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about @decathorpe

● Fedora packager since 
2016

● submitted my first Rust 
package to Fedora in 2020

● primary maintainer of
rust2rpm since 2022

● Fedora Packaging 
Committee (FPC) member 
since 2018

● Fedora Engineering 
Steering Committee 
(FESCo) member since 2019

https://codeberg.org/rust2rpm/rust2rpm
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so what’s this talk about?
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are traditional package 
managers obsolete?
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background: Rust

● compiled language
(rustc / LLVM)

● typically statically linked
(no stable Rust ABI)

● compile-time codegen / 
metaprogramming with 
macros or build scripts, 
conditional compilation

● package manager / build 
system: cargo

● official package registry:
crates.io

● package / dependency 
management: easy
(adding lots of 
dependencies: also easy)

https://crates.io/
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background: RPM packaging in Fedora

● hard requirement to build 
everything¹ from source

● hard requirement for 
compliance with license 
terms²

● strong preference to 
unbundle / not vendor 
dependencies

● preference for running 
upstream test suites (if 
possible)

● incentives to provide good 
system integration:
shell completions, manual 
pages, etc.
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the approach for libraries

● packages for Rust crates 
contain only the crate 
sources and no compiled 
artifacts (again, no stable 
ABI)

● even with stable ABI, 
shipping compiled 
artifacts for all possible 
combinations of enabled 
feature flags is impractical 
(combinatorial explosion)
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the philosophy for applications

The goal is to make

$ dnf install foo

provide something as close to

$ cargo install foo

as possible.

… or, if possible, to provide 
something even better.
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so …
what can be done better?
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application installation: cargo

● cargo only supports 
“installing” applications by 
building them from source

● requires users to have a 
Rust toolchain (cargo, 
rustc, LLVM) installed

● external dependencies (C 
library headers) also 
required in common cases

● “cargo install” only installs 
executables into the user’s 
$PATH

● cannot handle other files
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application installation: cargo

● “cargo build” limitations 
incentivise workarounds 
that are usually considered 
unsafe (or at least “bad 
practice”):

bundled C libraries, static 
linking – sometimes even 
pre-built object files

● “cargo install” limitations 
require using the “self 
contained executable” 
model for applications:

embedding data files into 
(huge) executables instead 
of loading them from disk, 
no system integration
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application installation: RPM

● integrated with system 
package manager

● packages are built in a 
trusted environment and 
cryptographically signed

● no Rust toolchain or 
development headers 
required locally 

● packages can ship support 
files for better system 
integration:

shell completions
manual pages
config files / data files



13

application installation: RPM

● smaller footprint using 
dynamically linked (C/C++) 
library dependencies 
shared between packages

(deduplication both on 
disk and in memory)

● disentangles update cycles 
of C/C++ library 
dependencies and the 
application itself

(allows shipping C/C++ 
library security updates 
without having to rebuild 
Rust applications)
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application updates: cargo

● requires user interaction 
(running “cargo install” 
again for all installed 
applications)

● no mechanism to notify 
users of update availability

● no mechanism to push 
security updates

● re-running “cargo install” 
is not enough

● does nothing by default if 
the application version has 
not changed (requires 
using “--force”)
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application updates: RPM

● integrated with system 
package manager

● supports notifying users of 
available (security) 
updates

● automatic installation of 
critical updates on servers 
or image-based systems

● decouples application and 
library dependency update 
cycle (mostly foreshadowing)
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bonus points: better test coverage

● package builds run project 
test suites (to the extent 
possible) against an 
environment that closely 
matches the user’s 
environment (OS, OS 
version, library versions, 
CPU architecture, etc.)

● adds test coverage for 
environments usually not 
available in CI 
(powerpc64le, s390x)

● continuous testing against 
new dependency versions 
in package CI (mostly more 

foreshadowing)
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how does this work with 
vendored dependencies?
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to vendor or not to vendor

Pros:
● quickly get to a building 

and working package

● avoid dealing with 
dependencies

Cons:
● often difficult to get from 

“working package” to 
“acceptable package”

● you cannot actually avoid 
dealing with dependencies 
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just vendor dependencies (problems included)

● building with vendored 
dependencies is not a 
shortcut for avoiding 
responsibilities

● running test suites for 
library dependencies is 
basically not possible³

● are project licenses 
declared correctly?

● do all projects include 
mandatory license texts?

● are the licenses of all 
dependencies acceptable²?

● are all dependencies 
legally acceptable⁴?
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doing things the hard way (Fedora, debian)

● one RPM package per Rust 
crate / library (which only 
ship source code*)

● shared responsibilities for 
most⁵ dependencies

● avoid duplicated audit 
effort (legal / technical)

● run test suites (find bugs⁶!)

● providing multiple parallel-
installable library versions 
is easy (if necessary)

● submitting patches with 
fixes / improvements to 
upstream improves the 
ecosystem for all
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making the “right” way as easy as possible

● substantial work has gone 
into improving the Rust / 
RPM packager tooling 
(rust2rpm, etc.)

● busywork basically 
eliminated from initial 
packaging + update 
workflows

● more improvements 
coming in the future

● currently some features 
are not enabled by default 
due to RHEL shipping old 
RPM versions

● we still need to support 
EPEL 9 and 10 for ... a long 
time
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recent developments / future improvements

dynamically generated 
subpackages (“specparts”):

● dramatically reduced 
boilerplate in RPM spec files

● makes re-running rust2rpm 
for most crate updates 
unnecessary

● requires RPM 4.19+
● available on Fedora and EPEL 

10 (not enabled by default)

declarative BuildSystem:
● almost zero boilerplate for 

common cases
● requires RPM 4.20+
● available on Fedora only 

(not enabled by default)
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so …
are traditional package 

managers obsolete?
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Q & A
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¹ exceptions to the “build from source” req 

● proprietary firmware blobs
● compiler toolchains (for 

bootstrapping purposes only)
● generated code does not 

necessarily need to be 
regenerated (mostly)

Fedora Packaging Guidelines:
What can be packaged

https://docs.fedoraproject.org/en-US/packaging-guidelines/what-can-be-packaged/


26

² license compliance

● many popular FOSS 
licenses require that 
(re)distributed sources 
contain a copy of the 
original license text 

(including Apache-2.0 and 
MIT – both popular in the 
Rust ecosystem)

● some licenses are not 
acceptable for Fedora

notably, CC0-1.0 is no 
longer on the list of 
licenses that are allowed 
for “code” (only allowed for 
“content”)
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³ running test suites of library dependencies

● the “cargo vendor” 
command only includes 
and downloads test-
specific dependencies of 
the toplevel project – but 
not those of dependencies 
(or transitive deps)

● even if vendored sources 
would contain those 
dependencies … dealing 
with running tests for all 
libraries would be difficult

● packaged Rust crates 
avoid this issue entirely
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⁴ legal acceptability

● US export restrictions 
(elliptic curve 
cryptography)

Fedora Legal Docs:
Elliptic curve cryptography 
(allowed curves)

● software covered by 
patents (mostly related to 
audio / video codecs – 
aptX, H.264, H.265 / HEVC, 
H.266 / VCC, ...)

https://docs.fedoraproject.org/en-US/legal/misc/#_elliptic_curve_cryptography_ecc
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⁵ shared responsibilities

● most “common” Rust crate 
dependencies are already 
packaged for Fedora

(~3300 Rust packages 
including packages for 
different versions of the 
same crate)

● the Rust crate ecosystem 
has mostly stabilized in 
recent years – many 
projects have significant 
overlaps between their 
dependency trees
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⁶ finding bugs

● running test suites allows 
catching issues and 
regressions early and 
proactively

● many failures are not only 
test failures but actual code 
issues

● we also regularly find bugs in 
LLVM (usually in backends for 
less-used platforms)

common failure cases include 
invalid / platform-specific 
assumptions:

● endianness bugs
● wrong use of atomics
● page size assumptions
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