
Rethinking CPU scheduling for dynamic workloads on Sculpt OS

Johannes Schlatow and Stefan Kalkowski
<$firstname.$lastname@genode-labs.com>

Introduction

What is Sculpt OS?
showcase for Genode OS Framework as Desktop OS
I component-based OS framework
I hierarchical distribution of resources
I supports several microkernels

official Sculpt OS image (x86_64) uses NOVA microhypervisor
custom kernel (base-hw) primarily for ARM and test-driving new ideas

Rethinking CPU scheduling for dynamic workloads on Sculpt OS 2

Sculpt OS: User perspective

Sculpt user assigns for each component:
four scheduling groups with different latency expectations
I driver – latency-sensitive device drivers
I multimedia – audio, video, latency-sensitive parts of UI
I default – UI, desktop apps, computing
I background – best effort

mapped to scheduling priorities of underlying microkernel
rogue driver leads to starvation of lower-priority

→ fixed-priority scheduling may lead to starvation

Rethinking CPU scheduling for dynamic workloads on Sculpt OS 3

Quota-based scheduling on custom kernel

Scheduling in Genode’s custom kernel (base-hw) since 2014
quota- and priority-based scheduling with radical degradation to round-robin
mitigates rogue threads (e. g. broken device drivers)
enables hierarchical distribution of CPU quota
requires tuning for workload and target platform

→ no adequate solution for dynamic workloads

Rethinking CPU scheduling for dynamic workloads on Sculpt OS 4

Quota-based scheduling on custom kernel

Scheduling in Genode’s custom kernel (base-hw) since 2014
quota- and priority-based scheduling with radical degradation to round-robin
mitigates rogue threads (e. g. broken device drivers)
enables hierarchical distribution of CPU quota
requires tuning for workload and target platform

→ no adequate solution for dynamic workloads

Rethinking CPU scheduling for dynamic workloads on Sculpt OS 4

Scheduling requirements for dynamic workloads

Take a step back: What do we need?
fairness and adjustable latency
I fair (proportional) share of CPU → prevents starvation
I some threads prefer low latency
I other threads do not care much about latency (best-effort and high-throughput)

ease of configuration
robustness against misconfiguration and workload changes

→ revise scheduling for custom kernel

Rethinking CPU scheduling for dynamic workloads on Sculpt OS 5

Scheduling requirements for dynamic workloads

Take a step back: What do we need?
fairness and adjustable latency
I fair (proportional) share of CPU → prevents starvation
I some threads prefer low latency
I other threads do not care much about latency (best-effort and high-throughput)

ease of configuration
robustness against misconfiguration and workload changes

→ revise scheduling for custom kernel

Rethinking CPU scheduling for dynamic workloads on Sculpt OS 5

Fair scheduling

Round-Robin
each thread gets an equal share
fixed time-slice length

A B C A B C A B C
time

Weighted Round-Robin
each thread is assigned a weight
CPU share proportional to weight
different interleaving schemes
I weights: A=4, B=2, C=2

round-based implementation
not trivial for dynamic workloads

A B C A B C A A A B C

A A B C A A B C A A B C

Rethinking CPU scheduling for dynamic workloads on Sculpt OS 6

Fair scheduling

Round-Robin
each thread gets an equal share
fixed time-slice length

A B C A B C A B C
time

Weighted Round-Robin
each thread is assigned a weight
CPU share proportional to weight

different interleaving schemes
I weights: A=4, B=2, C=2

round-based implementation
not trivial for dynamic workloads

A B C A B C A A A B C

A A B C A A B C A A B C

Rethinking CPU scheduling for dynamic workloads on Sculpt OS 6

Fair scheduling

Round-Robin
each thread gets an equal share
fixed time-slice length

A B C A B C A B C
time

Weighted Round-Robin
each thread is assigned a weight
CPU share proportional to weight
different interleaving schemes
I weights: A=4, B=2, C=2

round-based implementation
not trivial for dynamic workloads

A B C A B C A A A B C

A A B C A A B C A A B C

Rethinking CPU scheduling for dynamic workloads on Sculpt OS 6

Fair scheduling

Round-Robin
each thread gets an equal share
fixed time-slice length

A B C A B C A B C
time

Weighted Round-Robin
each thread is assigned a weight
CPU share proportional to weight
different interleaving schemes
I weights: A=4, B=2, C=2

round-based implementation
not trivial for dynamic workloads

A B C A B C A A A B C

A A B C A A B C A A B C

Rethinking CPU scheduling for dynamic workloads on Sculpt OS 6

Fair scheduling

Round-Robin
each thread gets an equal share
fixed time-slice length

A B C A B C A B C
time

Weighted Round-Robin
each thread is assigned a weight
CPU share proportional to weight
different interleaving schemes
I weights: A=4, B=2, C=2

round-based implementation
not trivial for dynamic workloads

A B C A B C A A A B C

A A B C A A B C A A B C

Rethinking CPU scheduling for dynamic workloads on Sculpt OS 6

Fair scheduling for dynamic workloads

Virtual-time scheduling
each thread has a weight and a virtual time
scheduler picks thread with minimum virtual time

virtual time + = ∆real time
weight

Example: run each thread for 4 units of real time

0 4 8 12 16 20 24 28 32
0

1

2

3

4

real time

vi
rt

ua
lt

im
e

A(4) B(2) C(2)

A B C A B C A A

Rethinking CPU scheduling for dynamic workloads on Sculpt OS 7

Fair scheduling for dynamic workloads

Virtual-time scheduling
each thread has a weight and a virtual time
scheduler picks thread with minimum virtual time

virtual time + = ∆real time
weight

Example: run each thread for 4 units of real time

0 4 8 12 16 20 24 28 32
0

1

2

3

4

real time

vi
rt

ua
lt

im
e

A(4) B(2) C(2)

A B C A B C A A

Rethinking CPU scheduling for dynamic workloads on Sculpt OS 7

Fair scheduling for dynamic workloads

Virtual-time scheduling
each thread has a weight and a virtual time
scheduler picks thread with minimum virtual time

virtual time + = ∆real time
weight

Example: run each thread for 4 units of real time

0 4 8 12 16 20 24 28 32
0

1

2

3

4

real time

vi
rt

ua
lt

im
e

A(4) B(2) C(2)

A B C A B C A A

Rethinking CPU scheduling for dynamic workloads on Sculpt OS 7

Fair scheduling for dynamic workloads

Virtual-time scheduling
each thread has a weight and a virtual time
scheduler picks thread with minimum virtual time

virtual time + = ∆real time
weight

Example: run each thread for 4 units of real time

0 4 8 12 16 20 24 28 32
0

1

2

3

4

real time

vi
rt

ua
lt

im
e

A(4) B(2) C(2)

A B C A B C A A

Rethinking CPU scheduling for dynamic workloads on Sculpt OS 7

Fair scheduling for dynamic workloads

Virtual-time scheduling
each thread has a weight and a virtual time
scheduler picks thread with minimum virtual time

virtual time + = ∆real time
weight

Example: run each thread for 4 units of real time

0 4 8 12 16 20 24 28 32
0

1

2

3

4

real time

vi
rt

ua
lt

im
e

A(4) B(2) C(2)

A B C A B C A A

Rethinking CPU scheduling for dynamic workloads on Sculpt OS 7

Fair scheduling for dynamic workloads

Virtual-time scheduling
each thread has a weight and a virtual time
scheduler picks thread with minimum virtual time

virtual time + = ∆real time
weight

Example: run each thread for 4 units of real time

0 4 8 12 16 20 24 28 32
0

1

2

3

4

real time

vi
rt

ua
lt

im
e

A(4) B(2) C(2)

A B C A B C A A

Rethinking CPU scheduling for dynamic workloads on Sculpt OS 7

Fair scheduling for dynamic workloads

Virtual-time scheduling
each thread has a weight and a virtual time
scheduler picks thread with minimum virtual time

virtual time + = ∆real time
weight

Example: run each thread for 4 units of real time

0 4 8 12 16 20 24 28 32
0

1

2

3

4

real time

vi
rt

ua
lt

im
e

A(4) B(2) C(2)

A B C A B C A A

Rethinking CPU scheduling for dynamic workloads on Sculpt OS 7

Fair scheduling for dynamic workloads

Virtual-time scheduling
each thread has a weight and a virtual time
scheduler picks thread with minimum virtual time

virtual time + = ∆real time
weight

Example: run each thread for 4 units of real time

0 4 8 12 16 20 24 28 32
0

1

2

3

4

real time

vi
rt

ua
lt

im
e

A(4) B(2) C(2)

A B C A B C A A

Rethinking CPU scheduling for dynamic workloads on Sculpt OS 7

Challenges with virtual-time scheduling

Open questions
How to assign weights to threads?
How to determine time-slice length?
How to deal with sleeping threads?
How to tune threads for low latency?

Existing solutions
EEVDF (Earliest Eligible Virtual Deadline First), new replacement for Linux’ CFS
BVT (Borrowed Virtual Time) ← our basis for new scheduler

Approach
1. simulate basic scenarios to experiment with parameters and options
2. implement in custom kernel and evaluate

Rethinking CPU scheduling for dynamic workloads on Sculpt OS 8

Challenges with virtual-time scheduling

Open questions
How to assign weights to threads?
How to determine time-slice length?
How to deal with sleeping threads?
How to tune threads for low latency?

Existing solutions
EEVDF (Earliest Eligible Virtual Deadline First), new replacement for Linux’ CFS
BVT (Borrowed Virtual Time) ← our basis for new scheduler

Approach
1. simulate basic scenarios to experiment with parameters and options
2. implement in custom kernel and evaluate

Rethinking CPU scheduling for dynamic workloads on Sculpt OS 8

Challenges with virtual-time scheduling

Open questions
How to assign weights to threads?
How to determine time-slice length?
How to deal with sleeping threads?
How to tune threads for low latency?

Existing solutions
EEVDF (Earliest Eligible Virtual Deadline First), new replacement for Linux’ CFS
BVT (Borrowed Virtual Time) ← our basis for new scheduler

Approach
1. simulate basic scenarios to experiment with parameters and options
2. implement in custom kernel and evaluate

Rethinking CPU scheduling for dynamic workloads on Sculpt OS 8

Adapting virtual-time scheduling for Sculpt OS

How to assign weights to threads?

proportional share = sum of weights
thread weight

adding threads changes proportional share
I e. g.: CPU share for driver threads shrinks with number of threads in default

re-assigning weights of running threads complicates implementation

Solution: hierarchical scheduling
fixed proportional share for groups (hard-coded guesstimate)
equal weights within each group
relieves user from weight assignment

Rethinking CPU scheduling for dynamic workloads on Sculpt OS 9

Adapting virtual-time scheduling for Sculpt OS

How to assign weights to threads?

proportional share = sum of weights
thread weight

adding threads changes proportional share
I e. g.: CPU share for driver threads shrinks with number of threads in default

re-assigning weights of running threads complicates implementation

Solution: hierarchical scheduling
fixed proportional share for groups (hard-coded guesstimate)
equal weights within each group
relieves user from weight assignment

Rethinking CPU scheduling for dynamic workloads on Sculpt OS 9

Dynamic time slices

How to determine time-slice length?
options: constant / thread property / derived from weight

idea from BVT: eliminate context switches to the same thread
A B C A A A B C A→

catch up with lowest virtual time plus execute for a constant (real) time longer

0 4 810 14 18 22 28
0
1
2
3
4
5

real time

vi
rt

ua
lt

im
e

A(4) B(2) C(2)

A B C A B

Rethinking CPU scheduling for dynamic workloads on Sculpt OS 10

Dynamic time slices

How to determine time-slice length?
options: constant / thread property / derived from weight
idea from BVT: eliminate context switches to the same thread

A B C A A A B C A→

catch up with lowest virtual time plus execute for a constant (real) time longer

0 4 810 14 18 22 28
0
1
2
3
4
5

real time

vi
rt

ua
lt

im
e

A(4) B(2) C(2)

A B C A B

Rethinking CPU scheduling for dynamic workloads on Sculpt OS 10

Dynamic time slices

How to determine time-slice length?
options: constant / thread property / derived from weight
idea from BVT: eliminate context switches to the same thread

A B C A A A B C A→

catch up with lowest virtual time plus execute for a constant (real) time longer

0 4 810 14 18 22 28
0
1
2
3
4
5

real time

vi
rt

ua
lt

im
e

A(4) B(2) C(2)

A B C A B

Rethinking CPU scheduling for dynamic workloads on Sculpt OS 10

Dynamic time slices

How to determine time-slice length?
options: constant / thread property / derived from weight
idea from BVT: eliminate context switches to the same thread

A B C A A A B C A→

catch up with lowest virtual time plus execute for a constant (real) time longer

0 4 810 14 18 22 28
0
1
2
3
4
5

real time

vi
rt

ua
lt

im
e

A(4) B(2) C(2)

A B C A B

Rethinking CPU scheduling for dynamic workloads on Sculpt OS 10

Dynamic time slices

How to determine time-slice length?
options: constant / thread property / derived from weight
idea from BVT: eliminate context switches to the same thread

A B C A A A B C A→

catch up with lowest virtual time plus execute for a constant (real) time longer

0 4 810 14 18 22 28
0
1
2
3
4
5

real time

vi
rt

ua
lt

im
e

A(4) B(2) C(2)

A B C A B

Rethinking CPU scheduling for dynamic workloads on Sculpt OS 10

Dynamic time slices

How to determine time-slice length?
options: constant / thread property / derived from weight
idea from BVT: eliminate context switches to the same thread

A B C A A A B C A→

catch up with lowest virtual time plus execute for a constant (real) time longer

0 4 810 14 18 22 28
0
1
2
3
4
5

real time

vi
rt

ua
lt

im
e

A(4) B(2) C(2)

A B C A B

Rethinking CPU scheduling for dynamic workloads on Sculpt OS 10

Dynamic time slices

How to determine time-slice length?
options: constant / thread property / derived from weight
idea from BVT: eliminate context switches to the same thread

A B C A A A B C A→

catch up with lowest virtual time plus execute for a constant (real) time longer

0 4 810 14 18 22 28
0
1
2
3
4
5

real time

vi
rt

ua
lt

im
e

A(4) B(2) C(2)

A B C A B

Rethinking CPU scheduling for dynamic workloads on Sculpt OS 10

Sleeping policy

Let’s take a nap!

A B C A B . . .

unready ready

A’s virtual time = minimum

A . . . A ?

A B C A

sleeping time must not affect time-slice length
BVT: increase virtual time to minimum virtual time when thread becomes ready
proportional share is only maintained for active threads

Rethinking CPU scheduling for dynamic workloads on Sculpt OS 11

Sleeping policy

Let’s take a nap!

A B C A B . . .

unready ready

A’s virtual time = minimum

A . . . A ?

A B C A

sleeping time must not affect time-slice length
BVT: increase virtual time to minimum virtual time when thread becomes ready
proportional share is only maintained for active threads

Rethinking CPU scheduling for dynamic workloads on Sculpt OS 11

Sleeping policy

Let’s take a nap!

A B C A B . . .

unready ready

A’s virtual time = minimum

A . . . A ?

A B C A

sleeping time must not affect time-slice length
BVT: increase virtual time to minimum virtual time when thread becomes ready
proportional share is only maintained for active threads

Rethinking CPU scheduling for dynamic workloads on Sculpt OS 11

Sleeping policy

Let’s take a nap!

A B C A B . . .

unready ready

A’s virtual time = minimum

A . . . A ?

A B C A

sleeping time must not affect time-slice length

BVT: increase virtual time to minimum virtual time when thread becomes ready
proportional share is only maintained for active threads

Rethinking CPU scheduling for dynamic workloads on Sculpt OS 11

Sleeping policy

Let’s take a nap!

A B C A B . . .

unready ready

A’s virtual time = minimum

A . . . A ?

A B C A

sleeping time must not affect time-slice length
BVT: increase virtual time to minimum virtual time when thread becomes ready
proportional share is only maintained for active threads

Rethinking CPU scheduling for dynamic workloads on Sculpt OS 11

Latency tuning

How to tune threads for low latency?

A B C A B C A

From BVT:
each thread is assigned a warp value
virtual time of a warping thread is reduced by its warp value
I thread is preferred in scheduling decision
I thread’s time slice increases by warp value * weight

In Sculpt:
per-group warp value (hard-coded guesstimate)
warp state of group derived from thread with lowest virtual time
fixed time limit for each thread to run with warp enabled without sleeping

Rethinking CPU scheduling for dynamic workloads on Sculpt OS 12

Latency tuning

How to tune threads for low latency?

A B C A B C A

From BVT:
each thread is assigned a warp value
virtual time of a warping thread is reduced by its warp value
I thread is preferred in scheduling decision
I thread’s time slice increases by warp value * weight

In Sculpt:
per-group warp value (hard-coded guesstimate)
warp state of group derived from thread with lowest virtual time
fixed time limit for each thread to run with warp enabled without sleeping

Rethinking CPU scheduling for dynamic workloads on Sculpt OS 12

Latency tuning

How to tune threads for low latency?

A B C A B C A

From BVT:
each thread is assigned a warp value
virtual time of a warping thread is reduced by its warp value
I thread is preferred in scheduling decision
I thread’s time slice increases by warp value * weight

In Sculpt:
per-group warp value (hard-coded guesstimate)
warp state of group derived from thread with lowest virtual time
fixed time limit for each thread to run with warp enabled without sleeping

Rethinking CPU scheduling for dynamic workloads on Sculpt OS 12

Latency tuning

How to tune threads for low latency?

A B C A B C A

From BVT:
each thread is assigned a warp value
virtual time of a warping thread is reduced by its warp value
I thread is preferred in scheduling decision
I thread’s time slice increases by warp value * weight

In Sculpt:
per-group warp value (hard-coded guesstimate)
warp state of group derived from thread with lowest virtual time
fixed time limit for each thread to run with warp enabled without sleeping

Rethinking CPU scheduling for dynamic workloads on Sculpt OS 12

Configuration

Configuration

Rethinking CPU scheduling for dynamic workloads on Sculpt OS 13

Hard-coded scheduling configuration

four hard-coded scheduling groups

Group Weight Warp
driver 10 4.5ms
multimedia 5 4ms
default 5 2ms
background 1 0ms

Sculpt’s two-level priority hierarchy mapped to groups

Rethinking CPU scheduling for dynamic workloads on Sculpt OS 14

Mapping Sculpt’s component priorities to scheduling groups

Toplevel Init

Prel = 0
Pabs = 0

Prel = -1
Pabs = 32768

Driver Multimedia

Timer Leitzentrale InitDriver Init Runtime Init

Nitpicker Report FSConfig FS

Rethinking CPU scheduling for dynamic workloads on Sculpt OS 15

Mapping Sculpt’s component priorities to scheduling groups

Toplevel Init

Prel = 0
Pabs = 0

Prel = -1
Pabs = 32768

Driver Multimedia

Runtime Init

Prel = 0
Pabs = 32768

Prel = -1
Pabs = 36864

Prel = -2
Pabs = 40960

Prel = -3
Pabs = 45056

Prel = -4
Pabs = 49152

Prel = -5
Pabs = 53248

Prel = -6
Pabs = 57344

Prel = -7
Pabs = 61440

Multimedia Driver Multimedia Default Background

Rethinking CPU scheduling for dynamic workloads on Sculpt OS 16

Demo

Live demo

Rethinking CPU scheduling for dynamic workloads on Sculpt OS 17

Summary

implementation matches expectations
I in benchmarks
I in user experience on Sculpt

side-effect: reworked base-hw internals
minimal configuration burden for Sculpt OS users
groups and group-parameters hard-coded but configurable in framework

Sculpt OS 25.10 image with base-hw for x86_64
https://depot.genode.org/skalk/image/sculpt-pc-2026-01-29.img.xz

Rethinking CPU scheduling for dynamic workloads on Sculpt OS 18

https://depot.genode.org/skalk/image/sculpt-pc-2026-01-29.img.xz

References

GitHub Issue #5117 (Concept & Implementation)
https://github.com/genodelabs/genode/issues/5117

GitHub Issue #5604 (Evaluation)
https://github.com/genodelabs/genode/issues/5604

Borrowed-virtual-time (BVT) scheduling - Duda and Cheriton
https://dl.acm.org/doi/10.1145/319151.319169

Earliest Eligible Virtual Deadline First (EEVDF) - Stoica and Abdel-Wahab
https://people.eecs.berkeley.edu/~istoica/papers/eevdf-tr-95.pdf

FOSDEM 2017 talk on base-hw
https://archive.fosdem.org/2017/schedule/event/microkernel_kernel_
library/

Rethinking CPU scheduling for dynamic workloads on Sculpt OS 19

https://github.com/genodelabs/genode/issues/5117
https://github.com/genodelabs/genode/issues/5604
https://dl.acm.org/doi/10.1145/319151.319169
https://people.eecs.berkeley.edu/~istoica/papers/eevdf-tr-95.pdf
https://archive.fosdem.org/2017/schedule/event/microkernel_kernel_library/
https://archive.fosdem.org/2017/schedule/event/microkernel_kernel_library/

	Introduction
	Concept
	Configuration
	Demo
	Closing

