
FOSDEM 2026 | Python Devroom

🍞
The Bakery

How PEP 810 Sped Up My Bread Operations Business

Jacob Coffee

Python Software Foundation Staff | Litestar Maintainer

What We'll Cover

1
The Problem

Why Python startup matters

2
PEP 810 Explained

Explicit lazy imports syntax

3
Live Demo

breadctl in action

4
Real-World Impact

Meta, HRT, and beyond

5
Use Cases

Beyond CLI tools

6
Migration Guide

How to adopt in your projects

The Problem
Python startup is expensive

$ time uv run breadctl --help
Usage: breadctl [OPTIONS] COMMAND
Commands: bake, deliver, inventory

real 0m0.234s ⚠ 234ms just to show help!

Eager Loading by Default

Python imports ALL modules at startup

Memory Bloat

Loaded modules stay resident even if unused

Cold Start Tax

Serverless, workers, tests all pay this cost

TYPE_CHECKING Workarounds

Ugly hacks to avoid runtime import costs

The cost is real:

Meta observed 50-70% startup reduction potential • 30-40% memory savings • PySide 35% startup improvement

What is PEP 810?
Explicit Lazy Imports for Python

Import a module only when it's first accessed, not when the import statement is executed.

⚡
50-70% Faster

Startup time reduction observed

💾
30-40% Less Memory

Modules not loaded = memory not
used

✨
Explicit Syntax

lazy keyword - no surprises or global
flags

✅ PEP 810 was accepted!

Coming to Python 3.15

The Syntax
Side-by-side: Normal vs Lazy imports

normal.py

All loaded at startup
from breadctl import bake
from breadctl import deliver
from breadctl import inventory

bake: collections, itertools
deliver: httpx
inventory: sqlite3

--help loads ALL!

lazy.py

Loaded only when accessed
lazy import breadctl.bake as bake
lazy import breadctl.deliver as deliv
lazy import breadctl.inventory as inv

Nothing loaded yet...

bake.run() # NOW it loads

--help? Fast! ⚡

How It Works
Step 1 of 3

1
Parse Phase
lazy import foo creates a LazyModule proxy in the namespace

lazy import httpx # Creates proxy, no import yet

Your Code → LazyModule
Proxy → httpx

(not loaded)

How It Works
Step 2 of 3

2
Wait Phase
Module is NOT imported yet - proxy sits dormant, no I/O or execution

httpx proxy exists but module not loaded
No network code, no dependencies

Your Code → LazyModule
Proxy ⏳ httpx

(not loaded)

How It Works
Step 3 of 3

3
Access Phase
First access to foo.bar triggers actual import - proxy replaced transparently

response = httpx.get(url) # NOW httpx loads!

Your Code → LazyModule
Proxy → httpx ✓

Loaded!

How It Works
The complete picture

1 Parse

Create proxy → 2 Wait

Proxy dormant → 3 Access

Real import

��Key Insight
If a command is never run, its imports are never loaded.

--help stays fast because it doesn't touch the heavy modules!

Tab completion, subcommand routing, help text - all fast.

Live Demo 👻
breadctl in action (scary live demo time!)

Normal (eager imports)

$ time uv run breadctl --help
real 0m0.234s

Lazy (PEP 810)

$ time uv run breadctl-lazy --help
real 0m0.164s

Demo Commands

uv run breadctl --help
uv run breadctl-lazy --help
uv run breadctl bake

uv run breadctl-lazy bake
make bench
Show the charts!

Deep dive: see what's loading
$ python -X importtime -c "import breadctl_cappa.normal" 2>&1 | head
$ python -X importtime -c "import breadctl_cappa.lazy" 2>&1 | head

Benchmark Results
Real numbers from breadctl (Cappa framework)

--help command

23% faster
215ms → 165ms

Module import time

26% faster
198ms → 147ms

inventory command

~same
538ms (needs all modules anyway)

Normal Lazy

Real-World Impact
Production implementations proving the concept

��Meta (Cinder)

Instagram's Python fork with lazy imports

70% startup reduction

40% memory savings

��Hudson River Trading

Custom Python fork for trading systems

Module-level lazy imports in production for years

��PySide (Qt for Python)
Official Qt Python bindings

35% startup improvement

💡 Key Insight

These aren't experiments - they're battle-tested in
production at massive scale.

PEP 810 brings this capability to everyone.

Beyond CLI Tools
PEP 810 benefits many use cases

��Type Annotations

No more TYPE_CHECKING guards!

lazy import eliminates if TYPE_CHECKING hacks

⚡ Serverless / Cold Starts

50-70% faster Lambda cold starts

AWS Lambda, Cloud Functions, Workers

��Test Suites

Faster test discovery & collection

pytest, unittest discovery phase

��Memory-Constrained Envs

30-40% memory reduction

Containers, edge devices, embedded

��Plugin Architectures

Load plugins only when activated

VS Code extensions, pytest plugins

�� CLI & GUI Applications

Fast startup, load features on demand

Django manage.py, PySide apps

Migration Strategy
Step-by-step guide to adopting PEP 810

1 Profile Current Import Time
python -X importtime -c "import mymodule" 2>&1

2 Identify Heavy / Rarely-Used Modules
Look for: httpx, pandas, numpy - anything >50ms

3 Apply lazy import Selectively
lazy import heavy_module as heavy

4 Test for Side-Effect Timing Changes
Module-level init now happens on first access

5 Measure Improvement with Hyperfine
hyperfine "python script.py" --warmup 3

6 Python go brrrrr 🚀
Enjoy your faster startup times & lower memory!

Caveats & Gotchas
Things to watch out for

⚠ Import-Time Side Effects are Deferred

Module-level init runs on first access
Watch: logging config, DB connections, global state

⚠ Tooling Support Still Evolving

Type checkers need updates
Ty, mypy, pyright, ruff - work in progress

⚠ Error Timing Changes

Import errors happen on first use
Missing deps discovered at runtime, not launch

💡 Not Always Faster

If you always use the module...
Best for conditional / optional imports

Pro Tips

• Test --help to verify startup benefits

• Keep eager imports for always-used modules

• Document which imports are lazy

• Can’t lazy import inside functions

Python 3.15 target

Reference implementation available
now via CPython fork

PEP 810 Design Principles
Why it's designed this way

✨
Explicit

Uses the lazy keyword

No surprises, no global flags

📍
Local

Affects one import

No cascading effects

🎯
Granular
Per-import control

Mix lazy and eager freely

"Explicit is better than implicit."

- The Zen of Python

Resources
Links and references

📜 PEP 810

peps.python.org/pep-0810/

🍞 breadctl Demo Repo

github.com/JacobCoffee/breadctl

🐍 CPython Fork (PEP 810)

github.com/LazyImportsCabal/cpython

⏱ Hyperfine Benchmarking

github.com/sharkdp/hyperfine

🍞
Jacob Coffee

@JacobCoffee

PSF Staff | Litestar Maintainer

jacoblanecoffee@gmail.com

Slides and code available at

github.com/JacobCoffee/breadctl

FOSDEM 2026

🍞
Thank You!

Now go make your Python go brrrrr 🚀

Questions?

Find me after the talk or @ me online!

@JacobCoffee github.com/JacobCoffee

