IN ROOT };
dfd = openat2(root, , &how, (how));
mkdirat(dfd, ,); /* mkdir(/rootfs/foo/bar) */

regular path safety - 0_PATH

e Implement per-component lookups in userspace (very finicky).

Still requires file-descriptor-based code.

Usually needs readlink() verification.

See:systemd'’s chaseat, Go's os.Root, libpathrs.

http://github.com/systemd/systemd/blob/v258/src/basic/chase.c#L125
https://pkg.go.dev/os#Root
https://github.com/cyphar/libpathrs/

libpathrs

e Rust library that wraps the most commonly needed Filesystem
operations on a root filesystem with friendly™ C FFl interfaces.

o Also has Go and Python bindings.
o pathrs-lite—pure-Go port.

e Transparently supports openat2 and the 0_PATH fallback.

https://github.com/cyphar/libpathrs
https://pkg.go.dev/github.com/cyphar/filepath-securejoin/pathrs-lite

example: libpathrs (c)

"<pathrs.h>"

root = pathrs_open_root("/rootfs"); /* or open(2) */

fdl = pathrs_inroot_creat(root, "/etc/foo",
O_RDWR|O_TRUNC, 0644);
fd2 = pathrs_inroot_open(root, "/etc/hosts",

O_NOFOLLOW|O_RDONLY);
pathrs_inroot_hardlink(root, "/foo/bar/baz", "/foo/bar/boop");

pathrs_inroot_unlink(root, "/foo/bar/baz");

https://github.com/cyphar/libpathrs

example: libpathrs (rust)

use pathrs::{Root, flags::OpenFlags};
let root = Root::open("/path/to/root")?;

// Resolve and open a file.

let passwd = root
.resolve("/etc/passwd")?
.reopen(OpenFlags::0_RDONLY)?;

/] ... or ...

let passwd = root.open_subpath(
"/etc/passwd", OpenFlags::0_RDONLY

)?;

// Create a new file and open it (O_CREAT).

let newfile = root.create_file(
"/etc/newfile",
OpenFlags::0_RDWR,
&Permissions::from_mode(0o755),

)?;

// Create a symlink.
let newfile = root.create(

"/link",

&InodeType: :Symlink("/target".into()),
)7;

// mkdir -p

let dir = root.mkdir_all(
"/foo/bar/baz",
&Permissions::from_mode(0o755),

)?;
/] rm -r

root.remove_all("/foo/bar")?;

// See the docs for more info.

https://github.com/cyphar/libpathrs
https://docs.rs/pathrs/latest/pathrs/

strict path safety

[proc/self/attr/exec,
[proc/self/mountinfo,
/proc/sys/Ssysctl, etc.

strict path safety

e For certain pseudo-filesystems we need to ensure we are
operating on an exact path.

o procfsis most critical.

e Overmounts or fake mounts can trick us into doing dangerous
operations or make operations a no-op.

example: strict path (un)safety

1fd = open(, O_RDWR);
dprintf(lfd,);

pfd = open(, O_RDWR);
dprintf(pfd,);

reopen = open(, O_RDWR);

execve(s eee)l

surely not!

okay, it's a bit less common...

e (CVE-2019-16884
e (CVE-2019-19921
e (CVE-2025-52881

https://github.com/advisories/GHSA-fgv8-vj5c-2ppq
https://github.com/opencontainers/runc/security/advisories/GHSA-fh74-hm69-rqjw
https://github.com/opencontainers/runc/security/advisories/GHSA-cgrx-mc8f-2prm

example: strict path safety

procfd = open("/proc", O_DIRECTORY|O_PATH);
/* check PROC_SUPER_MAGIC and PROC_ROOT_INO */

open_how how =
{ .flags = O_WRONLY,
.resolve = RESOLVE_BENEATH|RESOLVE_NO_ XDEV };
1fd = openat2(procfd, "self/attr/exec", &how, sizeof(how));
dprintf(1fd, "exec docker-default\n");

example: strict path safety

procfd = open("/proc", O_DIRECTORY|O_PATH);
/* check PROC_SUPER_MAGIC and PROC_ROOT_INO */

open_how how = "
{ .flags = O_WRONLY,
.resolve = RESOLVE_BENEATH|RESOLVE_NO_ XDEV };

1fd = openat2(procfd, "self/attr/exec", &how, sizeof(how));
dprintf(1fd, "exec docker-default\n");

magic-links?
/proc/self/exe,
[proc/self/fd/Sn,
[/proc/self/root, etc.

example: strict path safety

procfd = open(, O_DIRECTORY|O_PATH);
/* check PROC_SUPER_MAGIC and PROC_ROOT_INO */

open_how how =
{ .flags = O_RDWR,
.resolve = RESOLVE_BENEATH|RESOLVE_NO_ XDEV };
reopen = openat2(procfd, s
&how, (how));

example: strict path safety

procfd = open("/proc", O_DIRECTORY|O_PATH);
/* check PROC_SUPER_MAGIC and PROC_ROOT_INO */

open_how how =
{ .flags = O_RDWR,
.resolve = RESOLVE_BENEATH | [0 AU OOE] };
reopen = openat2(procfd, "thread-self/fd/123",
&how, sizeof(how));

example: strict path safety

procfd = open("/proc", O_DIRECTORY|O _PATH);
/* check PROC_SUPER_MAGIC and PROC_ROOT INO */

open_how how =
{ .flags = O _DIRECTORY,
.resolve = RESOLVE_BENEATH|RESOLVE_NO_XDEV };

fdfd = openat2(procfd, "thread-self/fd", &how, sizeof(how));

/* validate no overmounts */
reopen = openat(fdfd, "123", O_RDWR);

example: strict path safety

procfd = open("/proc", O_DIRECTORY|O _PATH);
/* check PROC_SUPER_MAGIC and PROC_ROOT INO */

open_how how =
{ .flags = O _DIRECTORY,
.resolve = RESOLVE_BENEATH|RESOLVE_NO_XDEV };

fdfd = openat2(procfd, "thread-self/fd", &how, sizeof(how));

JRllvalidate no overmountsiili

reopen = openat(fdfd, "123", O_RDWR);

example: strict path (un)safety

procfd = open("/proc", O_DIRECTORY|O _PATH);
/* check PROC_SUPER_MAGIC and PROC_ROOT INO */

open_how how =
{ .flags = O _DIRECTORY,
.resolve = RESOLVE_BENEATH|RESOLVE_NO_XDEV };

fdfd = openat2(procfd, "thread-self/fd", &how, sizeof(how));

JRllvalidate no overmountsiili

reopen = openat(fdfd, "123", O_RDWR);

Mman
Mman
Mman
Mman
Mman
Mman

2 fsopen

2 fspick

2 fsconfig

2 fsmount

2 open_tree*
2 move_mount

example: strict path safety

procfd = open("/proc”, O_DIRECTORY|O_PATH);
/* check PROC_SUPER_MAGIC and PROC_ROOT_INO */

open_how how =
{ .flags = O_DIRECTORY,
.resolve = RESOLVE_BENEATH|RESOLVE_NO_ XDEV };
fdfd = openat2(procfd, "thread-self/fd", &how, sizeof(how));
/* validate no overmounts */
reopen = openat(fdfd, "123", O_RDWR);

example: strict path safety

fsfd = fsopen(, 0);
fsconfig(fsfd, FSCONFIG_CMD CREATE, NULL, 0, 0);
procfd = fsmount(fsfd, O, MOUNT_ATTR_NOEXEC|...);

open_how how =
{ .flags = O_DIRECTORY,
.resolve = RESOLVE_BENEATH|RESOLVE_NO_ XDEV };
fdfd = openat2(procfd, , &how, (how));
/* for open_tree(2) -- validate no overmounts */
reopen = openat(fdfd, , O_RDWR);

example: strict path safety

fsfd = fsopen('proc”, 0);
fsconfig(fsfd, FSCONFIG_CMD_CREATE, NULL, 0, 0);
procfd = fsmount(fsfd, O, MOUNT_ATTR_NOEXEC]|...);

N e o o e e e e e e e e e e e R S e e R M M e Mmm R M e e M e e e M e e

open_how how =
{ .flags = O_DIRECTORY,
.resolve = RESOLVE_BENEATH|RESOLVE_NO_ XDEV };
fdfd = openat2(procfd, "thread-self/fd", &how, sizeof(how));
/* for open_tree(2) -- validate no overmounts */
reopen = openat(fdfd, "123", O_RDWR);

[
I
I
I
I
I

example: strict path safety

\
fsfd = fsopen("proc", 0); :
fsconfig(fsfd, FSCONFIG_CMD CREATE, NULL, 0, 0); :
|

1

|
|
|
|
|
I procfd = fsmount(fsfd, O, MOUNT_ATTR_NOEXEC|...);

7~

open_how how =
{ .flags = O_DIRECTORY,
.resolve = RESOLVE_BENEATH|RESOLVE_NO_ XDEV };
fdfd = openat2(procfd, "thread-self/fd", &how, sizeof(how));

[/* for open_tree(2) -- VEISUERCBHIINOZIRuGIIEY */

reopen = openat(fdfd, "123", O_RDWR);

example: libpathrs (c)

"<pathrs.h>"

1fd = pathrs_proc_open(PATHRS PROC_SELF,
"attr/exec", O_WRONLY);
dprintf(lfd, "exec docker-default\n");

pfd = pathrs_proc_open(PATHRS_PROC_ROOT,
"sys/net/ipv4/ping_group _range",
0_RDWR);
dprintf(pfd, "0 0\n");

reopen = pathrs_reopen(123, O_RDWR); // or pathrs_proc_open

https://github.com/cyphar/libpathrs

example: libpathrs (rust)

use pathrs::{flags::0penFlags, procfs::*};

// Open *regular* file.
let attr_file = ProcfsHandle::new()?

.open(
ProcfsBase: :ProcThreadSelf,
"attr/exec",
OpenFlags::0_WRONLY,

)75

// Create your own private handle.
let handle =
ProcfsHandleBuilder: :new()
.unmasked(true)
.build()?;

// Open a magic-link.

let exe = ProcfsHandle: :new()?.open_follow(
ProcfsBase: :ProcSelf,
"exe",
OpenFlags::0_RDONLY,

)?;

// Equivalent to readlinkat(fd, "").

let fd_path = ProcfsHandle::new()?.readlink(
ProcfsBase: :ProcThreadSelf,
format!("fd/{}", file.as_raw_fd()),
OpenFlags::0_RDONLY,

)75

https://github.com/cyphar/libpathrs

“wait, why do we
care about this?”

runc

threat models

e runc (currently) has no real threat model.
e Most vulnerabilities have been “misconfiguration” bugs.
e Higher-level runtimes let unprivileged users do wacky things.

e Most people still don't use user namespaces.

pop quiz!

is this a vulnerability? (i)

S cat config.json

{
:{ :[]},

is this a vulnerability? (i)

Bx
| &l

S cat config.json

{

"Tinux": { "namespaces": [] },

is this a vulnerability? (ii

S cat config.json

{
2 [

is this a vulnerability? (ii)

$ cat config.json

{

"mounts": [
{ "destination": "/host",
llsourcell: Il/ll,
lltypell: ”b:l_nd” ,
"options": ["rbind"] }

1,

is this a vulnerability? (iii)

$ cat config.json

{
2 [

is this a vulnerability? (iii)

$ cat config.json

{

"mounts": [

{ "destination": "/volume",
"source": "/some/volume/path",
lltypell: |lb_‘Lndll,

"options": ["rbind"] },

CVE-2025-31133 / CVE-2025-52565

$ cat config.json

{

"mounts": [

{ "destination": "/volume",
"source": "/some/volume/path",
lltype”: |lb_‘Lndll,

"options": ["rbind"] },

CVE-2025-31133 / CVE-2025-52565

e /volume is a symlink to /dev.

e Racing process swaps files in /some/volume/path
with symlink to /proc/sys/kernel/core_pattern:

o CVE-2025-31133 — /dev/null (masked files)
o CVE-2025-52565 - /dev/pts/0 (/dev/console)

e Bind-mount source becomes /proc/sys/kernel/core_pattern,
creating a rw bind-mount to a masked procfs File.

solutions

e Added much stricter validation of special inodes we use.
o Takeaway: "Safe"” major:minor numbers are very handy.
e Mountpoint creation was moved to libpathrs (pathrs-lite).
o Everything is now (mostly) file-descriptor-based.
o Takeaway: Wow, regular path safety is a good idea!

® TIOCGPTPEER for consoles.

https://github.com/cyphar/libpathrs/
https://pkg.go.dev/github.com/cyphar/filepath-securejoin/pathrs-lite
https://www.man7.org/linux/man-pages/man2/TIOCGPTPEER.2const.html

is this a vulnerability? (iv)

$ cat config.json

{
2 [

is this a vulnerability? (iv)

$ cat config.json

{

"mounts": [

cees «
{ "destination": "/proc", | '/6-: x
"source": "/fake/procfs",
2 |
-

”_type”: ”b_‘Lnd”’
"options": ["rbind"] },

3 |

is this a vulnerability? (v)

$ cat config.json

{
2 [

is this a vulnerability? (v)

$ cat config.json

{

"mounts": [

LY

{ "destination": "/proc/1/attr/apparmor/exec",
"source": "/proc/1/sched",
"type": "bind",
"options": ["rbind"] },
1s

|
¥

is this a vulnerability? (v)

$ cat config.json

{

"mounts": [

LY

{ "destination": "/proc/1/attr/apparmor/exec",
"source": "/proc/1/sched",
"type": "bind",

"options": ["rbind"] },

b Rejected!

is this a vulnerability? (vi)

$ cat config.json

{

"mounts": [
{ "destination": "/foo", "source": "/some/cache/path",
"type": "bind", "options": ["rbind"] },
{ "destination": "/foo/link/thread-self/attr/apparmor",
"source": "/some/other-cache/path",
"type": "bind", "options": ["rbind"] 1},

is this a vulnerability? (vi)

$ cat config.json

{

"mounts": [
{ "destination": "/foo", "source": "/some/cache/path",
"type": "bind", "options": ["rbind"] },
{ "destination": "/foo/link/thread-self/attr/apparmor",
"source": "/some/other-cache/path",
"type": "bind", "options": ["rbind"] },

CVE-2025-52881

$ cat config.json

{

"mounts": [
{ "destination": "/foo", "source": "/tmp/cache-foo",
"type": "bind", "options": ["rbind"] },
{ "destination": "/foo/link/thread-self/attr/apparmor",
"source": "/tmp/cache-apparmor",
"type": "bind", "options": ["rbind"] 1},

CVE-2025-52881

e /tmp/cache-apparmor/execis a symlink to a fun target:
o /proc/1/sched - (no-op)
o [proc/sysrq-trigger (crash -)

e Racing process swaps /foo/link symlink between /proc and
dummy directory.

o This bypassed our anti-/proc mount checks.

e /proc/sys/kernel/core_pattern allows a container escape.

solutions

e Additional hardening when doing mounts.

o Takeaway: We really should've switched to the new
mount APl much earlier.

e Switch to libpathrs (pathrs-1ite) procfs API For writes.
o Also, audited all write paths For misdirectable writes.

o Takeaway: Protecting against everything is quite hard.

https://github.com/cyphar/libpathrs/
https://pkg.go.dev/github.com/cyphar/filepath-securejoin/pathrs-lite

runc todos

e Move our mount infrastructure to fsopen / open_tree.
o Masked path application will Finally be atomic.

e Do adeeper audit of all path-based code in runc.

e Switch to libpathrs For runc builds.

o pathrs-lite can use libpathrs as a backend.

https://github.com/cyphar/libpathrs/
https://pkg.go.dev/github.com/cyphar/filepath-securejoin/pathrs-lite
https://github.com/cyphar/libpathrs/

kernel todos

e Still some nice-to-have extensions for openat2.
o RESOLVE_NO_DOTDOT?
o rootfd/cwdfd split?
e Blocking all magic-link overmounts would help a lot.

o Most have been blocked since 6.12.

https://lore.kernel.org/all/20240806-work-procfs-v1-0-fb04e1d09f0c@kernel.org/

general takeaways

e Use openat2 or libpathrs (For Go, maybe pathrs-lite).
o Switch to a more file-descriptor based design.
o Doubly so if you need to touch /proc.

e Everypathname syscall is potentially dangerous.

https://github.com/cyphar/libpathrs/
https://pkg.go.dev/github.com/cyphar/filepath-securejoin/pathrs-lite

AMUTABLE

questions?

(rants, pitchforks...?)

CC-BY-SA 4.0

https://www.cyphar.com/talks

fun issues

apparmor, d_path, pain

) CVE-2025-52881: fd reopening
causes issues with AppArmor profiles
(open sysctl

net.ipv4.ip unprivileged port_start file:
reopen fd 8: permission denied)

#4968 - cyphar opened on Nov 6 (J a2

apparmor, d_path, pain

e Nested containers (under LXC).
e AppArmor returns -EACCES for /proc/sys/net/. .. write.

e Triggered by switch to fsopen().

apparmor, d_path, pain

deny /proc/sys/[~fknu]l*{,/**} wklx,
deny /proc/sys/n[?e]*{,/**} wklx,
deny /proc/sys/ne[~t]*{,/**} wklx,
deny /proc/sys/net?*{,/**} wklx,

apparmor, d_path, pain

deny /proc/sys/[~fknu]l*{,/**} wklx,
deny /proc/sys/n[?e]*{,/**} wklx,
deny /proc/sys/ne[~t]*{,/**} wklx,
deny /proc/sys/net?*{,/**} wklx,

deny /sys/[~fdck]*{,/**} wklx,
deny /sys/k[~e]*{,/**} wklx,

apparmor, d_path, pain

deny /proc/sys/[~fknu]l*{,/**} wklx,
deny /proc/sys/n[?e]*{,/**} wklx,
deny /proc/sys/ne[~t]*{,/**} wklx,
deny /proc/sys/net?*{,/**} wklx,

deny /sys/[~fdck]*{,/**} wklx,
deny /sys/k[7~e]*{,/**} wklx,

runc AppArmor

runc AppArmor

procfd = fsopen(); aa_path_name() =

runc AppArmor

procfd = fsopen(); aa_path_name() =

fd = openat(procfd, aa_path_name() =

runc AppArmor

procfd = fsopen('proc"); aa_path_name() = "/"

fd = openat(procfd, aa_path_name() = "/sys/foo/bar"
"sys/foo/bar", ...);

apparmor, d_path, pain

fsfd = fsopen("tmpfs", 0);
fsconfig(fsfd, FSCONFIG_CMD CREATE, NULL, 0, 0);
tmpfd = fsmount(fsfd, O, MOUNT_ATTR_NOEXEC]|...);

mkdirat(tmpfd, "sys", 0755);
openat(tmpfd, "sys/foo", O _CREAT, 0755); /* |INe@= */

apparmor, d_path, pain

incusd/apparmor/Ixc: Don't bother with sys/proc protections
when nesting enabled #2624

f~ Merged stgraber merged 1 commitinto 1xc:main from stgraber:main [_C]on Nov 6

dangling symlinks

e Previously we would expand dangling symlinks.

o [foo/bar — [/some/non-existant/path

o [foo/bar/baz — [some/non-existant/path/baz
e Some users depend on this behaviour...

o Emulating it with file descriptors is quite hard.

e Solution: Expand the path and then use that as the user path.

AMUTABLE

questions?

(rants, pitchforks...?)

CC-BY-SA 4.0

https://www.cyphar.com/talks

