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Why sign?



Signing containers



Resist real practical attacks

➔ Users should clearly understand what the signature is 

protecting and what it is not protecting

➔ No signing just for some security checklist (new failure point)

Simple
➔ Avoid key management, Yubikeys, key exchanges
➔ Only special security engineers can think about security 

protocols 24/7
➔ Integrations with existing tools
➔ High performance, friendly UX



BUILDKIT



BuildKit

➔ Powers docker build , but not limited to Dockerfiles

➔ High performance

➔ Automatically caching

➔ Battle tested
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SLSA Provenance

➔ Snapshots of all build sources with checksums

➔ Build configuration

➔ Build steps definition

➔ Dockerfile source

➔ CI events

➔ Timing information

➔ Network access, reproducibility



SIGNING



Why not just checksums/lockfiles

Good security

Lots of extra maintenance

Hard to evaluate for humans



Github docs example



github.com/docker/github-builder

➔ Trusted reusable workflow from Docker

➔ Build results get Sigstore bundle signed attestations

➔ Only safe build configurations allowed

➔ Runs release versions of BuildKit, Buildx etc. (all verified)

➔ Optional signed cache

➔ Familiar UX from Docker Actions

➔ Other new features like distributed build



Sigstore simplified

App repository Fulcio

Rekor transparency log

TUF Sigstore
 trust root

Time authority

OAuth(GITHUB_TOKEN

CSR

Certificate



Sigstore simplified

App repository Trusted builder Fulcio

Rekor transparency log

TUF Sigstore
 trust root

Time authority
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What does the signature prove?

Source Artifact

github.com/org/repo#ref

abcdef123 sha2566789fedcba

Protections: Registry credentials, Github credentials, 
GITHUB_TOKEN, Rogue maintainer, Build dependency 
compromise, Host environment leak



docker/github-builder

Trusted signing context.

Instance running verified 
BuildKit/Buildx releases.

moby/buildkit

Avoids any side-effects from 
environment or other build 
stages.

Captures detailed 
provenance about the build 
process.



VERIFYING



Verification often afterthought
https://docs.npmjs.com/generating-provenance-statements

https://docs.npmjs.com/generating-provenance-statements


Manual verification/inspection tools

➔ docker inspect now shows verified signatures

➔ Cosign

➔ sigstore/policy-controller K8s YAML



What people want?
➔ Single knob --verified

Reality
➔ What signature provider?
➔ What version format?
➔ Immutable tags?
➔ Tag before or after release?
➔ Git tags signed? (by HSM?)
➔ Annotated git tags only?
➔ Network access allowed?
➔ Cache allowed?
➔ etc.



Rego OPA) policies support in Buildx
➔ Matching policy for your Dockerfile, eg. Dockerfile.rego 

automatically loaded with build.

➔ All build sources need to pass policy for the build to continue.

◆ Images (including signatures, attestations)

◆ Git

◆ URLs

➔ 50+ source properties to match against atm.



Example use cases
➔ Check attestation signatures
➔ Check image checksums
➔ Pin images to checksums
➔ Forbid specific versions/checksums
➔ Ensure immutable tags
➔ Disable local sources
➔ Allow only specific registries
➔ Tweak policy based on build args (e.g. production)
➔ Check Git signatures
➔ Check annotated tags
➔ Require provenance    etc. etc.



Github builder signature example



Policy distribution



RECAP



➔ No reason not to sign. 

Hopefully soon no reason to trust unsigned images.

➔ Not all signatures are equal.

➔ Software pulling packages should verify pulled content.



Thank you!

➔ docker/github-builder available today

➔ Latest releases of BuildKit, Buildx all already built/signed with 

the same Github Builder.

➔ Experimental Rego policy support in latest Buildx


