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W
WZ  Introduction

What is Sculpt OS?
» showcase for Genode OS Framework as Desktop OS
» component-based OS framework
» hierarchical distribution of resources
» supports several microkernels
= official Sculpt OS image (x86_64) uses NOVA microhypervisor
» custom kernel (base-hw) primarily for ARM and test-driving new ideas
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WZ  Sculpt OS: User perspective

Sculpt user assigns for each component:

= four scheduling groups with different latency expectations
» driver — latency-sensitive device drivers
» multimedia — audio, video, latency-sensitive parts of Ul
» default — Ul, desktop apps, computing
» background — best effort

= mapped to scheduling priorities of underlying microkernel

» rogue driver leads to starvation of lower-priority

— fixed-priority scheduling may lead to starvation
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\\% Quota-based scheduling on custom kernel

Scheduling in Genode’s custom kernel (base-hw) since 2014

quota- and priority-based scheduling with radical degradation to round-robin
mitigates rogue threads (e.g. broken device drivers)

enables hierarchical distribution of CPU quota

requires tuning for workload and target platform
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\\% Quota-based scheduling on custom kernel

Scheduling in Genode’s custom kernel (base-hw) since 2014

quota- and priority-based scheduling with radical degradation to round-robin
mitigates rogue threads (e.g. broken device drivers)

enables hierarchical distribution of CPU quota

requires tuning for workload and target platform

— no adequate solution for dynamic workloads
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\\% Scheduling requirements for dynamic workloads

Take a step back: What do we need?
» fairness and adjustable latency
» fair (proportional) share of CPU — prevents starvation
» some threads prefer low latency
» other threads do not care much about latency (best-effort and high-throughput)
= ease of configuration
» robustness against misconfiguration and workload changes
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\\% Scheduling requirements for dynamic workloads

Take a step back: What do we need?
» fairness and adjustable latency

» fair (proportional) share of CPU — prevents starvation
» some threads prefer low latency
» other threads do not care much about latency (best-effort and high-throughput)

= ease of configuration
» robustness against misconfiguration and workload changes

— revise scheduling for custom kernel
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Fair scheduling

Round-Robin time

= each thread gets an equal share [A[B[C]A[B[C]A[B[C]
= fixed time-slice length
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Round-Robin time

= each thread gets an equal share [A[B[C]A[B[C]A[B[C]
= fixed time-slice length

Weighted Round-Robin

= each thread is assigned a weight
= CPU share proportional to weight
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Fair scheduling

Round-Robin time

= each thread gets an equal share [A[B[C]A[B[C]A[B[C]
= fixed time-slice length

Weighted Round-Robin

= each thread is assigned a weight [A[B]C]A[B[C]ATA][A]B]C]
= CPU share proportional to weight

= different interleaving schemes
> weights: A=4, B=2, C=2
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Fair scheduling

Round-Robin time

= each thread gets an equal share [A[B[C]A[B[C]A[B[C]
= fixed time-slice length

Weighted Round-Robin

= each thread is assigned a weight |A|B|C|A|B|C|A|A||A|B|C|

= CPU share proportional to weight

» different interleaving schemes [AlA][B[c]A[A[B]|C][A]A]|B]C]
> weights: A=4, B=2, C=2
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Fair scheduling

Round-Robin time

= each thread gets an equal share [A[B[C]A[B[C]A[B[C]
= fixed time-slice length

Weighted Round-Robin

each thread is assigned a weight [A[B[C]A[B]C]AJA|[A]B]C]
CPU share proportional to weight

different interleaving schemes [AlA][B[c]A[A[B]|C][A]A]|B]C]
> weights: A=4, B=2, C=2

round-based implementation
not trivial for dynamic workloads
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Fair scheduling for dynamic workloads

Virtual-time scheduling
= each thread has a weight and a virtual time
» scheduler picks thread with minimum virtual time

Areal time

virtual time + = weight
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Fair scheduling for dynamic workloads

Virtual-time scheduling

= each thread has a weight and a virtual time
» scheduler picks thread with minimum virtual time

Areal time

virtual time + = weight

Example: run each thread for 4 units of real time

virtual time
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real time
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Fair scheduling for dynamic workloads

Virtual-time scheduling
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\\% Challenges with virtual-time scheduling

Open questions

» How to assign weights to threads?

= How to determine time-slice length?
» How to deal with sleeping threads?

= How to tune threads for low latency?
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\\% Challenges with virtual-time scheduling

Open questions
How to assign weights to threads?
How to determine time-slice length?
How to deal with sleeping threads?
How to tune threads for low latency?

Existing solutions

= EEVDF (Earliest Eligible Virtual Deadline First), new replacement for Linux" CFS
= BVT (Borrowed Virtual Time) <— our basis for new scheduler
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\\% Challenges with virtual-time scheduling

Open questions

» How to assign weights to threads?

= How to determine time-slice length?
» How to deal with sleeping threads?

= How to tune threads for low latency?

Existing solutions

= EEVDF (Earliest Eligible Virtual Deadline First), new replacement for Linux" CFS
= BVT (Borrowed Virtual Time) <— our basis for new scheduler

Approach

1. simulate basic scenarios to experiment with parameters and options
2. implement in custom kernel and evaluate
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\\% Adapting virtual-time scheduling for Sculpt OS

How to assign weights to threads?

sum of weights

proportional share = "= T

» adding threads changes proportional share
» e.g.: CPU share for driver threads shrinks with number of threads in default

» re-assigning weights of running threads complicates implementation
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\\% Adapting virtual-time scheduling for Sculpt OS

How to assign weights to threads?

sum of weights

proportional share = "= T

» adding threads changes proportional share
» e.g.: CPU share for driver threads shrinks with number of threads in default

» re-assigning weights of running threads complicates implementation

Solution: hierarchical scheduling
= fixed proportional share for groups (hard-coded guesstimate)
= equal weights within each group
» relieves user from weight assignment

Rethinking CPU scheduling for dynamic workloads on Sculpt OS



W
\\% Dynamic time slices

How to determine time-slice length?
= options: constant / thread property / derived from weight
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\\% Dynamic time slices

How to determine time-slice length?
= options: constant / thread property / derived from weight

= idea from BVT: eliminate context switches to the same thread

A[BIC]A[A] — [AlB[C] A |
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\\% Dynamic time slices

How to determine time-slice length?
= options: constant / thread property / derived from weight

= idea from BVT: eliminate context switches to the same thread
A[B[C]A[A] — [A[B]C] A |

= catch up with lowest virtual time plus execute for a constant (real) time longer

virtual time
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real time
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= options: constant / thread property / derived from weight

= idea from BVT: eliminate context switches to the same thread
A[B[C]A[A] — [A[B]C] A |

= catch up with lowest virtual time plus execute for a constant (real) time longer

A(4) B(2) —4— C(2)

»
/

[/

0 4 810 14 18 22 28

real time

virtual time

Rethinking CPU scheduling for dynamic workloads on Sculpt OS



W
\\% Sleeping policy

Let’s take a nap!

[A[BTC]
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unready
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Let’s take a nap!

A's virtual time = minimum
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\\% Sleeping policy

Let’s take a nap!

A's virtual time = minimum
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unready ready

» sleeping time must not affect time-slice length
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\\% Sleeping policy

Let’s take a nap!

A's virtual time = minimum

A ATB] - |
V?«———) ! ﬂ

unready ready

» sleeping time must not affect time-slice length
= BVT: increase virtual time to minimum virtual time when thread becomes ready
» proportional share is only maintained for active threads
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\\% Latency tuning

How to tune threads for low latency?

AlBlc|] A [B]cC] A
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\\% Latency tuning

How to tune threads for low latency?

AlBlc|] A [B]cCc] A

From BVT:
» each thread is assigned a warp value
= virtual time of a warping thread is reduced by its warp value

» thread is preferred in scheduling decision
» thread’s time slice increases by warp value * weight
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\\% Latency tuning

How to tune threads for low latency?

AlBlc|] A [B]cCc] A

From BVT:
» each thread is assigned a warp value
= virtual time of a warping thread is reduced by its warp value
» thread is preferred in scheduling decision
» thread’s time slice increases by warp value * weight
In Sculpt:

= per-group warp value (hard-coded guesstimate)
» warp state of group derived from thread with lowest virtual time
= fixed time limit for each thread to run with warp enabled without sleeping
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WZ  Configuration

Configuration
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\\% Hard-coded scheduling configuration

» four hard-coded scheduling groups

’ Group Weight ‘ Warp ‘
driver 10 4.5ms
multimedia | 5 4ms
default 5 2ms
background | 1 Oms

» Sculpt’s two-level priority hierarchy mapped to groups
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Mapping Sculpt’'s component priorities to scheduling groups

Toplevel Init

Pe =0 Pe=-1
Pas =0 Paps = 32768

Driver Multimedia

Driver Init Leitzentrale Init Runtime Init

Config FS Nitpicker Report FS
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\\% Mapping Sculpt’'s component priorities to scheduling groups

Toplevel Init

Pre\ =0

I:’vel =-1
Paps =0

Pabs = 32768

Driver Multimedia

Runtime Init

Pra =0 Preg = -1 Prag = -2 P =-3 Prg = -4 Prag = -5

- Pra = Pra =
Pips = 32768 | Paps — 36864 | Pays = 40960 | Paps — 45056 | Poy, — 49152

o -6 et =7
Pabs = 53248 | P,y = 57344 | P, = 61440

Multimedia Driver Multimedia| Default

Background
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Live demo
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implementation matches expectations
» in benchmarks
» in user experience on Sculpt
side-effect: reworked base-hw internals
minimal configuration burden for Sculpt OS users
groups and group-parameters hard-coded but configurable in framework

Sculpt OS 25.10 image with base-hw for x86__64
https://depot.genode.org/skalk/image/sculpt-pc-2026-01-29.img.xz
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