Fabio Valentini / decathorpe @ FOSDEM 2026

about @decathorpe

* Fedora packager since * Fedora Packaging

2016 Committee (FPC) member
 submitted my first Rust since 2018

package to Fedorain 2020 - Fedora Engineering
* primary maintainer of Steering Committee

rust2rpm since 2022 (FESCo) member since 2019

—

https://codeberg.org/rust2rpm/rust2rpm

so what's this talk about?

are traditional package
managers obsolete?

background: Rust

* compiled language * package manager / build
(rustc / LLVM) system: cargo

* typically statically linked official package registry:
(no stable Rust ABI) crates.io

* compile-time codegen / * package / dependency
metaprogramming with management: easy
macros or build scripts, (adding lots of
conditional compilation dependencies: also easy)

—

https://crates.io/

background: RPM packaging in Fedora

* hard requirement to build * preference for running

everything’ from source upstream test suites (if

* hard requirement for possible)
compliance with license * incentives to provide good
terms? system integration:

. strong preference to shell completions, manual
unbundle / not vendor pages, etc.

dependencies

—

the approach for libraries

* packages for Rust crates * even with stable ABI,
contain only the crate shipping compiled
sources and no compiled artifacts for all possible
artifacts (again, no stable combinations of enabled
ABI) feature flags is impractical

(combinatorial explosion)

—

the philosophy for applications

The goal is to make ... or, if possible, to provide

something even better.
$ dnf install foo

provide something as close to
$ cargo install foo

as possible.

—

SO ...
what can be done better?

application installation: cargo

* cargo only supports * “cargo install” only installs

“installing” applications by executables into the user’s
building them from source $PATH

* requires users to have a
Rust toolchain (cargo,
rustc, LLVM) installed

* external dependencies (C
library headers) also
required in common cases

ﬂ

« cannot handle other files

application installation: cargo

* “cargo build” limitations * “cargo install” limitations
incentivise workarounds require using the “self
that are usually considered contained executable”
unsafe (or at least “bad model for applications:

practice”):

embedding data files into
bundled C libraries, static (huge) executables instead
linking - sometimes even of loading them from disk,
pre-built object files no system integration

application installation: RPM

* integrated with system * packages can ship support
package manager files for better system
integration:

* packages are builtin a
trusted environment and

cryptographically signed shell completions

manual pages

* no Rust toolchain or config files / data files

development headers
required locally

ﬁ

application installation: RPM

* smaller footprint using * disentangles update cycles
dynamically linked (C/C++) of C/C++ library
library dependencies dependencies and the
shared between packages application itself
(deduplication both on (allows shipping C/C++
disk and in memory) library security updates

without having to rebuild
Rust applications)

ﬂ

application updates: cargo

* requires user interaction * re-running “cargo install”
(running “cargo install” Is not enough
again for all installed » does nothing by default if

applications) the application version has

* no mechanism to notify not changed (requires
users of update availability using “--force”)

* no mechanism to push
security updates

ﬁ

application updates: RPM

* integrated with system * decouples application and
package manager library dependency update

foreshadowin
- supports notifying users of Cycle (mostly foreshadowing)

available (security)
updates

* automatic installation of
critical updates on servers
or image-based systems

ﬂ

bonus points: better test coverage

* package builds run project °* adds test coverage for

test suites (to the extent environments usually not
possible) against an available in CI
environment that closely (powerpc64dle, s390x)
matches the user’s .

continuous testing against

environment (0S5, OS new dependency versions
version, library versions, in package CI (mostly more

CPU architecture, etc.) foreshadowing)

ﬂ

how does this work with
vendored dependencies?

17

to vendor or not to vendor

Pros: Cons:
* quickly get to a building « often difficult to get from
and working package “working package” to
“acceptable package”
* avoid dealing with * you cannot actually avoid
dependencies dealing with dependencies

ﬂ

just vendor dependencies (problems included)

* building with vendored are project licenses
dependencies is not a declared correctly?
shortcut for avoiding .

. do all projects include
responsibilities

mandatory license texts?

° running test suites for .
library dependencies is
basically not possible®

are the licenses of all
dependencies acceptable?®?

* are all dependencies
legally acceptable®?

ﬂ

doing things the hard way (Fedora, debian)

* one RPM package per Rust * providing multiple parallel-
crate / library (which only installable library versions
ship source code¥*) Is easy (if necessary)

* shared responsibilities for * submitting patches with
most> dependencies fixes / improvements to
upstream improves the

* avoid duplicated audit
ecosystem for all

effort (legal / technical)

* run test suites (find bugs®!)

ﬂ

making the “right” way as easy as possible

* substantial work has gone ° more improvements

into improving the Rust / coming in the future
RPM packager tooling * currently some features
(rust2rpm, etc.) are not enabled by default

due to RHEL shipping old

* busywork basically RPM versions

eliminated from initial _
* we still need to support

ackaging + update
\rl)vorkﬂgowg P EPEL 9 and 10 for ... a long
time

ﬂ

recent developments / future improvements

dynamically generated declarative BuildSystem:
subpackages (“specparts”):)
* dramatically reduced * almost zero boilerplate for
boilerplate in RPM spec files common cases

makes re-running rust2rpm * requires RPM 4.20+
for most crate updates

unnecessary * available on Fedora only

° requires RPM 4.19+ (not enabled by default)

available on Fedora and EPEL
10 (not enabled by default)

d

SO ...
are traditional package
managers obsolete?

23

24

' exceptions to the “build from source” req

* proprietary firmware blobs

* compiler toolchains (for
bootstrapping purposes only)

* generated code does not
necessarily need to be
regenerated (mostly)

Fedora Packaging Guidelines:
What can be packaged

d

https://docs.fedoraproject.org/en-US/packaging-guidelines/what-can-be-packaged/

% license compliance

* many popular FOSS * some licenses are not
licenses require that acceptable for Fedora
(re)distributed sources
contain a copy of the notably, CC0-1.0 is no
original license text longer on the list of

licenses that are allowed
(including Apache-2.0 and for “code” (only allowed for
MIT - both popular in the “content”)

Rust ecosystem)

ﬂ

> running test suites of library dependencies

* the “cargo vendor” * even if vendored sources
command only includes would contain those
and downloads test- dependencies ... dealing
specific dependencies of with running tests for all
the toplevel project - but libraries would be difficult

not those of dependencies

. packaged Rust crates
(or transitive deps)

avoid this issue entirely

d

*legal acceptability

* US export restrictions * software covered by
(elliptic curve patents (mostly related to
cryptography) audio / video codecs -

aptX, H.264, H.265 / HEVC,

H.266 / VCC, ...)
Fedora Legal Docs:

Elliptic curve cryptography
(allowed curves)

d

https://docs.fedoraproject.org/en-US/legal/misc/#_elliptic_curve_cryptography_ecc

> shared responsibilities

* most “common” Rust crate * the Rust crate ecosystem

dependencies are already has mostly stabilized in
packaged for Fedora recent years - many
projects have significant
(~3300 Rust packages overlaps between their
including packages for dependency trees

different versions of the
same crate)

ﬂ

® finding bugs

°* running test suites allows common failure cases include
catching issues and invalid / platform-specific
regressions early and . .

. assumptions:

proactively

* many failures are not only ° endianness bugs
test failures but actual code » wrong use of atomics
issues

* we also regularly find bugs in ° Ppage size assumptions

LLVM (usually in backends for
less-used platforms)

ﬂ

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30

