€

Rust meets cheap bare-metal RISC-V

Marcel Ziswiler

Codethink FOSDEM'26 Brusse S February 1, 2026

Speaking today

Marcel Ziswiler

Senior Linux Expert, System
Engineer, Technical Project Leader
Noser Engineering

Platform Manager Embedded Linux
Toradex

ROLE TENURE

Founder ZisiSoft GmbH Joined Codethink
in 2024

Senior Software Engineer

Codethink Ltd.

PAST ENGAGEMENTS EDUCATION

MS Computer Science
ETH Zurich

Certificate in Embedded
Systems Technologies UCI

Contents

WinChipHead (WCH) CH32V003
Embedded Tooling
Embedded Rust

VS Code

apwnNn--

Live Demo

€

WinChipHead (WCH)
CH32V003

WinChipHead (WCH) CH32V003

<

Nanjing Qinheng Microelectronics, °
company behind WCH (WinChipHead)
brand, founded in 2004 in Nanjing

32-bit General-purpose RISC-V MCU

QingKe 32-bit RISC-V2A processor,
supports 2-level deep interrupt nesting °

Up to 48 MHz system main frequency °
2 KB SRAM, 16 KB Flash °

Supply voltage: 3.3 or 5 Volts

Multiple low-power modes: Sleep/Standby
Power on/off reset

Programmable voltage monitor

1 set of 1-channel general-purpose DMA
Operational Amplifier/Comparator (OPAs)
1 set of 10-bit ADC \

GPTM *1

Advanced TM * 1

SysTick * 1

WDOG * 2

16KB Flash
2KB SRAM

CH32V003

RISC-V 48MHz 10bit ADC * 8
GPIO * 18 OFS -t

U(S)ART * 1

61
SPI* 1

J

WinChipHead (WCH) CH32V003 cont. ©

e 1x16-bit advanced-control timer e 96-bit chip unique ID
e 1x16-bit general-purpose timer e 1-wire Serial Debug Interface (SDI)
e 2 Watchdog timers and 1x32-bit system | e Industrial-grade temperature range of
time base timer -40°C to 85°C
e 1USART interface, 112C interface, 1SPI = e Package: TSSOP20 (e.g. CH32V0O03F4P6),
interface QFN20, SOP16, SOP8
e 18 GPIOs aka I/O ports, e English Datasheet (37 pages) and
can be mapped to 1 external interrupt Reference Manual (188 pages)
Timer

ADC

Part NO. Fr Flash | SRAM | GPIO 10bit) [OPA| U(S)ART | I’C | SPI| VDD Package
B b | aebn | Woos | he (mich i)
CH32V003J4M6 48MHz | 16K 2K 6 1 1 2 vV 1/6 1 1 1 3.3/5.0 SOP8
CH32V003A4M6 48MHz | 16K 2K 14 1 1 2 vV 1/6 1 1 1 3.3/5.0 SOP16
CH32V003F4P6 48MHz | 16K 2K 18 1 1 2 \V4 1/8 1 1 1 1 | 3.3/5.0 | TSSOP20
CH32V003F4U6 | 48MHz | 16K 2K 18 1 1 2 V4 1/8 1 1 1 1 | 33/50 | QFN20

QingKe RISC-V2A Core

<

e Implements RV32EmC instruction set

e E: alternative base extension, specifically
designed for very low spec processors

e Mostly identical to RV32l base extension,
except only specifies 16 general-purpose
registers instead of 32

e Smaller register file saves quite a lot of
silicon space, reducing cost

e E extension still in development!

e Manufacturers nonetheless already
implementing it in hardware

e Spec not officially frozen so compilers
still catching up

e m: hardware multiplication (Zmmul) ext.

C: Supports 16-bit compression instruction
2 deep pipeline
Static branch prediction

256 interrupts including exceptions, and
Vector Table Free (VTF) interrupts

2 levels of Hardware Prologue/Epilogue
(HPE)

Supports Sleep and Deep sleep modes,
and support WFI and WFE sleep methods

Supports half-word and byte operation
compression instructions

1-wire/2-wire SDI, standard RISC-V debug

English Microprocessor Manual (32 pages)

CH32VO0O3F4P6-EVT-RO-1v1.FP Board @

EVT (Engineering Validation Test) board

1. Actual MCU: CH32V003F4P6 !
2. MCU GPIOs: P1and P2 Eo m.m;w...'mcj
3. P itch S2: 5V USB | N T
. Power switc : power supply a2 'D«~~ nzDZhEmBum
4. USB-C interface: 5V power supply only ur "E@@@% Lear] -_ ffa |
5. Reset button S1 (req. RST_MODE bits of ® % w vee[= s
the user select word register as non-11b) B o -
$. PD3| =
6. LEDs are connected to main chip I/O port ! ol ‘ lee2| & &

via LED row pins (P4) o [pEsiniey <

PC4
7. 1-wire DEBUG interface:
for downloading, simulation debugging,
only needs SWDIO PD1 connection

8. Crystal pin PAT and PA2 assembly option

© Q

4

6

POWER

ysy S2

+5vy] 1 :)_'3_

R10

3 11
500mA

2 02—

—C12

10uF

Ul 6219P33M

NC(0R)

Vin Vout
g
G

PWR

MCU

NRST

=
-
=— VSS
e

L0c. PCOMT2CHIUTX /NSS_/TICHS

CH32V003F4P6_MINI

PD4/A7/UCK/T2CHIETR/OPO/T1CH4ETR _
PDS/AS/UTX/T2CH4_/URX_

S PDO/A6/URX/T2CH3_/UTX_
= PDT/NRST/T2CH4/OPP1/UCK _

PA1/OSCI/A1/T1CH2/OPNO
PA2/0SCO/AO/TICH2N/OPPO/AETR2_

Pi)O/I‘ICH]N/OPNI/SDAJUTX,
VDD

PD3/A4/T2CH2/AETR/UCTS/T1CH4_
PD2/A3/T1ICHI/T2CH3_/T1CH2N_

PDI/SWIO/AETR2/TICH3N/SCL_/URX_
PC7/MISO/TICH2_/T2CH2_/URTS_
PC6/MOSI/TICHICH3N_/UCTS_/SDA_

PC5/SCK/TIETR/T2CHIETR _/SCL_/UCK_/TI1CH3_

PC4/A2/TICH4/MCO/TICHICH2N_
PC3/TICH3/TICHIN_/UCTS_
PC2/SCL/URTS/T1BKIN/AETR _/T2CH2_/T1ETR _

PC1/SDA/NSS/T2CH4_/T2CHIETR _/T1BKIN_/URX_

LED

USB

CH32V003F4P6

VCC-

Support 5Vand3.3V

LEDI1
LED2 = =
HEADER 2 T
R12 RI11
NC(5.1K) INC(5.1K)
z =
Lo L
S 5 N K
vee vee A e
285844445852
Gag 2 26
R2 R3 % B
2 = Al A4 B4B1
IK IK B12B9 A9AI2
P7
TYPE-C
¥/ | LEDI 4| LED2
& <]
= S
vee Pl vee
vee P2 vee
PDi]) 2 ps .
PD6] ¢ ¢ PD7 .|||_,3 Al . ||.
PALLS ¢ PA2 PD3l: PDI
PDO PCO LURE R
9 10 PCe [o PCS
n o2 TeE| PC3
13 14
el o (IR
= Header7X2 —= [S—
Header 7X2
& PD4 PDO
9 R6 NC
Il AT PDO i Channel 1
S1 R7 NC
cil
I PD4 PAI
N
0.1uF PAL LR |In Channel 0
R9 NC
6 7 ‘ 8

WCH-LinkE-RO-1v3.FP Debug Probe ©

e USB debug probe dongle

e Online debugging and downloading of
WCH RISC-V MCUs

e Online debugging and downloading of
ARM MCUs with SWD/JTAG interface (Y10 el
RIS B

e Serial port for easy debugging output B e O — SR

— =, R

e wlink:
WCH-Link(RV) command line tool in Rust

e probe-rs:
The de facto embedded toolkit in Rust

e English User Manual (29 pages)

e CH32VO003-LinkE Kit: EVT, USB probe
and 5 MCU chips for less than 7 %2 bucks

WCH-LinkE-RO-1v3.FP Debug Probe cont.

[27236.590351] usb : new full-speed USB device number 4 using xhci_hcd

[27236.736817] usb : New USB device found, idVendor=1a86, idProduct=8010, bcdDevice= 2.18
[27236.736831] usb : New USB device strings: Mfr=1, Product=2, SerialNumber=3
[27236.736837] usb : Product: WCH-Link

[27236.736842] usb : Manufacturer: wch.cn

[27236.736847] usb : SerialNumber: FG67E8FO67BBO

[27236.793384] cdc._ 1-1:1.1: ttyACMO: USB ACM device

[27236.793408] usbcore: registered new interface driver cdc_acm

£27236.793409] cdc_acm: USB Abstract Control Model driver for USB modems and ISDN adapters

Many More Cheap Boards Available

e TENSTAR Robot TS2160Y-CH32V003
Raspberry Pi Pico/Teensy-style

o Very simple
o USB-C just for power
o T11-pin header pins on each side

e CR-CH32Vxxx also known as MiniTool
CH32V003 (GXFA0260-001)

A0 0 00 00000
o More advanced EEEEIIEEE' ¥

]) ™ SIETHTRI CR-CH32 Vo0 BT oo T
o USB-C with serial UART for debug “"L'jgg,"""""’ @@
) I3 ,E[; ; E

o Function and test keys

o Power switch

o 10-pin header pins on each side

Embedded Tooling

wlink: WCH-Link(RV) command line tool in Rust ©

e Flash firmware, support Intel HEX, ELF and raw binary format
e Erase chip

e Halt, resume, reset support

e Read chip info

e Read chip memory(flash)

e Read/write chip register - very handy for debugging

e Code-Protect & Code-Unprotect for supported chips

e Enable or Disable 3.3V, 5V output

e SDI print support, requires 2.10+ firmware

e Serial port watching for a smooth development experience

e Windows native driver support, no need to install libusb manually (requires x86 build)

wlink: WCH-Link(RV) command line tool in Rust cont

e cargo install --git https://github.com/ch32-rs/wlink

cargo install --git https://github.com/ch32-rs/wlink
Installed package ‘wlink v0.1.1 (https://github.com/ch32-rs/wlink#e80f286e)" (executable
‘wlink®)

e wlink list

e [zim@toolbx ~]$ wlink list
<WCH-Link#0 nusb device> ID 1a86:8010(USB-FS 12 Mbps) (RV mode)

e wlink status

e [zim@toolbx ~]$ wlink status

17:25:33 [INFO] Connected to WCH-Link v2.18(v38) (WCH-LinkE-CH32V305)

17:25:33 [INFO] Attached chip: CH32V003 [CH32VOO3F4P6] (ChipID: 0x00300510)

17:25:33 [INFO] Chip ESIG: FlashSize(16KB) UID(cd-ab-11-95-2e-bd-0c-fe)

17:25:33 [INFO] Flash protected: false

17:25:33 [INFO] RISC-V ISA(misa): Some("RV32CEX")

17:25:33 [INFO] RISC-V arch(marchid): Some("WCH-V2A")

17:25:33 [WARN] The halt status may be incorrect because detaching might resume the MCU
17:25:33 [INFO] Dmstatus {

wlink: WCH-Link(RV) command line tool in Rust cont

e wlink regs

e [root@toolbx ch32vB03-blinky-rust]# wlink regs

01:31:53 [INFO] Connected to WCH-Link v2.18(v38) (WCH-LinkE-CH32V305)
01:31:53 [INFO] Attached chip: CH32vV003 [CH32VB03F4P6] (ChipID: 0x003008510)
01:31:53 [INFO] Dump GPRs

dpc(pc): Ox0000097c

x0 zero: Ox00000000

x1 ra: Ox00000154
X2 sp: 0x2000075c
x3 gp: 0x20000800
x4 tp: OxdBB100O30
x5 t0: Ox00000000
x6 t1: Ox00000bI98
X7 t2: 0x20000034
x8 sO: Ox00004000
x9 s1: Ox00003fce

x10 al: Ox0OOEOELO
x11 al: Ox000EOO9c
X122 a2: Ox0OOOOEOO
x13 a3: Ox000000ff

wlink: WCH-Link(RV) command line tool in Rust cont

e wlink regs cont.

x14 a4:
x1b ab:
: Oxdc68d841
: Oxdc688001
: Ox000EO000
: Ox40800014
: Ox00000003

marchid
mimpid
mhartid
misa
mtvec

mscratch :
: Ox000009ac
: Ox00000005
: Ox00000000
: Ox00801888
: Ox400008c3
: Ox0000097c
dscratch0O:
dscratchil:
: Ox00000000

mepc
mcause
mtval
mstatus
dcsr
dpc

gintenr

intsyscr :
corecfgr :

0x2000001c
Ox0EEEE97c

Ox2b809c19

opqelelelelelolele
Ox0EEELEYC

Ox00000003
opqe]ejelelelolele

probe-rs: Embedded programming made easy

e User-friendly and flexible embedded toolkit that just works

e Run programs on your microcontroller with ease of native applications

e Easily printto STDOUT via RTT and defmt encoding when using probe-rs run

e cargo-flash to just flash a target

e cargo-embed to get full RTT terminal to send commands and view multiple channels
e FEasy debugging in VSCode

e cargo install probe-rs-tools

e [zim@toolbx ~]$ cargo install probe-rs-tools

Installed package ‘probe-rs-tools v0.31.0" with ‘probe-rs-tools v0.31.0" (executables
‘cargo-embed', ‘cargo-flash', ‘probe-rs‘)

Embedded Rust

Rust Embedded Devices Working Group ©

e Build an ergonomic and composable ecosystem for embedded Rust developers
e Peripheral access crates
o How to access hardware peripheral registers?
o Machine readable hardware definitions in System View Description (SVD) format
o svdZ2rust: automatic tooling to generate API for peripherals
o WinChipHead case distributed as part of Eclipse-derived IDE MounRiver Studio
e Embedded Hardware Abstraction Layer (embedded-hal)
o Abstraction crate
o Defines a set of traits that describe common peripheral functionality
o Interfaces for different peripheral types like GPIOs, timers, busses etc.
o Making sure abstractions are zero-cost

o Model platform differences reasonably well

WCH CH32V003 with Rust

e WCH CH32V003 embedded-hal available as part of ch32-rs project
e Same project wlink comes from

e embedded-hal requires Rust Nightly
rustup install nightly
rustup override set nightly

e [zim@toolbx ~]$ rustup install nightly

nightly-x86_64-unknown-1linux-gnu updated - rustc 1.95.8-nightly (a293cc4af 2026-01-30)
(from rustc 1.95.0-nightly (d940e5684 2026-01-19))

e [zim@toolbx ch32vB03-blinky-rust]$ rustup override set nightly
info: override toolchain for '/var/home/zim/Downloads/WinChipHead
(WCH)/CH32V003/ch32vB03-blinky-rust' set to 'nightly-x86_64-unknown-linux-gnu'

e Also needs sources of standard libraries in order to build core later on
rustup component add rust-src

e [zim@toolbx ch32v003-blinky-rust]$ rustup component add rust-src

info: downloading component 'rust-src'
info: installing component 'rust-src'

Target Specification File

riscv32ec-unknown-none-elf.json

{
"arch": "riscv32",
"atomic-cas": false,
"cpu": "generic-rv32",
"crt-objects-fallback": "false",
"data-layout": "e-m:e-p:32:32-i64:64-n32-S32",
"eh-frame-header": false,
"emit-debug-gdb-scripts": false,
"features": "+e,+c,+forced-atomics",
"linker": "rust-Ild",
"linker-flavor": "gnu-Iid",
"llvm-target": "riscv32",
"llvm-abiname": "ilp32e",
"max-atomic-width": 32,
"panic-strategy": "abort",
"relocation-model": "static",
"target-pointer-width": "32"

Cargo Configuration File

.cargo/config.toml

[build]

target = "riscv32ec-unknown-none-elf.json"
[target.riscv32ec-unknown-none-elf]
runner = "probe-rs run --chip ch32v003"
rustflags = ["-C", "link-arg=-Tlink.x"]
[unstable]

build-std = ["core"]

Dependencies and Profile Settings

Cargo.toml

[package]
name = "ch32v003-blinky-rust"
version = "0.1.0"
edition = "2021"
[dependencies]
panic-halt = "1.0.0"
ch32-hal = { git = "https://github.com/ch32-rs/ch32-hal", features = [
"ch32v003f4u6",
1}
gingke-rt = "0.4.0"
gingke = "0.4.0"
embedded-hal = "1.0.0"
[profile.dev]
strip = false
Ito = true
opt-level = "s"

Main File to Blink an LED

#![no_std]
#![no_main]

use hal::delay::Delay;

use hal::gpio::{Level, Output};
use ch32_hal as hal;

use panic_halt as _;

#[qingke_rt::entry]
fn main() > ! {
let config = hal::Config::default();

let peripherals = hal::init(config);
let mut led = Output::new(peripherals.PD6, Level::Low, Default::default());
let mut delay = Delay;

loop {
led.toggle();
delay.delay_ms(1000);
}
}

Run to Compile and Upload

e cargo run

e [zim@toolbx ch32vB03-blinky-rust]$ cargo run
Compiling compiler_builtins v0.1.160 (/var/home/zim/.rustup/toolchains/nightly-x86_64-
unknown-linux-gnu/1lib/rustlib/src/rust/library/compiler-builtins/compiler-builtins)

Compiling core v0.0.0 (/var/home/zim/.rustup/toolchains/nightly-x86_64-unknown-linux-gnu
/1ib/rustlib/src/rust/library/core)

Finished ‘dev' profile [optimized + debuginfo] target(s) in 9.26s

Running ‘probe-rs run --chip ch32vB03 target/riscv32ec-unknown-none-elf/debug/
ch32v003-blinky-rust’

Erasing v 100% [############H#HRIHSRY] 4.00 KiB @ 9.53 KiB/s (took Os)
Programming v 100% [########8#11#A##A#S###] 3.06 KIB @ 1.70 KiB/s (took 2s)

Finished in 2.33s
Blink!

01:39:13.271: Blink!

@ CODETHINK.CO.UK | OPEN SOURCE

27

VS Code

VS Code

e Install a few extensions

o rust-analyzer
o Debugger for probe-rs
e Given I'm on Fedora Silverblue it uses the Flatpak version of VS Code
o Problem, can't access host tools from sandbox
o That's where Dev Containers come in handy, so install that extension as well
o Use a Toolbox container configured with your Rust environment

o Configure a few things like dockerPath and dockerSocketPath
settings.json

{

"rust-analyzer.check.command": "clippy",

"rust-analyzer.workspace.discoverConfig": null,
"dev.containers.dockerPath": "/var/home/zim/.local/bin/podman-host",
"dev.containers.dockerSocketPath": "unix:///run/user/1000/podman/podman.sock",

VS Code cont.

e For dockerPath you can use a wrapper script

zim@fedora:~$ cat ~/.local/bin/podman-host
#!/bin/sh

exec flatpak-spawn --host podman "${@}"

e For USB debugging probe to work you need access to plugdev

e Find out what user VS Code dev container uses by spawning a sleep 1000
e Outside, in native environment, check what user that is

H [root@toolbx ch32vB03-blinky-rust]# sg plugdev -c 'sleep 1000’

zim@fedora:~$ ps -eo user,group,args | grep sleep
524288 524288 sleep 1

e And configure it accordingly in your /etc/group
plugdev:x:995:524288,zim

VS Code cont.

e Alternatively run your container privileged

registry.fedoraproject.org% 2ffedora-toolbox%3a43.json

{
"workspaceFolder": "/var/home/zim/Downloads/WinChipHead
(WCH)/CH32V003/ch32v003-blinky-rust",
"extensions": [
"probe-rs.probe-rs-debugger”,
"rust-lang.rust-analyzer"
1,
"privileged": true,
"runArgs": [
"--privileged",
"--security-opt=Ilabel=disable",

LIve Demo

30¥NOS N3dO | XN'OOMNIHLIA0D @

31

References

e WinChipHead CH32V003
https://www.wch-ic.com/products/CH32V003.html

e WCH MCU for Rust
https://qithub.com/ch32-rs

e probe-rs
https://probe.rs

e Rustonthe CH32V003
https://noxim.xyz/blog/rust-ch32v003

e (etting Started with CH32V003 Firmware in Rust
https://albertskog.se/ch32v-in-rust

https://www.wch-ic.com/products/CH32V003.html
https://github.com/ch32-rs
https://probe.rs
https://noxim.xyz/blog/rust-ch32v003
https://albertskog.se/ch32v-in-rust

Thank You.

Codethink LTD

3rd Floor Dale House,
35 Dale Street,
MANCHESTER,

M1 2HF

United Kingdom

3OUNOS N3dO | MN'OOMNIHLIA0D @

33

