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Rust meets cheap bare-metal RISCV

1
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WinChipHead (WCH)
CH32V003
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WinChipHead WCH CH32V003
● Nanjing Qinheng Microelectronics, 

company behind WCH WinChipHead) 
brand, founded in 2004 in Nanjing

● 32-bit General-purpose RISCV MCU

● QingKe 32-bit RISCV2A processor, 
supports 2-level deep interrupt nesting

● Up to 48 MHz system main frequency

● 2 KB SRAM, 16 KB Flash

● Supply voltage: 3.3 or 5 Volts

● Multiple low-power modes: Sleep/Standby

● Power on/off reset

● Programmable voltage monitor

● 1 set of 1-channel general-purpose DMA

● Operational Amplifier/Comparator OPAs

● 1 set of 10-bit ADC
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WinChipHead WCH CH32V003 cont.
● 116-bit advanced-control timer

● 116-bit general-purpose timer

● 2 Watchdog timers and 132-bit system 
time base timer

● 1 USART interface, 1 I2C interface, 1 SPI 
interface

● 18 GPIOs aka I/O ports,
can be mapped to 1 external interrupt

● 96-bit chip unique ID

● 1-wire Serial Debug Interface SDI

● Industrial-grade temperature range of 
40°C to 85°C

● Package: TSSOP20 (e.g. CH32V003F4P6, 
QFN20, SOP16, SOP8

● English Datasheet 37 pages) and 
Reference Manual 188 pages)
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QingKe RISCV2A Core
● Implements RV32EmC instruction set

● E: alternative base extension, specifically 
designed for very low spec processors

● Mostly identical to RV32I base extension, 
except only specifies 16 general-purpose 
registers instead of 32

● Smaller register file saves quite a lot of 
silicon space, reducing cost

● E extension still in development!

● Manufacturers nonetheless already 
implementing it in hardware

● Spec not officially frozen so compilers 
still catching up

● m: hardware multiplication Zmmul ext.

● C Supports 16-bit compression instruction

● 2 deep pipeline

● Static branch prediction

● 256 interrupts including exceptions, and 
Vector Table Free VTF) interrupts

● 2 levels of Hardware Prologue/Epilogue 
HPE

● Supports Sleep and Deep sleep modes, 
and support WFI and WFE sleep methods

● Supports half-word and byte operation 
compression instructions

● 1-wire/2-wire SDI, standard RISCV debug

● English Microprocessor Manual 32 pages)
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CH32V003F4P6EVTR01v1.FP Board
EVT Engineering Validation Test) board

1. Actual MCU CH32V003F4P6

2. MCU GPIOs: P1 and P2

3. Power switch S2 5V USB power supply

4. USBC interface: 5V power supply only

5. Reset button S1 (req. RST_MODE bits of 
the user select word register as non-11b)

6. LEDs are connected to main chip I/O port 
via LED row pins P4

7. 1-wire DEBUG interface:
for downloading, simulation debugging, 
only needs SWDIO PD1 connection

8. Crystal pin PA1 and PA2 assembly option
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CH32V003F4P6EVTR01v1.FP cont.
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WCHLinkER01v3.FP Debug Probe
● USB debug probe dongle

● Online debugging and downloading of 
WCH RISCV MCUs

● Online debugging and downloading of 
ARM MCUs with SWD/JTAG interface

● Serial port for easy debugging output

● wlink:
WCHLink(RV) command line tool in Rust

● probe-rs:
The de facto embedded toolkit in Rust

● English User Manual 29 pages)

● CH32V003LinkE Kit: EVT, USB probe 
and 5 MCU chips for less than 7 ½ bucks
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WCHLinkER01v3.FP Debug Probe cont.
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Many More Cheap Boards Available
● TENSTAR Robot TS2160YCH32V003

Raspberry Pi Pico/Teensy-style

○ Very simple

○ USBC just for power

○ 11-pin header pins on each side

● CRCH32Vxxx also known as MiniTool 
CH32V003 GXFA0260001

○ More advanced

○ USBC with serial UART for debug

○ Function and test keys

○ Power switch

○ 10-pin header pins on each side
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Embedded Tooling
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wlink: WCHLink(RV) command line tool in Rust
● Flash firmware, support Intel HEX, ELF and raw binary format

● Erase chip

● Halt, resume, reset support

● Read chip info

● Read chip memory(flash)

● Read/write chip register - very handy for debugging

● Code-Protect & Code-Unprotect for supported chips

● Enable or Disable 3.3V, 5V output

● SDI print support, requires 2.10+ firmware

● Serial port watching for a smooth development experience

● Windows native driver support, no need to install libusb manually (requires x86 build)



1515

C
O

D
ETH

IN
K.C

O
.U

K   |   O
PEN

 SO
U

RC
E

1515

wlink: WCHLink(RV) command line tool in Rust cont.
● cargo install --git https://github.com/ch32-rs/wlink

● wlink list
●

● wlink status
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wlink: WCHLink(RV) command line tool in Rust cont.
● wlink regs
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wlink: WCHLink(RV) command line tool in Rust cont.
● wlink regs cont.
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probe-rs: Embedded programming made easy
● User-friendly and flexible embedded toolkit that just works

● Run programs on your microcontroller with ease of native applications

● Easily print to STDOUT via RTT and defmt encoding when using probe-rs run

● cargo-flash to just flash a target

● cargo-embed to get full RTT terminal to send commands and view multiple channels

● Easy debugging in VSCode

● cargo install probe-rs-tools
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Embedded Rust
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Rust Embedded Devices Working Group
● Build an ergonomic and composable ecosystem for embedded Rust developers

● Peripheral access crates

○ How to access hardware peripheral registers?

○ Machine readable hardware definitions in System View Description SVD) format

○ svd2rust: automatic tooling to generate API for peripherals

○ WinChipHead case distributed as part of Eclipse-derived IDE MounRiver Studio

● Embedded Hardware Abstraction Layer (embedded-hal)

○ Abstraction crate

○ Defines a set of traits that describe common peripheral functionality

○ Interfaces for different peripheral types like GPIOs, timers, busses etc.

○ Making sure abstractions are zero-cost

○ Model platform differences reasonably well
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WCH CH32V003 with Rust
● WCH CH32V003 embedded-hal available as part of ch32-rs project

● Same project wlink comes from

● embedded-hal requires Rust Nightly
rustup install nightly
rustup override set nightly

● Also needs sources of standard libraries in order to build core later on
rustup component add rust-src



2222

C
O

D
ETH

IN
K.C

O
.U

K   |   O
PEN

 SO
U

RC
E

2222

Target Specification File
riscv32ec-unknown-none-elf.json
{
    "arch": "riscv32",
    "atomic-cas": false,
    "cpu": "generic-rv32",
    "crt-objects-fallback": "false",
    "data-layout": "e-m:e-p:3232-i6464-n32S32",
    "eh-frame-header": false,
    "emit-debug-gdb-scripts": false,
    "features": "+e,+c,+forced-atomics",
    "linker": "rust-lld",
    "linker-flavor": "gnu-lld",
    "llvm-target": "riscv32",
    "llvm-abiname": "ilp32e",
    "max-atomic-width": 32,
    "panic-strategy": "abort",
    "relocation-model": "static",
    "target-pointer-width": "32"
}
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Cargo Configuration File
.cargo/config.toml

[build]
target = "riscv32ec-unknown-none-elf.json"
[target.riscv32ec-unknown-none-elf]
runner = "probe-rs run --chip ch32v003"
rustflags = ["C", "link-arg=-Tlink.x"]
[unstable]
build-std = ["core"]
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Dependencies and Profile Settings
Cargo.toml

[package]
name = "ch32v003-blinky-rust"
version = "0.1.0"
edition = "2021"
[dependencies]
panic-halt = "1.0.0"
ch32-hal = { git = "https://github.com/ch32-rs/ch32-hal", features = [
        "ch32v003f4u6",
    ] }
qingke-rt = "0.4.0"
qingke = "0.4.0"
embedded-hal = "1.0.0"
[profile.dev]
strip = false
lto = true
opt-level = "s"
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Main File to Blink an LED
#![no_std]
#![no_main]
use hal::delay::Delay;
use hal::gpioLevel, Output};
use ch32_hal as hal;
use panic_halt as _;
#[qingke_rt::entry]
fn main() → ! {
    let config = hal::Config::default();
    let peripherals = hal::init(config);
    let mut led = Output::new(peripherals.PD6, Level::Low, Default::default());
    let mut delay = Delay;
    loop {
        led.toggle();
        delay.delay_ms(1000);
    }
}
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Run to Compile and Upload
● cargo run
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VS Code
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VS Code
● Install a few extensions

○ rust-analyzer

○ Debugger for probe-rs

● Given I'm on Fedora Silverblue it uses the Flatpak version of VS Code

○ Problem, can't access host tools from sandbox

○ That's where Dev Containers come in handy, so install that extension as well

○ Use a Toolbox container configured with your Rust environment

○ Configure a few things like dockerPath and dockerSocketPath
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VS Code cont.
● For dockerPath you can use a wrapper script

● For USB debugging probe to work you need access to plugdev

● Find out what user VS Code dev container uses by spawning a sleep 1000

● Outside, in native environment, check what user that is

● And configure it accordingly in your /etc/group
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VS Code cont.
● Alternatively run your container privileged

registry.fedoraproject.org%2ffedora-toolbox%3a43.json
{

"workspaceFolder": "/var/home/zim/Downloads/WinChipHead 
WCH/CH32V003/ch32v003-blinky-rust",

"extensions": [
"probe-rs.probe-rs-debugger",
"rust-lang.rust-analyzer"

],
"privileged": true,

    "runArgs": [
"--privileged",
"--security-opt=label=disable",

]
}
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Live Demo
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References
● WinChipHead CH32V003

https://www.wch-ic.com/products/CH32V003.html

● WCH MCU for Rust
https://github.com/ch32-rs

● probe-rs
https://probe.rs

● Rust on the CH32V003
https://noxim.xyz/blog/rust-ch32v003

● Getting Started with CH32V003 Firmware in Rust
https://albertskog.se/ch32v-in-rust

https://www.wch-ic.com/products/CH32V003.html
https://github.com/ch32-rs
https://probe.rs
https://noxim.xyz/blog/rust-ch32v003
https://albertskog.se/ch32v-in-rust
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Codethink LTD

3rd Floor Dale House,
35 Dale Street,
MANCHESTER,
M1 2HF
United Kingdom

Thank You.
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