
Path Safety
“in the Trenches”

Aleksa Sarai – github.com/cyphar
Founding Engineer @ Amutable
FOSDEM 2026-01-31

CC-BY-SA 4.0

http://github.com/cyphar
https://www.cyphar.com/talks

runc

runc
containerd

podman

cri-o

buildah

kubernetes

docker

$ cat config.json

{

"process": { ... },

"root": { "path": "path/to/rootfs" },

"mounts": [

{ "destination": "/proc", "type": "proc" },

...

],

"linux": {

"resources": { "devices": [...] },

"namespaces": [...],

...

}

}

$ cat config.json

{ ... }

$ runc run ctr-name

ctr# ...

path safety
“regular” path safety

“strict” path safety (procfs)

regular path safety

● When operating on a path, a path component might be
swapped with a symlink or moved.

● Classic time-of-check-to-time-of-use attacks abound.

example: regular path (un)safety

int fd1 = open("/rootfs/etc/foo", O_CREAT|O_TRUNC|O_RDWR, 0755);

int fd2 = open("/rootfs/etc/hosts", O_NOFOLLOW|O_RDONLY);

mkdir("/rootfs/foo", 0755);

mkdir("/rootfs/foo/bar", 0755);

link("/rootfs/foo/bar/baz", "/rootfs/foo/bar/boop");

unlink("/rootfs/foo/bar/baz");

example: regular path (un)safety

int fd1 = open("/rootfs/etc/foo", O_CREAT|O_TRUNC|O_RDWR, 0755);

int fd2 = open("/rootfs/etc/hosts", O_NOFOLLOW|O_RDONLY);

mkdir("/rootfs/foo", 0755);

mkdir("/rootfs/foo/bar", 0755);

link("/rootfs/foo/bar/baz", "/rootfs/foo/bar/boop");

unlink("/rootfs/foo/bar/baz");

surely this isn’t that common…

surely this isn’t that common…

● CVE-2017-1002101
● CVE-2018-15664
● CVE-2019-16884
● CVE-2019-19921
● CVE-2021-30465
● CVE-2023-27561
● CVE-2023-28642
● CVE-2024-1753

● CVE-2024-45310
● CVE-2024-0132
● CVE-2024-0133
● CVE-2024-9676
● CVE-2025-31133
● CVE-2025-52565
● … and so on …

https://github.com/kubernetes/kubernetes/issues/60813
https://www.openwall.com/lists/oss-security/2019/05/28/1
https://github.com/advisories/GHSA-fgv8-vj5c-2ppq
https://github.com/opencontainers/runc/security/advisories/GHSA-fh74-hm69-rqjw
https://github.com/opencontainers/runc/security/advisories/GHSA-c3xm-pvg7-gh7r
https://github.com/opencontainers/runc/security/advisories/GHSA-g2j6-57v7-gm8c
https://github.com/opencontainers/runc/security/advisories/GHSA-g2j6-57v7-gm8c
https://github.com/containers/podman/security/advisories/GHSA-874v-pj72-92f3
https://github.com/opencontainers/runc/security/advisories/GHSA-jfvp-7x6p-h2pv
https://github.com/NVIDIA/libnvidia-container/security/advisories/GHSA-q2v4-jw5g-9xxj
https://github.com/NVIDIA/libnvidia-container/security/advisories/GHSA-xff4-h7r9-vrpf
https://github.com/advisories/GHSA-wq2p-5pc6-wpgf
https://github.com/opencontainers/runc/security/advisories/GHSA-9493-h29p-rfm2
https://github.com/opencontainers/runc/security/advisories/GHSA-qw9x-cqr3-wc7r

regular path safety – openat2

int openat2(int dirfd, const char *path,

 struct open_how *how, size_t size);

struct open_how {

u64 flags; /* O_* flags */

u64 mode; /* O_CREAT file mode */

u64 resolve; /* resolution flags */

};

regular path safety – openat2

● Most programs can make do with one of the following:

○ RESOLVE_IN_ROOT – chroot(2)-like lookups

○ RESOLVE_BENEATH – restricted lookups

○ RESOLVE_NO_SYMLINKS – better O_NOFOLLOW (/ still escapes)

● Requires the program to primarily use file descriptors.

example: regular path safety (i)

int root = open("/rootfs", O_DIRECTORY|O_PATH);

struct open_how how = { .resolve = RESOLVE_IN_ROOT };

how.flags = O_CREAT|O_TRUNC|O_RDWR;

how.mode = 0755;

int fd1 = openat2(root, "/etc/foo", &how, sizeof(how));

how.flags = O_NOFOLLOW|O_TRUNC|O_RDWR;

how.mode = 0;

int fd2 = openat2(root, "/etc/hosts", &how, sizeof(how));

example: regular path safety (ii)

int root = open("/rootfs", O_DIRECTORY|O_PATH);

struct open_how how =

{ .flags = O_DIRECTORY|O_PATH,

 .resolve = RESOLVE_IN_ROOT };

int dfd = openat2(root, "/foo", &how, sizeof(how));

mkdirat(dfd, "bar", 0755); /* mkdir(/rootfs/foo/bar) */

regular path safety – O_PATH

● Implement per-component lookups in userspace (very finicky).

● Still requires file-descriptor-based code.

● Usually needs readlink("/proc/self/fd/$n") verification.

● See: systemd’s chaseat, Go’s os.Root, libpathrs.

http://github.com/systemd/systemd/blob/v258/src/basic/chase.c#L125
https://pkg.go.dev/os#Root
https://github.com/cyphar/libpathrs/

libpathrs

● Rust library that wraps the most commonly needed filesystem
operations on a root filesystem with friendly™ C FFI interfaces.

○ Also has Go and Python bindings.

○ pathrs-lite – pure-Go port.

● Transparently supports openat2 and the O_PATH fallback.

https://github.com/cyphar/libpathrs
https://pkg.go.dev/github.com/cyphar/filepath-securejoin/pathrs-lite

example: libpathrs (c)

#include "<pathrs.h>"

int root = pathrs_open_root("/rootfs"); /* or open(2) */

int fd1 = pathrs_inroot_creat(root, "/etc/foo",

 O_RDWR|O_TRUNC, 0644);

int fd2 = pathrs_inroot_open(root, "/etc/hosts",

 O_NOFOLLOW|O_RDONLY);

pathrs_inroot_hardlink(root, "/foo/bar/baz", "/foo/bar/boop");

pathrs_inroot_unlink(root, "/foo/bar/baz");

https://github.com/cyphar/libpathrs

example: libpathrs (rust)

use pathrs::{Root, flags::OpenFlags};

let root = Root::open("/path/to/root")?;

// Resolve and open a file.

let passwd = root

.resolve("/etc/passwd")?

.reopen(OpenFlags::O_RDONLY)?;

// ... or ...

let passwd = root.open_subpath(

"/etc/passwd", OpenFlags::O_RDONLY

)?;

// Create a new file and open it (O_CREAT).

let newfile = root.create_file(

"/etc/newfile",

OpenFlags::O_RDWR,

&Permissions::from_mode(0o755),

)?;

// Create a symlink.

let newfile = root.create(

"/link",

&InodeType::Symlink("/target".into()),

)?;

// mkdir -p

let dir = root.mkdir_all(

"/foo/bar/baz",

&Permissions::from_mode(0o755),

)?;

// rm -r

root.remove_all("/foo/bar")?;

// See the docs for more info.

https://github.com/cyphar/libpathrs
https://docs.rs/pathrs/latest/pathrs/

strict path safety
/proc/self/attr/exec,
/proc/self/mountinfo,
/proc/sys/$sysctl, etc.

strict path safety

● For certain pseudo-filesystems we need to ensure we are
operating on an exact path.

○ procfs is most critical.

● Overmounts or fake mounts can trick us into doing dangerous
operations or make operations a no-op.

example: strict path (un)safety

int lfd = open("/proc/self/attr/exec", O_RDWR);

dprintf(lfd, "exec docker-default\n");

int pfd = open("/proc/sys/net/ipv4/ping_group_range", O_RDWR);

dprintf(pfd, "0 0\n");

int reopen = open("/proc/thread-self/fd/123", O_RDWR);

execve("/proc/self/exe", ...);

surely not!

okay, it’s a bit less common…

● CVE-2019-16884
● CVE-2019-19921
● CVE-2025-52881

https://github.com/advisories/GHSA-fgv8-vj5c-2ppq
https://github.com/opencontainers/runc/security/advisories/GHSA-fh74-hm69-rqjw
https://github.com/opencontainers/runc/security/advisories/GHSA-cgrx-mc8f-2prm

example: strict path safety

int procfd = open("/proc", O_DIRECTORY|O_PATH);

/* check PROC_SUPER_MAGIC and PROC_ROOT_INO */

struct open_how how =

{ .flags = O_WRONLY,

 .resolve = RESOLVE_BENEATH|RESOLVE_NO_XDEV };

int lfd = openat2(procfd, "self/attr/exec", &how, sizeof(how));

dprintf(lfd, "exec docker-default\n");

example: strict path safety

int procfd = open("/proc", O_DIRECTORY|O_PATH);

/* check PROC_SUPER_MAGIC and PROC_ROOT_INO */

struct open_how how =

{ .flags = O_WRONLY,

 .resolve = RESOLVE_BENEATH|RESOLVE_NO_XDEV };

int lfd = openat2(procfd, "self/attr/exec", &how, sizeof(how));

dprintf(lfd, "exec docker-default\n");

magic-links?
/proc/self/exe,
/proc/self/fd/$n,
/proc/self/root, etc.

example: strict path safety

int procfd = open("/proc", O_DIRECTORY|O_PATH);

/* check PROC_SUPER_MAGIC and PROC_ROOT_INO */

struct open_how how =

{ .flags = O_RDWR,

 .resolve = RESOLVE_BENEATH|RESOLVE_NO_XDEV };

int reopen = openat2(procfd, "thread-self/fd/123",

 &how, sizeof(how));

example: strict path safety

int procfd = open("/proc", O_DIRECTORY|O_PATH);

/* check PROC_SUPER_MAGIC and PROC_ROOT_INO */

struct open_how how =

{ .flags = O_RDWR,

 .resolve = RESOLVE_BENEATH|RESOLVE_NO_XDEV };

int reopen = openat2(procfd, "thread-self/fd/123",

 &how, sizeof(how));

example: strict path safety

int procfd = open("/proc", O_DIRECTORY|O_PATH);

/* check PROC_SUPER_MAGIC and PROC_ROOT_INO */

struct open_how how =

{ .flags = O_DIRECTORY,

 .resolve = RESOLVE_BENEATH|RESOLVE_NO_XDEV };

int fdfd = openat2(procfd, "thread-self/fd", &how, sizeof(how));

/* validate no overmounts */

int reopen = openat(fdfd, "123", O_RDWR);

example: strict path safety

int procfd = open("/proc", O_DIRECTORY|O_PATH);

/* check PROC_SUPER_MAGIC and PROC_ROOT_INO */

struct open_how how =

{ .flags = O_DIRECTORY,

 .resolve = RESOLVE_BENEATH|RESOLVE_NO_XDEV };

int fdfd = openat2(procfd, "thread-self/fd", &how, sizeof(how));

/* validate no overmounts */

int reopen = openat(fdfd, "123", O_RDWR);

example: strict path (un)safety

int procfd = open("/proc", O_DIRECTORY|O_PATH);

/* check PROC_SUPER_MAGIC and PROC_ROOT_INO */

struct open_how how =

{ .flags = O_DIRECTORY,

 .resolve = RESOLVE_BENEATH|RESOLVE_NO_XDEV };

int fdfd = openat2(procfd, "thread-self/fd", &how, sizeof(how));

/* validate no overmounts */

int reopen = openat(fdfd, "123", O_RDWR);

man 2 fsopen
man 2 fspick
man 2 fsconfig
man 2 fsmount
man 2 open_tree*
man 2 move_mount

Brand New!

Buy 0
Get 7
FREE!

Get
Yours
Today!

example: strict path safety

int procfd = open("/proc", O_DIRECTORY|O_PATH);

/* check PROC_SUPER_MAGIC and PROC_ROOT_INO */

struct open_how how =

{ .flags = O_DIRECTORY,

 .resolve = RESOLVE_BENEATH|RESOLVE_NO_XDEV };

int fdfd = openat2(procfd, "thread-self/fd", &how, sizeof(how));

/* validate no overmounts */

int reopen = openat(fdfd, "123", O_RDWR);

example: strict path safety

int fsfd = fsopen("proc", 0);

fsconfig(fsfd, FSCONFIG_CMD_CREATE, NULL, 0, 0);

int procfd = fsmount(fsfd, 0, MOUNT_ATTR_NOEXEC|...);

struct open_how how =

{ .flags = O_DIRECTORY,

 .resolve = RESOLVE_BENEATH|RESOLVE_NO_XDEV };

int fdfd = openat2(procfd, "thread-self/fd", &how, sizeof(how));

/* for open_tree(2) -- validate no overmounts */

int reopen = openat(fdfd, "123", O_RDWR);

example: strict path safety

int fsfd = fsopen("proc", 0);

fsconfig(fsfd, FSCONFIG_CMD_CREATE, NULL, 0, 0);

int procfd = fsmount(fsfd, 0, MOUNT_ATTR_NOEXEC|...);

struct open_how how =

{ .flags = O_DIRECTORY,

 .resolve = RESOLVE_BENEATH|RESOLVE_NO_XDEV };

int fdfd = openat2(procfd, "thread-self/fd", &how, sizeof(how));

/* for open_tree(2) -- validate no overmounts */

int reopen = openat(fdfd, "123", O_RDWR);

example: strict path safety

int fsfd = fsopen("proc", 0);

fsconfig(fsfd, FSCONFIG_CMD_CREATE, NULL, 0, 0);

int procfd = fsmount(fsfd, 0, MOUNT_ATTR_NOEXEC|...);

struct open_how how =

{ .flags = O_DIRECTORY,

 .resolve = RESOLVE_BENEATH|RESOLVE_NO_XDEV };

int fdfd = openat2(procfd, "thread-self/fd", &how, sizeof(how));

/* for open_tree(2) -- validate no overmounts */

int reopen = openat(fdfd, "123", O_RDWR);

example: libpathrs (c)

#include "<pathrs.h>"

int lfd = pathrs_proc_open(PATHRS_PROC_SELF,

 "attr/exec", O_WRONLY);

dprintf(lfd, "exec docker-default\n");

int pfd = pathrs_proc_open(PATHRS_PROC_ROOT,

 "sys/net/ipv4/ping_group_range",

 O_RDWR);

dprintf(pfd, "0 0\n");

int reopen = pathrs_reopen(123, O_RDWR); // or pathrs_proc_open

https://github.com/cyphar/libpathrs

example: libpathrs (rust)

use pathrs::{flags::OpenFlags, procfs::*};

// Open *regular* file.

let attr_file = ProcfsHandle::new()?

.open(

ProcfsBase::ProcThreadSelf,

"attr/exec",

OpenFlags::O_WRONLY,

)?;

// Create your own private handle.

let handle =

ProcfsHandleBuilder::new()

.unmasked(true)

.build()?;

// Open a magic-link.

let exe = ProcfsHandle::new()?.open_follow(

ProcfsBase::ProcSelf,

"exe",

OpenFlags::O_RDONLY,

)?;

// Equivalent to readlinkat(fd, "").

let fd_path = ProcfsHandle::new()?.readlink(

ProcfsBase::ProcThreadSelf,

format!("fd/{}", file.as_raw_fd()),

OpenFlags::O_RDONLY,

)?;

https://github.com/cyphar/libpathrs

“wait, why do we
care about this?”

runc

threat models

● runc (currently) has no real threat model.

● Most vulnerabilities have been “misconfiguration” bugs.

● Higher-level runtimes let unprivileged users do wacky things.

● Most people still don’t use user namespaces.

pop quiz!

$ cat config.json

{

"linux": { "namespaces": [] },

...

}

is this a vulnerability? (i)

$ cat config.json

{

"linux": { "namespaces": [] },

...

}

is this a vulnerability? (i)

$ cat config.json

{

"mounts": [

...,

{ "destination": "/host",

 "source": "/",

 "type": "bind",

 "options": ["rbind"] }

],

...

}

is this a vulnerability? (ii)

$ cat config.json

{

"mounts": [

...,

{ "destination": "/host",

 "source": "/",

 "type": "bind",

 "options": ["rbind"] }

],

...

}

is this a vulnerability? (ii)

$ cat config.json

{

"mounts": [

...,

{ "destination": "/volume",

 "source": "/some/volume/path",

 "type": "bind",

 "options": ["rbind"] },

...

],

...

}

is this a vulnerability? (iii)

$ cat config.json

{

"mounts": [

...,

{ "destination": "/volume",

 "source": "/some/volume/path",

 "type": "bind",

 "options": ["rbind"] },

...

],

...

}

is this a vulnerability? (iii)

$ cat config.json

{

"mounts": [

...,

{ "destination": "/volume",

 "source": "/some/volume/path",

 "type": "bind",

 "options": ["rbind"] },

...

],

...

}

CVE-2025-31133 / CVE-2025-52565

CVE-2025-31133 / CVE-2025-52565

● /volume is a symlink to /dev.

● Racing process swaps files in /some/volume/path
with symlink to /proc/sys/kernel/core_pattern:

○ CVE-2025-31133 – /dev/null (masked files)

○ CVE-2025-52565 – /dev/pts/0 (/dev/console)

● Bind-mount source becomes /proc/sys/kernel/core_pattern,
creating a rw bind-mount to a masked procfs file.

solutions

● Added much stricter validation of special inodes we use.

○ Takeaway: “Safe” major:minor numbers are very handy.

● Mountpoint creation was moved to libpathrs (pathrs-lite).

○ Everything is now (mostly) file-descriptor-based.

○ Takeaway: Wow, regular path safety is a good idea!

● TIOCGPTPEER for consoles.

https://github.com/cyphar/libpathrs/
https://pkg.go.dev/github.com/cyphar/filepath-securejoin/pathrs-lite
https://www.man7.org/linux/man-pages/man2/TIOCGPTPEER.2const.html

$ cat config.json

{

"mounts": [

...,

{ "destination": "/proc",

 "source": "/fake/procfs",

 "type": "bind",

 "options": ["rbind"] },

],

...

}

is this a vulnerability? (iv)

$ cat config.json

{

"mounts": [

...,

{ "destination": "/proc",

 "source": "/fake/procfs",

 "type": "bind",

 "options": ["rbind"] },

],

...

}

is this a vulnerability? (iv)

$ cat config.json

{

"mounts": [

...,

{ "destination": "/proc/1/attr/apparmor/exec",

 "source": "/proc/1/sched",

 "type": "bind",

 "options": ["rbind"] },

],

...

}

is this a vulnerability? (v)

$ cat config.json

{

"mounts": [

...,

{ "destination": "/proc/1/attr/apparmor/exec",

 "source": "/proc/1/sched",

 "type": "bind",

 "options": ["rbind"] },

],

...

}

is this a vulnerability? (v)

$ cat config.json

{

"mounts": [

...,

{ "destination": "/proc/1/attr/apparmor/exec",

 "source": "/proc/1/sched",

 "type": "bind",

 "options": ["rbind"] },

],

...

}

is this a vulnerability? (v)

Rejected!

$ cat config.json

{

"mounts": [

...,

{ "destination": "/foo", "source": "/some/cache/path",

 "type": "bind", "options": ["rbind"] },

{ "destination": "/foo/link/thread-self/attr/apparmor",

 "source": "/some/other-cache/path",

 "type": "bind", "options": ["rbind"] },

],

...

}

is this a vulnerability? (vi)

$ cat config.json

{

"mounts": [

...,

{ "destination": "/foo", "source": "/some/cache/path",

 "type": "bind", "options": ["rbind"] },

{ "destination": "/foo/link/thread-self/attr/apparmor",

 "source": "/some/other-cache/path",

 "type": "bind", "options": ["rbind"] },

],

...

}

is this a vulnerability? (vi)

$ cat config.json

{

"mounts": [

...,

{ "destination": "/foo", "source": "/tmp/cache-foo",

 "type": "bind", "options": ["rbind"] },

{ "destination": "/foo/link/thread-self/attr/apparmor",

 "source": "/tmp/cache-apparmor",

 "type": "bind", "options": ["rbind"] },

],

...

}

CVE-2025-52881

CVE-2025-52881

● /tmp/cache-apparmor/exec is a symlink to a fun target:

○ /proc/1/sched – (no-op)

○ /proc/sysrq-trigger (crash – "exec docker-default")

● Racing process swaps /foo/link symlink between /proc and
dummy directory.

○ This bypassed our anti-/proc mount checks.

● /proc/sys/kernel/core_pattern allows a container escape.

solutions

● Additional hardening when doing mounts.

○ Takeaway: We really should’ve switched to the new
mount API much earlier.

● Switch to libpathrs (pathrs-lite) procfs API for writes.

○ Also, audited all write paths for misdirectable writes.

○ Takeaway: Protecting against everything is quite hard.

https://github.com/cyphar/libpathrs/
https://pkg.go.dev/github.com/cyphar/filepath-securejoin/pathrs-lite

runc todos

● Move our mount infrastructure to fsopen / open_tree.

○ Masked path application will finally be atomic.

● Do a deeper audit of all path-based code in runc.

● Switch to libpathrs for runc builds.

○ pathrs-lite can use libpathrs as a backend.

https://github.com/cyphar/libpathrs/
https://pkg.go.dev/github.com/cyphar/filepath-securejoin/pathrs-lite
https://github.com/cyphar/libpathrs/

kernel todos

● Still some nice-to-have extensions for openat2.

○ RESOLVE_NO_DOTDOT?

○ rootfd / cwdfd split?

● Blocking all magic-link overmounts would help a lot.

○ Most have been blocked since 6.12.

https://lore.kernel.org/all/20240806-work-procfs-v1-0-fb04e1d09f0c@kernel.org/

general takeaways

● Use openat2 or libpathrs (for Go, maybe pathrs-lite).

○ Switch to a more file-descriptor based design.

○ Doubly so if you need to touch /proc.

● Every pathname syscall is potentially dangerous.

https://github.com/cyphar/libpathrs/
https://pkg.go.dev/github.com/cyphar/filepath-securejoin/pathrs-lite

questions?
(rants, pitchforks…?)

CC-BY-SA 4.0

https://www.cyphar.com/talks

fun issues

apparmor, d_path, pain

apparmor, d_path, pain

● Nested containers (under LXC).

● AppArmor returns -EACCES for /proc/sys/net/... write.

● Triggered by switch to fsopen("proc").

apparmor, d_path, pain

deny /proc/sys/[^fknu]*{,/**} wklx,

deny /proc/sys/n[^e]*{,/**} wklx,

deny /proc/sys/ne[^t]*{,/**} wklx,

deny /proc/sys/net?*{,/**} wklx,

...

apparmor, d_path, pain

deny /proc/sys/[^fknu]*{,/**} wklx,

deny /proc/sys/n[^e]*{,/**} wklx,

deny /proc/sys/ne[^t]*{,/**} wklx,

deny /proc/sys/net?*{,/**} wklx,

...

deny /sys/[^fdck]*{,/**} wklx,

deny /sys/k[^e]*{,/**} wklx,

...

apparmor, d_path, pain

deny /proc/sys/[^fknu]*{,/**} wklx,

deny /proc/sys/n[^e]*{,/**} wklx,

deny /proc/sys/ne[^t]*{,/**} wklx,

deny /proc/sys/net?*{,/**} wklx,

...

deny /sys/[^fdck]*{,/**} wklx,

deny /sys/k[^e]*{,/**} wklx,

...

runc AppArmor

runc

int procfd = fsopen("proc");

AppArmor

aa_path_name() ⇒ "/"

runc

int procfd = fsopen("proc");

int fd = openat(procfd,

"sys/foo/bar", ...);

AppArmor

aa_path_name() ⇒ "/"

aa_path_name() ⇒ "/sys/foo/bar"

runc

int procfd = fsopen("proc");

int fd = openat(procfd,

"sys/foo/bar", ...);

AppArmor

aa_path_name() ⇒ "/"

aa_path_name() ⇒ "/sys/foo/bar"

-EACCES

apparmor, d_path, pain

int fsfd = fsopen("tmpfs", 0);

fsconfig(fsfd, FSCONFIG_CMD_CREATE, NULL, 0, 0);

int tmpfd = fsmount(fsfd, 0, MOUNT_ATTR_NOEXEC|...);

mkdirat(tmpfd, "sys", 0755);

openat(tmpfd, "sys/foo", O_CREAT, 0755); /* EACCES */

apparmor, d_path, pain

dangling symlinks

● Previously we would expand dangling symlinks.

○ /foo/bar → /some/non-existant/path

○ /foo/bar/baz → /some/non-existant/path/baz

● Some users depend on this behaviour…

○ Emulating it with file descriptors is quite hard.

● Solution: Expand the path and then use that as the user path.

questions?
(rants, pitchforks…?)

CC-BY-SA 4.0

https://www.cyphar.com/talks

