FOSDEM 2026 | Python Devroom

The Bakery

How PEP 810 Sped Up My Bread Operations Business

Jacob Coffee

Python Software Foundation Staff | Litestar Maintainer

)
What We'll Cover

Q The Problem

Why Python startup matters
Q PEP 810 Explained

Explicit lazy imports syntax
a Live Demo

breadctl in action

Real-World Impact

Meta, HRT, and beyond

Use Cases

Beyond CLI tools

Migration Guide

How to adopt in your projects

The Problem

Python startup is expensive

Eager Loading by Default

$ time uv run breadctl --help
Usage: breadctl [OPTIONS] COMMAND
Commands: bake, deliver, inventory

Python imports ALL modules at startup

real Om0. 234s A 234ms just to show help! Memory Bloat

Loaded modules stay resident even if unused

Cold Start Tax

Serverless, workers, tests all pay this cost

TYPE_CHECKING Workarounds

Ugly hacks to avoid runtime import costs

The cost is real:

Meta observed 50-70% startup reduction potential e 30-40% memory savings ® PySide 35% startup improvement

What is PEP 810?

Explicit Lazy Imports for Python

Import a module only when it's first accessed, not when the import statement is executed.

5 : 4

50-70% Faster 30-40% Less Memory Explicit Syntax

Modules not loaded = memory not lazy keyword - no surprises or global

Startup time reduction observed
used flags

PEP 810 was accepted!

Coming to Python 3.15

The Syntax

Side-by-side: Normal vs Lazy imports

o normal.py o lazy.py
All loaded at startup # Loaded only when accessed
from breadctl import bake lazy import breadctl.bake as bake
from breadctl import deliver lazy import breadctl.deliver as deliv
from breadctl import inventory lazy import breadctl.inventory as inv
bake: collections, itertools # Nothing loaded yet...
deliver: httpx
inventory: sglite3 bake.run () # NOW it loads
--help loads ALL! # --help? Fast! 4

How It Works

Step 1 0of 3 .

Parse Phase

lazy import foo creates a LazyModule proxy in the namespace

lazy import httpx # Creates proxy, no import yet

LazyModule

Your Code —_— -

httpx
(not loaded)

How It Works
Step 2 of 3 . .

Wait Phase

Module is NOT imported yet - proxy sits dormant, no 1/O or execution

httpx proxy exists but module not loaded
No network code, no dependencies

LazyModule z httpx

Your Code —> Proxy (not loaded)

How It Works
Step 3 of 3 . . .

Access Phase

First access to foo.bar triggers actual import - proxy replaced transparently

response = httpx.get (url) # NOW httpx loads!

LazyModule httpx v/

Your Code —> Proxy > Loaded!

How It Works

The complete picture

e Parse

Create proxy

Wait

e Access
Real import

Proxy dormant

Key Insight
If a command is never run, its imports are never loaded.

--help stays fast because it doesn't touch the heavy modules!

Tab completion, subcommand routing, help text - all fast.

Live Demo

breadctl in action (scary live demo time!)

Normal (eager imports) Lazy (PEP 810)
$ time uv run breadctl --help $ time uv run breadctl-lazy --help
real 0m0.234s real 0m0.164s

Demo Commands

uv run breadctl --help uv run breadctl-lazy bake
uv run breadctl-lazy --help make bench
uv run breadctl bake # Show the charts!

Deep dive: see what's loading
$ python -X importtime -c "import breadctl cappa.normal" 2>&l1 | head
$ python -X importtime -c "import breadctl cappa.lazy" 2>&1 | head

Benchmark Results

Real numbers from breadctl (Cappa framework)

--help command

23% faster 4

215ms — 165ms

537
538

Module import time

26% faster -

198ms — 147ms

539
537

inventory command

~Sa me 0 100 200 300 400 500 600

538ms (needs all modules anyway) Time (ms)

Real-World Impact

Production implementations proving the concept

Meta (Cinder)

Instagram's Python fork with lazy imports

70%
40%

startup reduction

memory savings

PySide (Qt for Python)
Official Qt Python bindings

35%

startup improvement

Hudson River Trading

Custom Python fork for trading systems

Module-level lazy imports in production for years

' Key Insight

These aren't experiments - they're battle-tested in
production at massive scale.

PEP 810 brings this capability to everyone.

Beyond CLI Tools

PEP 810 benefits many use cases

Type Annotations ‘ Serverless / Cold Starts

No more TYPE_CHECKING guards! 50-70% faster Lambda cold starts

lazy import eliminates if TYPE_CHECKING hacks AWS Lambda, Cloud Functions, Workers
Test Suites Memory-Constrained Envs

Faster test discovery & collection 30-40% memory reduction

pytest, unittest discovery phase Containers, edge devices, embedded
Plugin Architectures CLI & GUI Applications

Load plugins only when activated Fast startup, load features on demand
VS Code extensions, pytest plugins Django manage.py, PySide apps

Migration Strategy

Step-by-step guide to adopting PEP 810

Profile Current Import Time
python -X importtime -c "import mymodule" 2>&1

Identify Heavy / Rarely-Used Modules
Look for: httpx, pandas, numpy - anything >50ms

Apply lazy import Selectively

lazy import heavy module as heavy

Test for Side-Effect Timing Changes

Module-level init now happens on first access

Measure Improvement with Hyperfine
hyperfine "python script.py" --warmup 3

Python go brrrrr
Enjoy your faster startup times & lower memory!

Caveats & Gotchas

Things to watch out for

A\ 'mport-Time Side Effects are Deferred

Module-level init runs on first access
Watch: logging config, DB connections, global state

A Tooling Support Still Evolving

Type checkers need updates
Ty, mypy, pyright, ruff - work in progress

A Error Timing Changes

Import errors happen on first use
Missing deps discovered at runtime, not launch

® Not Always Faster

If you always use the module...
Best for conditional / optional imports

Pro Tips

e Test --help to verify startup benefits
* Keep eager imports for always-used modules
e Document which imports are lazy

e Can’t lazy import inside functions

Python 3.15 target

Reference implementation available
now via CPython fork

PEP 810 Design Principles

Why it's designed this way

++ 7 ©

[] []
Explicit Local Granular
Uses the lazy keyword Affects one import Per-import control
No surprises, no global flags No cascading effects Mix lazy and eager freely

"Explicit is better than implicit."

- The Zen of Python

Resources

Links and references

PEP 810
: peps.python.org/pep-0810/

breadctl Demo Repo

github.com/JacobCoffee/breadctl

github.com/LazylmportsCabal/cpython

Hyperfine Benchmarking

L 4
t CPython Fork (PEP 810)
%

github.com/sharkdp/hyperfine

Jacob Coffee

@JacobCoffee
PSF Staff | Litestar Maintainer

jacoblanecoffee@gmail.com

Slides and code available at

github.com/JacobCoffee/breadctl

FOSDEM 2026

Thank You!

Now go make your Python go brrrrr £

Questions?

Find me after the talk or @ me online!

@JacobCoffee github.com/JacobCoffee

