Rethinking CPU scheduling for dynamic workloads on Sculpt OS

Johannes Schlatow and Stefan Kalkowski
<$firstname.$lastname@genode-labs.com>

W
WZ Introduction

What is Sculpt OS?
» showcase for Genode OS Framework as Desktop OS
» component-based OS framework
» hierarchical distribution of resources
» supports several microkernels
= official Sculpt OS image (x86_64) uses NOVA microhypervisor
» custom kernel (base-hw) primarily for ARM and test-driving new ideas

Rethinking CPU scheduling for dynamic workloads on Sculpt OS

\\\‘% S . :
WZ Sculpt OS: User perspective

Sculpt user assigns for each component:

= four scheduling groups with different latency expectations
» driver — latency-sensitive device drivers
» multimedia — audio, video, latency-sensitive parts of Ul
» default — Ul, desktop apps, computing
» background — best effort

= mapped to scheduling priorities of underlying microkernel

» rogue driver leads to starvation of lower-priority

— fixed-priority scheduling may lead to starvation

Rethinking CPU scheduling for dynamic workloads on Sculpt OS

¥
\\% Quota-based scheduling on custom kernel

Scheduling in Genode’s custom kernel (base-hw) since 2014

quota- and priority-based scheduling with radical degradation to round-robin
mitigates rogue threads (e.g. broken device drivers)

enables hierarchical distribution of CPU quota

requires tuning for workload and target platform

Rethinking CPU scheduling for dynamic workloads on Sculpt OS

¥
\\% Quota-based scheduling on custom kernel

Scheduling in Genode’s custom kernel (base-hw) since 2014

quota- and priority-based scheduling with radical degradation to round-robin
mitigates rogue threads (e.g. broken device drivers)

enables hierarchical distribution of CPU quota

requires tuning for workload and target platform

— no adequate solution for dynamic workloads

Rethinking CPU scheduling for dynamic workloads on Sculpt OS

W
\\% Scheduling requirements for dynamic workloads

Take a step back: What do we need?
» fairness and adjustable latency
» fair (proportional) share of CPU — prevents starvation
» some threads prefer low latency
» other threads do not care much about latency (best-effort and high-throughput)
= ease of configuration
» robustness against misconfiguration and workload changes

Rethinking CPU scheduling for dynamic workloads on Sculpt OS

W
\\% Scheduling requirements for dynamic workloads

Take a step back: What do we need?
» fairness and adjustable latency

» fair (proportional) share of CPU — prevents starvation
» some threads prefer low latency
» other threads do not care much about latency (best-effort and high-throughput)

= ease of configuration
» robustness against misconfiguration and workload changes

— revise scheduling for custom kernel

Rethinking CPU scheduling for dynamic workloads on Sculpt OS

Fair scheduling

Round-Robin time

= each thread gets an equal share [A[B[C]A[B[C]A[B[C]
= fixed time-slice length

Rethinking CPU scheduling for dynamic workloads on Sculpt OS

Z : :
WZ Fair scheduling

Round-Robin time

= each thread gets an equal share [A[B[C]A[B[C]A[B[C]
= fixed time-slice length

Weighted Round-Robin

= each thread is assigned a weight
= CPU share proportional to weight

Rethinking CPU scheduling for dynamic workloads on Sculpt OS

Fair scheduling

Round-Robin time

= each thread gets an equal share [A[B[C]A[B[C]A[B[C]
= fixed time-slice length

Weighted Round-Robin

= each thread is assigned a weight [A[B]C]A[B[C]ATA][A]B]C]
= CPU share proportional to weight

= different interleaving schemes
> weights: A=4, B=2, C=2

Rethinking CPU scheduling for dynamic workloads on Sculpt OS

Fair scheduling

Round-Robin time

= each thread gets an equal share [A[B[C]A[B[C]A[B[C]
= fixed time-slice length

Weighted Round-Robin

= each thread is assigned a weight |A|B|C|A|B|C|A|A||A|B|C|

= CPU share proportional to weight

» different interleaving schemes [AlA][B[c]A[A[B]|C][A]A]|B]C]
> weights: A=4, B=2, C=2

Rethinking CPU scheduling for dynamic workloads on Sculpt OS

Fair scheduling

Round-Robin time

= each thread gets an equal share [A[B[C]A[B[C]A[B[C]
= fixed time-slice length

Weighted Round-Robin

each thread is assigned a weight [A[B[C]A[B]C]AJA|[A]B]C]
CPU share proportional to weight

different interleaving schemes [AlA][B[c]A[A[B]|C][A]A]|B]C]
> weights: A=4, B=2, C=2

round-based implementation
not trivial for dynamic workloads

Rethinking CPU scheduling for dynamic workloads on Sculpt OS

Fair scheduling for dynamic workloads

Virtual-time scheduling
= each thread has a weight and a virtual time
» scheduler picks thread with minimum virtual time

Areal time

virtual time + = weight

Rethinking CPU scheduling for dynamic workloads on Sculpt OS

Fair scheduling for dynamic workloads

Virtual-time scheduling

= each thread has a weight and a virtual time
» scheduler picks thread with minimum virtual time

Areal time

virtual time + = weight

Example: run each thread for 4 units of real time

virtual time

0 4 8 12 16 20 24 28 32

real time

Rethinking CPU scheduling for dynamic workloads on Sculpt OS

Fair scheduling for dynamic workloads

Virtual-time scheduling

= each thread has a weight and a virtual time
» scheduler picks thread with minimum virtual time

Areal time

virtual time + = weight

Example: run each thread for 4 units of real time

virtual time

0 4 8 12 16 20 24 28 32

real time

Rethinking CPU scheduling for dynamic workloads on Sculpt OS

Fair scheduling for dynamic workloads

Virtual-time scheduling

= each thread has a weight and a virtual time
» scheduler picks thread with minimum virtual time

Areal time

virtual time + = weight

Example: run each thread for 4 units of real time

A(4) B(2) —a— C(2)

iy

0 4 8 12 16 20 24 28 32

virtual time

real time

Rethinking CPU scheduling for dynamic workloads on Sculpt OS

Fair scheduling for dynamic workloads

Virtual-time scheduling

= each thread has a weight and a virtual time
» scheduler picks thread with minimum virtual time

Areal time

virtual time + = weight

Example: run each thread for 4 units of real time

A(4) B(2) —a— C(2)

+

virtual time

L

0 4 8 12 16 20 24 28 32

real time

Rethinking CPU scheduling for dynamic workloads on Sculpt OS

Fair scheduling for dynamic workloads

Virtual-time scheduling

= each thread has a weight and a virtual time
» scheduler picks thread with minimum virtual time

Areal time

virtual time + = weight

Example: run each thread for 4 units of real time

A(4) B(2) —a— C(2)

-

virtual time

[/

0 4 8 12 16 20 24 28 32

real time

Rethinking CPU scheduling for dynamic workloads on Sculpt OS

Fair scheduling for dynamic workloads

Virtual-time scheduling

= each thread has a weight and a virtual time
» scheduler picks thread with minimum virtual time

Areal time

virtual time + = weight

Example: run each thread for 4 units of real time

A(4) B(2) —a— C(2)

/ [ATBICTATEIC]

»
[/

0 4 8 12 16 20 24 28 32

virtual time

real time

Rethinking CPU scheduling for dynamic workloads on Sculpt OS

Fair scheduling for dynamic workloads

Virtual-time scheduling

= each thread has a weight and a virtual time
» scheduler picks thread with minimum virtual time

Areal time

virtual time + = weight

Example: run each thread for 4 units of real time

A(4) B(2) —a— C(2)

/ [ATBICTATBICTATA]

+
[/

0 4 8 12 16 20 24 28 32

virtual time

real time

Rethinking CPU scheduling for dynamic workloads on Sculpt OS

W
\\% Challenges with virtual-time scheduling

Open questions

» How to assign weights to threads?

= How to determine time-slice length?
» How to deal with sleeping threads?

= How to tune threads for low latency?

Rethinking CPU scheduling for dynamic workloads on Sculpt OS

W
\\% Challenges with virtual-time scheduling

Open questions
How to assign weights to threads?
How to determine time-slice length?
How to deal with sleeping threads?
How to tune threads for low latency?

Existing solutions

= EEVDF (Earliest Eligible Virtual Deadline First), new replacement for Linux" CFS
= BVT (Borrowed Virtual Time) <— our basis for new scheduler

Rethinking CPU scheduling for dynamic workloads on Sculpt OS

W
\\% Challenges with virtual-time scheduling

Open questions

» How to assign weights to threads?

= How to determine time-slice length?
» How to deal with sleeping threads?

= How to tune threads for low latency?

Existing solutions

= EEVDF (Earliest Eligible Virtual Deadline First), new replacement for Linux" CFS
= BVT (Borrowed Virtual Time) <— our basis for new scheduler

Approach

1. simulate basic scenarios to experiment with parameters and options
2. implement in custom kernel and evaluate

Rethinking CPU scheduling for dynamic workloads on Sculpt OS

P
\\% Adapting virtual-time scheduling for Sculpt OS

How to assign weights to threads?

sum of weights

proportional share = "= T

» adding threads changes proportional share
» e.g.: CPU share for driver threads shrinks with number of threads in default

» re-assigning weights of running threads complicates implementation

Rethinking CPU scheduling for dynamic workloads on Sculpt OS

P
\\% Adapting virtual-time scheduling for Sculpt OS

How to assign weights to threads?

sum of weights

proportional share = "= T

» adding threads changes proportional share
» e.g.: CPU share for driver threads shrinks with number of threads in default

» re-assigning weights of running threads complicates implementation

Solution: hierarchical scheduling
= fixed proportional share for groups (hard-coded guesstimate)
= equal weights within each group
» relieves user from weight assignment

Rethinking CPU scheduling for dynamic workloads on Sculpt OS

W
\\% Dynamic time slices

How to determine time-slice length?
= options: constant / thread property / derived from weight

Rethinking CPU scheduling for dynamic workloads on Sculpt OS

W
\\% Dynamic time slices

How to determine time-slice length?
= options: constant / thread property / derived from weight

= idea from BVT: eliminate context switches to the same thread

A[BIC]A[A] — [AlB[C] A |

Rethinking CPU scheduling for dynamic workloads on Sculpt OS

W
\\% Dynamic time slices

How to determine time-slice length?
= options: constant / thread property / derived from weight

= idea from BVT: eliminate context switches to the same thread
A[B[C]A[A] — [A[B]C] A |

= catch up with lowest virtual time plus execute for a constant (real) time longer

virtual time

0 4 810 14 18 22 28

real time

Rethinking CPU scheduling for dynamic workloads on Sculpt OS

W
\\% Dynamic time slices

How to determine time-slice length?
= options: constant / thread property / derived from weight

= idea from BVT: eliminate context switches to the same thread
A[B[C]A[A] — [A[B]C] A |

= catch up with lowest virtual time plus execute for a constant (real) time longer

virtual time

0 4 810 14 18 22 28

real time

Rethinking CPU scheduling for dynamic workloads on Sculpt OS

W
\\% Dynamic time slices

How to determine time-slice length?
= options: constant / thread property / derived from weight

= idea from BVT: eliminate context switches to the same thread
A[B[C]A[A] — [A[B]C] A |

= catch up with lowest virtual time plus execute for a constant (real) time longer

A(4) B(2) —4— C(2)

virtual time

vy

0 810 14 18 22 28

real time

Rethinking CPU scheduling for dynamic workloads on Sculpt OS

W
\\% Dynamic time slices

How to determine time-slice length?
= options: constant / thread property / derived from weight

= idea from BVT: eliminate context switches to the same thread
A[B[C]A[A] — [A[B]C] A |

= catch up with lowest virtual time plus execute for a constant (real) time longer

A(4) B(2) —4— C(2)

»
/

[/

0 4 810 14 18 22 28

real time

virtual time

Rethinking CPU scheduling for dynamic workloads on Sculpt OS

W
\\% Dynamic time slices

How to determine time-slice length?
= options: constant / thread property / derived from weight

= idea from BVT: eliminate context switches to the same thread
A[B[C]A[A] — [A[B]C] A |

= catch up with lowest virtual time plus execute for a constant (real) time longer

A(4) B(2) —4— C(2)

»
/

[/

0 4 810 14 18 22 28

real time

virtual time

Rethinking CPU scheduling for dynamic workloads on Sculpt OS

W
\\% Sleeping policy

Let’s take a nap!

[A[BTC]

Y

unready

Rethinking CPU scheduling for dynamic workloads on Sculpt OS

W
\\% Sleeping policy

Let’s take a nap!

A's virtual time = minimum

[A

Y P777>

unready ready

Rethinking CPU scheduling for dynamic workloads on Sculpt OS

W
\\% Sleeping policy

Let’s take a nap!

A's virtual time = minimum

|A A|B|"'
I —

unready ready

Rethinking CPU scheduling for dynamic workloads on Sculpt OS

W
\\% Sleeping policy

Let’s take a nap!

A's virtual time = minimum

A ATB] - |
V?«———) ! ﬂ

unready ready

» sleeping time must not affect time-slice length

Rethinking CPU scheduling for dynamic workloads on Sculpt OS

W
\\% Sleeping policy

Let’s take a nap!

A's virtual time = minimum

A ATB] - |
V?«———) ! ﬂ

unready ready

» sleeping time must not affect time-slice length
= BVT: increase virtual time to minimum virtual time when thread becomes ready
» proportional share is only maintained for active threads

Rethinking CPU scheduling for dynamic workloads on Sculpt OS

¥
\\% Latency tuning

How to tune threads for low latency?

AlBlc|] A [B]cC] A

Rethinking CPU scheduling for dynamic workloads on Sculpt OS

¥
\\% Latency tuning

How to tune threads for low latency?

AlBlc|] A [B]cCc] A

Rethinking CPU scheduling for dynamic workloads on Sculpt OS

¥
\\% Latency tuning

How to tune threads for low latency?

AlBlc|] A [B]cCc] A

From BVT:
» each thread is assigned a warp value
= virtual time of a warping thread is reduced by its warp value

» thread is preferred in scheduling decision
» thread’s time slice increases by warp value * weight

Rethinking CPU scheduling for dynamic workloads on Sculpt OS

¥
\\% Latency tuning

How to tune threads for low latency?

AlBlc|] A [B]cCc] A

From BVT:
» each thread is assigned a warp value
= virtual time of a warping thread is reduced by its warp value
» thread is preferred in scheduling decision
» thread’s time slice increases by warp value * weight
In Sculpt:

= per-group warp value (hard-coded guesstimate)
» warp state of group derived from thread with lowest virtual time
= fixed time limit for each thread to run with warp enabled without sleeping

Rethinking CPU scheduling for dynamic workloads on Sculpt OS

WZ Configuration

Configuration

Rethinking CPU scheduling for dynamic workloads on Sculpt OS

p
\\% Hard-coded scheduling configuration

» four hard-coded scheduling groups

’ Group Weight ‘ Warp ‘
driver 10 4.5ms
multimedia | 5 4ms
default 5 2ms
background | 1 Oms

» Sculpt’s two-level priority hierarchy mapped to groups

Rethinking CPU scheduling for dynamic workloads on Sculpt OS

Mapping Sculpt’'s component priorities to scheduling groups

Toplevel Init

Pe =0 Pe=-1
Pas =0 Paps = 32768

Driver Multimedia

Driver Init Leitzentrale Init Runtime Init

Config FS Nitpicker Report FS

Rethinking CPU scheduling for dynamic workloads on Sculpt OS

W
\\% Mapping Sculpt’'s component priorities to scheduling groups

Toplevel Init

Pre\ =0

I:’vel =-1
Paps =0

Pabs = 32768

Driver Multimedia

Runtime Init

Pra =0 Preg = -1 Prag = -2 P =-3 Prg = -4 Prag = -5

- Pra = Pra =
Pips = 32768 | Paps — 36864 | Pays = 40960 | Paps — 45056 | Poy, — 49152

o -6 et =7
Pabs = 53248 | P,y = 57344 | P, = 61440

Multimedia Driver Multimedia| Default

Background

Rethinking CPU scheduling for dynamic workloads on Sculpt OS

Live demo

Rethinking CPU scheduling for dynamic workloads on Sculpt OS

implementation matches expectations
» in benchmarks
» in user experience on Sculpt
side-effect: reworked base-hw internals
minimal configuration burden for Sculpt OS users
groups and group-parameters hard-coded but configurable in framework

Sculpt OS 25.10 image with base-hw for x86__64
https://depot.genode.org/skalk/image/sculpt-pc-2026-01-29.img.xz

Rethinking CPU scheduling for dynamic workloads on Sculpt OS

https://depot.genode.org/skalk/image/sculpt-pc-2026-01-29.img.xz

W
WZ References

GitHub Issue #5117 (Concept & Implementation)
https://github.com/genodelabs/genode/issues/5117

GitHub Issue #5604 (Evaluation)
https://github.com/genodelabs/genode/issues/5604

Borrowed-virtual-time (BVT) scheduling - Duda and Cheriton
https://dl.acm.org/doi/10.1145/319151.319169

Earliest Eligible Virtual Deadline First (EEVDF) - Stoica and Abdel-Wahab
https://people.eecs.berkeley.edu/~istoica/papers/eevdf-tr-95.pdf

FOSDEM 2017 talk on base-hw
https://archive.fosdem.org/2017/schedule/event/microkernel_kernel _
library/

Rethinking CPU scheduling for dynamic workloads on Sculpt OS

https://github.com/genodelabs/genode/issues/5117
https://github.com/genodelabs/genode/issues/5604
https://dl.acm.org/doi/10.1145/319151.319169
https://people.eecs.berkeley.edu/~istoica/papers/eevdf-tr-95.pdf
https://archive.fosdem.org/2017/schedule/event/microkernel_kernel_library/
https://archive.fosdem.org/2017/schedule/event/microkernel_kernel_library/

	Introduction
	Concept
	Configuration
	Demo
	Closing

