
Distributing Rust in RPMs for fun
(relatively speaking) and profit

Fabio Valentini / decathorpe @ FOSDEM 2026

2

about @decathorpe

● Fedora packager since
2016

● submitted my first Rust
package to Fedora in 2020

● primary maintainer of
rust2rpm since 2022

● Fedora Packaging
Committee (FPC) member
since 2018

● Fedora Engineering
Steering Committee
(FESCo) member since 2019

https://codeberg.org/rust2rpm/rust2rpm

3

so what’s this talk about?

4

are traditional package
managers obsolete?

5

background: Rust

● compiled language
(rustc / LLVM)

● typically statically linked
(no stable Rust ABI)

● compile-time codegen /
metaprogramming with
macros or build scripts,
conditional compilation

● package manager / build
system: cargo

● official package registry:
crates.io

● package / dependency
management: easy
(adding lots of
dependencies: also easy)

https://crates.io/

6

background: RPM packaging in Fedora

● hard requirement to build
everything¹ from source

● hard requirement for
compliance with license
terms²

● strong preference to
unbundle / not vendor
dependencies

● preference for running
upstream test suites (if
possible)

● incentives to provide good
system integration:
shell completions, manual
pages, etc.

7

the approach for libraries

● packages for Rust crates
contain only the crate
sources and no compiled
artifacts (again, no stable
ABI)

● even with stable ABI,
shipping compiled
artifacts for all possible
combinations of enabled
feature flags is impractical
(combinatorial explosion)

8

the philosophy for applications

The goal is to make

$ dnf install foo

provide something as close to

$ cargo install foo

as possible.

… or, if possible, to provide
something even better.

9

so …
what can be done better?

10

application installation: cargo

● cargo only supports
“installing” applications by
building them from source

● requires users to have a
Rust toolchain (cargo,
rustc, LLVM) installed

● external dependencies (C
library headers) also
required in common cases

● “cargo install” only installs
executables into the user’s
$PATH

● cannot handle other files

11

application installation: cargo

● “cargo build” limitations
incentivise workarounds
that are usually considered
unsafe (or at least “bad
practice”):

bundled C libraries, static
linking – sometimes even
pre-built object files

● “cargo install” limitations
require using the “self
contained executable”
model for applications:

embedding data files into
(huge) executables instead
of loading them from disk,
no system integration

12

application installation: RPM

● integrated with system
package manager

● packages are built in a
trusted environment and
cryptographically signed

● no Rust toolchain or
development headers
required locally

● packages can ship support
files for better system
integration:

shell completions
manual pages
config files / data files

13

application installation: RPM

● smaller footprint using
dynamically linked (C/C++)
library dependencies
shared between packages

(deduplication both on
disk and in memory)

● disentangles update cycles
of C/C++ library
dependencies and the
application itself

(allows shipping C/C++
library security updates
without having to rebuild
Rust applications)

14

application updates: cargo

● requires user interaction
(running “cargo install”
again for all installed
applications)

● no mechanism to notify
users of update availability

● no mechanism to push
security updates

● re-running “cargo install”
is not enough

● does nothing by default if
the application version has
not changed (requires
using “--force”)

15

application updates: RPM

● integrated with system
package manager

● supports notifying users of
available (security)
updates

● automatic installation of
critical updates on servers
or image-based systems

● decouples application and
library dependency update
cycle (mostly foreshadowing)

16

bonus points: better test coverage

● package builds run project
test suites (to the extent
possible) against an
environment that closely
matches the user’s
environment (OS, OS
version, library versions,
CPU architecture, etc.)

● adds test coverage for
environments usually not
available in CI
(powerpc64le, s390x)

● continuous testing against
new dependency versions
in package CI (mostly more

foreshadowing)

17

how does this work with
vendored dependencies?

18

to vendor or not to vendor

Pros:
● quickly get to a building

and working package

● avoid dealing with
dependencies

Cons:
● often difficult to get from

“working package” to
“acceptable package”

● you cannot actually avoid
dealing with dependencies

19

just vendor dependencies (problems included)

● building with vendored
dependencies is not a
shortcut for avoiding
responsibilities

● running test suites for
library dependencies is
basically not possible³

● are project licenses
declared correctly?

● do all projects include
mandatory license texts?

● are the licenses of all
dependencies acceptable²?

● are all dependencies
legally acceptable⁴?

20

doing things the hard way (Fedora, debian)

● one RPM package per Rust
crate / library (which only
ship source code*)

● shared responsibilities for
most⁵ dependencies

● avoid duplicated audit
effort (legal / technical)

● run test suites (find bugs⁶!)

● providing multiple parallel-
installable library versions
is easy (if necessary)

● submitting patches with
fixes / improvements to
upstream improves the
ecosystem for all

21

making the “right” way as easy as possible

● substantial work has gone
into improving the Rust /
RPM packager tooling
(rust2rpm, etc.)

● busywork basically
eliminated from initial
packaging + update
workflows

● more improvements
coming in the future

● currently some features
are not enabled by default
due to RHEL shipping old
RPM versions

● we still need to support
EPEL 9 and 10 for ... a long
time

22

recent developments / future improvements

dynamically generated
subpackages (“specparts”):

● dramatically reduced
boilerplate in RPM spec files

● makes re-running rust2rpm
for most crate updates
unnecessary

● requires RPM 4.19+
● available on Fedora and EPEL

10 (not enabled by default)

declarative BuildSystem:
● almost zero boilerplate for

common cases
● requires RPM 4.20+
● available on Fedora only

(not enabled by default)

23

so …
are traditional package

managers obsolete?

24

Q & A

25

¹ exceptions to the “build from source” req

● proprietary firmware blobs
● compiler toolchains (for

bootstrapping purposes only)
● generated code does not

necessarily need to be
regenerated (mostly)

Fedora Packaging Guidelines:
What can be packaged

https://docs.fedoraproject.org/en-US/packaging-guidelines/what-can-be-packaged/

26

² license compliance

● many popular FOSS
licenses require that
(re)distributed sources
contain a copy of the
original license text

(including Apache-2.0 and
MIT – both popular in the
Rust ecosystem)

● some licenses are not
acceptable for Fedora

notably, CC0-1.0 is no
longer on the list of
licenses that are allowed
for “code” (only allowed for
“content”)

27

³ running test suites of library dependencies

● the “cargo vendor”
command only includes
and downloads test-
specific dependencies of
the toplevel project – but
not those of dependencies
(or transitive deps)

● even if vendored sources
would contain those
dependencies … dealing
with running tests for all
libraries would be difficult

● packaged Rust crates
avoid this issue entirely

28

⁴ legal acceptability

● US export restrictions
(elliptic curve
cryptography)

Fedora Legal Docs:
Elliptic curve cryptography
(allowed curves)

● software covered by
patents (mostly related to
audio / video codecs –
aptX, H.264, H.265 / HEVC,
H.266 / VCC, ...)

https://docs.fedoraproject.org/en-US/legal/misc/#_elliptic_curve_cryptography_ecc

29

⁵ shared responsibilities

● most “common” Rust crate
dependencies are already
packaged for Fedora

(~3300 Rust packages
including packages for
different versions of the
same crate)

● the Rust crate ecosystem
has mostly stabilized in
recent years – many
projects have significant
overlaps between their
dependency trees

30

⁶ finding bugs

● running test suites allows
catching issues and
regressions early and
proactively

● many failures are not only
test failures but actual code
issues

● we also regularly find bugs in
LLVM (usually in backends for
less-used platforms)

common failure cases include
invalid / platform-specific
assumptions:

● endianness bugs
● wrong use of atomics
● page size assumptions

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30

