
Tim Panton - tim@pi.pe @steely_glint:matrix.org @steely-glint@chaos.social #FOSDEM2026

Latency reduction
in Video streaming
with Linux’s camera and encoder APIs

Tl;dr -> Plan9 was right.

mailto:tim@pi.pe

Tim Panton 
CTO 
pi.pe GmBH

Licenses a WebRTC stack
for small cameras
Some of which move quite
fast

Subject of the talk

Race Car Camera

• Over drivers shoulder

• Audio and Video to pit/trailer 
VIPs/supporters

• High quality

• Low latency

• Long range

• High speeds

• Public 5g networks

CSI

Internet

Encoder

V4l2

WebRTC
(by pi.pe)

GPIO

Bitrate 
+PLI

Exposure

Sensors Control 

ARM SBC Laptop Browser

5G net

Signalling

5G

Eth or Wifi or 5G

We will talk about this bit

Step 1- lab prototype
Gstreamer on Raspi

• Gstreamer pipeline

• Read from v4l2 camera

• Encode to H264

• Packetize to RTP

• Send to localhost

• RTP read by |pipe| java stack (srtplight)

• Encrypts and sends DTLS/SRTP

• Pros:

• Simple - good isolation

• Works in Lab

• Cons:

• Fails on variable networks (5G)

• Have to send keyframes often

https://github.com/steely-glint/srtplight

https://github.com/steely-glint/srtplight

Isolation types
A side note

• Process isolation - runs in different process

• Memory isolation - we are using a memory safe language when possible

• License isolation - we may have proprietary algorithms for vehicle behaviour 
(intensely competitive space!) 
 
 
All of these are desireable

Step 2 - wif
Rpicamsrc gstreamer

• Rpicamsrc

• Gstreamer node

• Talks to hardware encoder+camera

• Replaced the v4l2 cam src

• Wrapped in 40 lines of C to set

• Exposes bitrate and full frame pads

• Execed from Java - which sends ASCII

• Pros:

• Copes with Variable bitrate

• Simple to test ASCII

• Good isolation

• Cons:

• It is a pipeline ~100ms latency

• Every packet goes via localhost

https://gstreamer.freedesktop.org/documentation/rpicamsrc/index.html

Good
enough

https://gstreamer.freedesktop.org/documentation/rpicamsrc/index.html

Step 3 - lower latency
Pure v4l2

• V4l2-ctl

• Put camera into H264 mode

• Control bitrate

• Request full frames

• Read frame from /dev/video0

• Packetize H264 in Java

• Exec v4l2-ctl when needed

• Pros:

• Lower latency

• Clean interface (Filesystem)

• Superb isolation

• Cons:

• Only works with Broadcom blob

• Raspi deprecated it

https://www.rfc-editor.org/rfc/rfc3984

High
Point

https://www.rfc-editor.org/rfc/rfc3984

Step 4 - New Hardware - Khadas Vim4 Amlogic a311d2
back to Gstreamer with a hack (sigh)

• AML encoder GStreamer node does  
not support dynamic bitrate control or fullframe requests

• Couldn’t find source that would build

• Did a hack….

• Found the source to .so Gstreamer uses

• Tweaked it so it has a 2 byte shared memory seg

• .so reads this before encoding each frame

• Sets bitrate and/or fullframe

• Java opens memory seg as a Random Access file

• Writes to it when needed

• Pros:

• M2 socket + Hardware encoder 
(unlike pi5)

• Works

• Acceptable isolation

• Cons:

• Higher latency

• Ugly
https://github.com/pipe/encoder_libs_aml_vim3n4

https://github.com/pipe/encoder_libs_aml_vim3n4

Step 5 - In process
Vim4 - back to reading from V4l2

• Uses Java FFM (NOT JNI) to access
encoder .so

• Sets bitrate / fullframe flag

• Passes video frames in, gets H264 out

• But we can’t read() from /dev/video50

• Have to use v4l2 shared memory
buffers

• Ioctls called via FFM

• Pros:

• Lower latency (170ms G2G)

• Pure Java - no C to maintain

• No need to change shipped .so

• Cons:

• Limited isolation (FFM and ioctl())

• More code

Where we
are now

https://github.com/pipe/v4l2Reader

https://github.com/pipe/v4l2Reader

Step 6 - Inprocess call .so
Vim4NPU - V4l2 ioctls unavailable

• Encoder remains same

• Switched from V4l2 to libMedia

• V4l2-ctl doesn’t

• Shared memory buffers via .so

• Multiple method calls to setup and run

• .so compiled in C++ so have to mangle
names

• LD_PRELOAD needed

• Pros:

• Android compatible ?

• Cons:

• Very limited isolation

• Lots more ugly code

• Why!?!?

• Working with Khadas to improve this…

Future

<GRUMBLE>

Plan 9 OS generalizes the Unix principle of
“everything is a file" to …. everything

• I miss that attitude

• Allows multiple languages to access the same API

• A C++ .so really does not

• Driver writers do the thing once (arguably in the right place)

• How do we get back there ? (Will rust help or hinder?) 

• Open source is great - I remember when we wrote a TCP/IP stack because it was
cheaper than licensing Intel’s for their RTOS.

</GRUMBLE>

• Contact:

• tim@pi.pe

• @steely_glint@chaos.social

• @steely_glint:matrix.org

• Consulting on open source WebRTC protocols

• SRTP : https://github.com/steely-glint/srtplight

• ICE : https://github.com/steely-glint/slice

• SCTP : https://github.com/pipe/sctp4j

• WHIP : https://github.com/pipe/whipi

• G2G : https://github.com/pipe/G2G

• Pion/gstreamer etc

• Building things with |pipe|

Thanks! Questions?
I’m a bit deaf, so SHOUT!

Image credits: 
Sotherbys , Classic Driver , Car and Classic , EWRC and HDCarWallPaper

mailto:tim@pi.pe
https://github.com/steely-glint/srtplight
https://github.com/steely-glint/slice
https://github.com/pipe/sctp4j
https://github.com/pipe/whipi
https://github.com/pipe/G2G
https://rmsothebys.com/auctions/af11/lots/r795-1952-citroen-traction-avante/
https://www.classicdriver.com/en/car/citroen/ds/1972/672319
https://www.carandclassic.com/l/C1743940
https://ewrc-results.com/
https://www.hdcarwallpapers.com/delorean_dmc_12_back_to_the_future_4k_3-wallpapers

