
Daria Klimaszewska @agh.edu.pl
AGH University of Krakow, Poland
Departament of Physics and Applied Computer Science

Physics in Julia:

combining Unitful.jl and

DifferentialEquations.jl

— Richard P. Feynman (Nobel’65),

The Character of Physical Law

“For those who want some proof that
physicists are human, the proof is in
the idiocy of all the different units
which they use for measuring energy”

Unitful.jl

• Code readability/maintainability

• Conversions and prefixes

• Compile-time dimensionality check

• Tool for unit testing

• Automatic units on plots

• No runtime overhead

using Unitful

const g = 9.81 * u"m/s/s"
const L = 1.0 * u"m"

u₀ = [0 * u"rad", π / 2 * u"rad/s"]
tspan = [0.0, 6.3] .* u"s"

const g = 9.81
const L = 1.0

u₀ = [0,π / 2]
tspan = [0.0, 6.3]

Unitful.jl

• Code readability/maintainability

• Conversions and prefixes

• Compile-time dimensionality check

• Tool for unit testing

• Automatic units on plots

• No runtime overhead

pressure = uconvert(Unitful.u"Pa", 800 * Unitful.u"mbar")
println(pressure)

Unitful.jl

• Code readability/maintainability

• Conversions and prefixes

• Compile-time dimensionality check

• Tool for unit testing

• Automatic units on plots

• No runtime overhead

const g = 9.81*u"m/s/s"
const L = 1.0*u"m"
c = g+L

Unitful.jl

• Code readability/maintainability

• Conversions and prefixes

• Compile-time dimensionality check

• Tool for unit testing

• Automatic units on plots

• No runtime overhead

const L = 1.0*u"m"
@show dimension(L) == Unitful.𝐋

DifferentialEquations.jl

function rhs(du_dt, u, params, t)
θ, ω = u
du_dt[1] = ω
du_dt[2] = -(g / L) * sin(θ)

end

Image by Manfred Antranias Zimmer from Pixabay

𝑑2𝜃

𝑑𝑡2
=
𝑔

𝐿
𝑠𝑖𝑛𝜃

https://pixabay.com/users/antranias-50356/?utm_source=link-attribution&utm_medium=referral&utm_campaign=image&utm_content=242745
https://pixabay.com/users/antranias-50356/?utm_source=link-attribution&utm_medium=referral&utm_campaign=image&utm_content=242745
https://pixabay.com/users/antranias-50356/?utm_source=link-attribution&utm_medium=referral&utm_campaign=image&utm_content=242745
https://pixabay.com/?utm_source=link-attribution&utm_medium=referral&utm_campaign=image&utm_content=242745

DifferentialEquations.jl

function rhs(du_dt, u, params, t)
θ, ω = u
du_dt[1] = ω
du_dt[2] = -(g / L) * sin(θ)

end

This package enables to solve the system of ordinary
differential equations in just two lines of code:

prob = ODE.ODEProblem(rhs, u₀, tspan)
sol = ODE.solve(prob)

Create differentail equation problem

Solve it!

DifferentialEquations.jl

Plots.plot(
sol.t.*u"s",
sol[1,:].*u"rad",
linewidth = 2,
title = "Simple Pendulum Problem",
xlabel = "Time",
ylabel = "Position",
label = "\\theta"

)

Automatic labeling!

Let’s try together: Unitful.jl + DiffEq.jl

import OrdinaryDiffEq as ODE, Plots

using Unitful

const g = 9.81*u"m/s/s"

const L = 1.0*u"m"

u₀ = [0*u"rad", π / 2*u"rad/s"]

tspan = [0.0, 6.3] .*u"s"

function rhs(du_dt, u, params, t)

θ, ω = u

du_dt[1] = ω

du_dt[2] = -(g / L) * sin(θ)

end

prob = ODE.ODEProblem(rhs, u₀, tspan)

sol = ODE.solve(prob)

Let’s try together: Unitful.jl + DiffEq.jl

import OrdinaryDiffEq as ODE, Plots

using Unitful

const g = 9.81*u"m/s/s"

const L = 1.0*u"m"

u₀ = [0*u"rad", π / 2*u"rad/s"]

tspan = [0.0, 6.3] .*u"s"

function rhs(du_dt, u, params, t)

θ, ω = u

du_dt[1] = ω

du_dt[2] = -(g / L) * sin(θ)

end

prob = ODE.ODEProblem(rhs, u₀, tspan)

sol = ODE.solve(prob)

What does the
community say?

● errors inevitable

● „solution”: drop units

● only basic solvers
compatible

— Percy W. Bridgman (Nobel’46),

Dimensional Analysis

“… the astute observer (Fourier was the
first astute observer) notices that the
equations … remain true when the size
of the fundamental units is changed”

Separation of Concerns

Physics:

Mathematical

model
Constants

No units Units

• Make injectible dependency holding

all constants

• Use dependency with units for

dimensionality calculations

• Inject dependecy stripped of units for

numerical calculations

Software engineering:

What to change so it does work?
import OrdinaryDiffEq as ODE, Plots

using Unitful

const g = 9.81*u"m/s/s"

const L = 1.0*u"m"

u₀ = [0*u"rad", π / 2*u"rad/s"]

tspan = [0.0, 6.3] .*u„s"

import OrdinaryDiffEq as ODE, Plots

using Unitful

const_u = (

g = 9.81*u"m/s/s",

L = 1.0*u"m",

u₀ = [0*u"rad", π / 2*u"rad/s"],

tspan = [0.0, 6.3].*u"s"

)

What to change so it does work?
import OrdinaryDiffEq as ODE, Plots

using Unitful

const g = 9.81*u"m/s/s"

const L = 1.0*u"m"

u₀ = [0*u"rad", π / 2*u"rad/s"]

tspan = [0.0, 6.3] .*u„s"

function rhs(du_dt, u, params, t)

θ, ω = u

du_dt[1] = ω

du_dt[2] = -(g / L) * sin(θ)

end

import OrdinaryDiffEq as ODE, Plots

using Unitful

const_u = (

g = 9.81*u"m/s/s",

L = 1.0*u"m",

u₀ = [0*u"rad", π / 2*u"rad/s"],

tspan = [0.0, 6.3].*u"s"

)

function rhs(du_dt, u, params, t)

θ, ω = u

du_dt[1] = ω

du_dt[2] = -(params.g / params.L) * sin(θ)

end

What to change so it does work?
import OrdinaryDiffEq as ODE, Plots

using Unitful

const g = 9.81*u"m/s/s"

const L = 1.0*u"m"

u₀ = [0*u"rad", π / 2*u"rad/s"]

tspan = [0.0, 6.3] .*u„s"

function rhs(du_dt, u, params, t)

θ, ω = u

du_dt[1] = ω

du_dt[2] = -(g / L) * sin(θ)

end

import OrdinaryDiffEq as ODE, Plots

using Unitful

const_u = (

g = 9.81*u"m/s/s",

L = 1.0*u"m",

u₀ = [0*u"rad", π / 2*u"rad/s"],

tspan = [0.0, 6.3].*u"s"

)

function rhs(du_dt, u, params, t)

θ, ω = u

du_dt[1] = ω

du_dt[2] = -(params.g / params.L) * sin(θ)

end

strip_units(x) = ustrip(x)

strip_units(x::AbstractArray) = ustrip.(x)

c = NamedTuple{keys(const_u)}(strip_units.(values(const_u)))

What to change so it does work?
import OrdinaryDiffEq as ODE, Plots

using Unitful

const g = 9.81*u"m/s/s"

const L = 1.0*u"m"

u₀ = [0*u"rad", π / 2*u"rad/s"]

tspan = [0.0, 6.3] .*u„s"

function rhs(du_dt, u, params, t)

θ, ω = u

du_dt[1] = ω

du_dt[2] = -(g / L) * sin(θ)

end

prob = ODE.ODEProblem(rhs, u₀, tspan)

sol = ODE.solve(prob)

import OrdinaryDiffEq as ODE, Plots

using Unitful

const_u = (

g = 9.81*u"m/s/s",

L = 1.0*u"m",

u₀ = [0*u"rad", π / 2*u"rad/s"],

tspan = [0.0, 6.3].*u"s"

)

function rhs(du_dt, u, params, t)

θ, ω = u

du_dt[1] = ω

du_dt[2] = -(params.g / params.L) * sin(θ)

end

strip_units(x) = ustrip(x)

strip_units(x::AbstractArray) = ustrip.(x)

c = NamedTuple{keys(const_u)}(strip_units.(values(const_u)))

prob = ODE.ODEProblem(rhs, c.u₀, c.tspan, c)

sol = ODE.solve(prob, saveat = 0.01)

Note: the function works with units too

du_dt = similar(const_u.u₀)

rhs(du_dt, const_u.u₀, const_u, 0.1u"s")

u = const_u.u₀ + du_dt * 0.1u"s"

@test dimension.(u) == dimension.(const_u.u₀)

println(dimension.(u))

println(dimension.(const_u.u₀))

Take-home message:
there is no Unitful.jl + DiffEq.jl problem!

• ODE definition should be invariant to units

Take-home message:
there is no Unitful.jl + DiffEq.jl problem!

• ODE definition should be invariant to units

• units injected through constants only

Take-home message:
there is no Unitful.jl + DiffEq.jl problem!

• ODE definition should be invariant to units

• units injected through constants only

• Applies to any templated/JIT-compiled tech

(e.g., Python + Numba + Pint, where it also

solves performance overhead issue!)

Take-home message:
there is no Unitful.jl + DiffEq.jl problem!

• ODE definition should be invariant to units

• units injected through constants only

• Applies to any templated/JIT-compiled tech

(e.g., Python + Numba + Pint, where it also

solves performance overhead issue!)

• unit-aware testing & unit-agnostic numerics

(using a single codebase)

Take-home message:
there is no Unitful.jl + DiffEq.jl problem!

• ODE definition should be invariant to units

• units injected through constants only

• Applies to any templated/JIT-compiled tech

(e.g., Python + Numba + Pint, where it also

solves performance overhead issue!)

• unit-aware testing & unit-agnostic numerics

(using a single codebase)

• It’s not a workaround, it’s coding physics

thinking like physicist!

klimaszewska@student.agh.edu.pl

Thanks!

…/daria-klimaszewska @thearia0

CREDITS: This presentation template was created by Slidesgo,
and includes icons, infographics & images by Freepik

DiffEqDocs.jl PR

/ SciML / DiffEqDocs.jl / pull / 828

https://bit.ly/3A1uf1Q
http://bit.ly/2TtBDfr

	Slajd 1: Physics in Julia: combining Unitful.jl and DifferentialEquations.jl
	Slajd 2
	Slajd 3: — Richard P. Feynman (Nobel’65), The Character of Physical Law
	Slajd 4: Unitful.jl
	Slajd 5: Unitful.jl
	Slajd 6: Unitful.jl
	Slajd 7: Unitful.jl
	Slajd 8: DifferentialEquations.jl
	Slajd 9: DifferentialEquations.jl
	Slajd 10: DifferentialEquations.jl
	Slajd 11: Let’s try together: Unitful.jl + DiffEq.jl
	Slajd 12: Let’s try together: Unitful.jl + DiffEq.jl
	Slajd 13: What does the community say?
	Slajd 14: — Percy W. Bridgman (Nobel’46), Dimensional Analysis
	Slajd 15: Separation of Concerns
	Slajd 16: What to change so it does work?
	Slajd 17: What to change so it does work?
	Slajd 18: What to change so it does work?
	Slajd 19: What to change so it does work?
	Slajd 20: Note: the function works with units too
	Slajd 21: Take-home message: there is no Unitful.jl + DiffEq.jl problem!
	Slajd 22: Take-home message: there is no Unitful.jl + DiffEq.jl problem!
	Slajd 23: Take-home message: there is no Unitful.jl + DiffEq.jl problem!
	Slajd 24: Take-home message: there is no Unitful.jl + DiffEq.jl problem!
	Slajd 25: Take-home message: there is no Unitful.jl + DiffEq.jl problem!
	Slajd 26: Thanks!

