
STREAMLINING SIGNED
ARTIFACTS IN CONTAINER

ECOSYSTEMS
Tõnis Tiigi
@tonistiigi

Docker

Why sign?

Signing containers

Resist real practical attacks

➔ Users should clearly understand what the signature is

protecting and what it is not protecting

➔ No signing just for some security checklist (new failure point)

Simple
➔ Avoid key management, Yubikeys, key exchanges
➔ Only special security engineers can think about security

protocols 24/7
➔ Integrations with existing tools
➔ High performance, friendly UX

BUILDKIT

BuildKit

➔ Powers docker build , but not limited to Dockerfiles

➔ High performance

➔ Automatically caching

➔ Battle tested

Git repos

Images

Local files

Images

+PROVENANCE

Binaries

+PROVENANCE

Archives

+PROVENANCE

HTTPS URL

SLSA Provenance

➔ Snapshots of all build sources with checksums

➔ Build configuration

➔ Build steps definition

➔ Dockerfile source

➔ CI events

➔ Timing information

➔ Network access, reproducibility

SIGNING

Why not just checksums/lockfiles

Good security

Lots of extra maintenance

Hard to evaluate for humans

Github docs example

github.com/docker/github-builder

➔ Trusted reusable workflow from Docker

➔ Build results get Sigstore bundle signed attestations

➔ Only safe build configurations allowed

➔ Runs release versions of BuildKit, Buildx etc. (all verified)

➔ Optional signed cache

➔ Familiar UX from Docker Actions

➔ Other new features like distributed build

Sigstore simplified

App repository Fulcio

Rekor transparency log

TUF Sigstore
 trust root

Time authority

OAuth(GITHUB_TOKEN

CSR

Certificate

Sigstore simplified

App repository Trusted builder Fulcio

Rekor transparency log

TUF Sigstore
 trust root

Time authority

Source

Result

OAuth

CSR

Certificate

What does the signature prove?

Source Artifact

github.com/org/repo#ref

abcdef123 sha2566789fedcba

Protections: Registry credentials, Github credentials,
GITHUB_TOKEN, Rogue maintainer, Build dependency
compromise, Host environment leak

docker/github-builder

Trusted signing context.

Instance running verified
BuildKit/Buildx releases.

moby/buildkit

Avoids any side-effects from
environment or other build
stages.

Captures detailed
provenance about the build
process.

VERIFYING

Verification often afterthought
https://docs.npmjs.com/generating-provenance-statements

https://docs.npmjs.com/generating-provenance-statements

Manual verification/inspection tools

➔ docker inspect now shows verified signatures

➔ Cosign

➔ sigstore/policy-controller K8s YAML

What people want?
➔ Single knob --verified

Reality
➔ What signature provider?
➔ What version format?
➔ Immutable tags?
➔ Tag before or after release?
➔ Git tags signed? (by HSM?)
➔ Annotated git tags only?
➔ Network access allowed?
➔ Cache allowed?
➔ etc.

Rego OPA) policies support in Buildx
➔ Matching policy for your Dockerfile, eg. Dockerfile.rego

automatically loaded with build.

➔ All build sources need to pass policy for the build to continue.

◆ Images (including signatures, attestations)

◆ Git

◆ URLs

➔ 50+ source properties to match against atm.

Example use cases
➔ Check attestation signatures
➔ Check image checksums
➔ Pin images to checksums
➔ Forbid specific versions/checksums
➔ Ensure immutable tags
➔ Disable local sources
➔ Allow only specific registries
➔ Tweak policy based on build args (e.g. production)
➔ Check Git signatures
➔ Check annotated tags
➔ Require provenance etc. etc.

Github builder signature example

Policy distribution

RECAP

➔ No reason not to sign.

Hopefully soon no reason to trust unsigned images.

➔ Not all signatures are equal.

➔ Software pulling packages should verify pulled content.

Thank you!

➔ docker/github-builder available today

➔ Latest releases of BuildKit, Buildx all already built/signed with

the same Github Builder.

➔ Experimental Rego policy support in latest Buildx

