
11

C
O

D
ETH

IN
K.C

O
.U

K | O
PEN

 SO
U

RC
E

Codethink FOSDEM'26 Brussels February 1, 2026

Rust meets cheap bare-metal RISCV

1

Marcel Ziswiler

2

C
O

D
ETH

IN
K.C

O
.U

K | O
PEN

 SO
U

RC
EMarcel Ziswiler

ROLE

Founder ZisiSoft GmbH

Senior Software Engineer
Codethink Ltd.

PAST ENGAGEMENTS

Senior Linux Expert, System
Engineer, Technical Project Leader
Noser Engineering
Platform Manager Embedded Linux
Toradex

TENURE

Joined Codethink
in 2024

EDUCATION

MS Computer Science
ETH Zurich
Certificate in Embedded
Systems Technologies UCI

Speaking today

33

C
O

D
ETH

IN
K.C

O
.U

K | O
PEN

 SO
U

RC
E

33

Contents

1 WinChipHead WCH CH32V003

2 Embedded Tooling

3 Embedded Rust

4 VS Code

5 Live Demo

4

C
O

D
ETH

IN
K.C

O
.U

K | O
PEN

 SO
U

RC
E

WinChipHead (WCH)
CH32V003

55

C
O

D
ETH

IN
K.C

O
.U

K | O
PEN

 SO
U

RC
E

55

WinChipHead WCH CH32V003
● Nanjing Qinheng Microelectronics,

company behind WCH WinChipHead)
brand, founded in 2004 in Nanjing

● 32-bit General-purpose RISCV MCU

● QingKe 32-bit RISCV2A processor,
supports 2-level deep interrupt nesting

● Up to 48 MHz system main frequency

● 2 KB SRAM, 16 KB Flash

● Supply voltage: 3.3 or 5 Volts

● Multiple low-power modes: Sleep/Standby

● Power on/off reset

● Programmable voltage monitor

● 1 set of 1-channel general-purpose DMA

● Operational Amplifier/Comparator OPAs

● 1 set of 10-bit ADC

66

C
O

D
ETH

IN
K.C

O
.U

K | O
PEN

 SO
U

RC
E

66

WinChipHead WCH CH32V003 cont.
● 116-bit advanced-control timer

● 116-bit general-purpose timer

● 2 Watchdog timers and 132-bit system
time base timer

● 1 USART interface, 1 I2C interface, 1 SPI
interface

● 18 GPIOs aka I/O ports,
can be mapped to 1 external interrupt

● 96-bit chip unique ID

● 1-wire Serial Debug Interface SDI

● Industrial-grade temperature range of
40°C to 85°C

● Package: TSSOP20 (e.g. CH32V003F4P6,
QFN20, SOP16, SOP8

● English Datasheet 37 pages) and
Reference Manual 188 pages)

77

C
O

D
ETH

IN
K.C

O
.U

K | O
PEN

 SO
U

RC
E

77

QingKe RISCV2A Core
● Implements RV32EmC instruction set

● E: alternative base extension, specifically
designed for very low spec processors

● Mostly identical to RV32I base extension,
except only specifies 16 general-purpose
registers instead of 32

● Smaller register file saves quite a lot of
silicon space, reducing cost

● E extension still in development!

● Manufacturers nonetheless already
implementing it in hardware

● Spec not officially frozen so compilers
still catching up

● m: hardware multiplication Zmmul ext.

● C Supports 16-bit compression instruction

● 2 deep pipeline

● Static branch prediction

● 256 interrupts including exceptions, and
Vector Table Free VTF) interrupts

● 2 levels of Hardware Prologue/Epilogue
HPE

● Supports Sleep and Deep sleep modes,
and support WFI and WFE sleep methods

● Supports half-word and byte operation
compression instructions

● 1-wire/2-wire SDI, standard RISCV debug

● English Microprocessor Manual 32 pages)

88

C
O

D
ETH

IN
K.C

O
.U

K | O
PEN

 SO
U

RC
E

88

CH32V003F4P6EVTR01v1.FP Board
EVT Engineering Validation Test) board

1. Actual MCU CH32V003F4P6

2. MCU GPIOs: P1 and P2

3. Power switch S2 5V USB power supply

4. USBC interface: 5V power supply only

5. Reset button S1 (req. RST_MODE bits of
the user select word register as non-11b)

6. LEDs are connected to main chip I/O port
via LED row pins P4

7. 1-wire DEBUG interface:
for downloading, simulation debugging,
only needs SWDIO PD1 connection

8. Crystal pin PA1 and PA2 assembly option

99

C
O

D
ETH

IN
K.C

O
.U

K | O
PEN

 SO
U

RC
E

99

CH32V003F4P6EVTR01v1.FP cont.

1010

C
O

D
ETH

IN
K.C

O
.U

K | O
PEN

 SO
U

RC
E

1010

WCHLinkER01v3.FP Debug Probe
● USB debug probe dongle

● Online debugging and downloading of
WCH RISCV MCUs

● Online debugging and downloading of
ARM MCUs with SWD/JTAG interface

● Serial port for easy debugging output

● wlink:
WCHLink(RV) command line tool in Rust

● probe-rs:
The de facto embedded toolkit in Rust

● English User Manual 29 pages)

● CH32V003LinkE Kit: EVT, USB probe
and 5 MCU chips for less than 7 ½ bucks

1111

C
O

D
ETH

IN
K.C

O
.U

K | O
PEN

 SO
U

RC
E

1111

WCHLinkER01v3.FP Debug Probe cont.

1212

C
O

D
ETH

IN
K.C

O
.U

K | O
PEN

 SO
U

RC
E

1212

Many More Cheap Boards Available
● TENSTAR Robot TS2160YCH32V003

Raspberry Pi Pico/Teensy-style

○ Very simple

○ USBC just for power

○ 11-pin header pins on each side

● CRCH32Vxxx also known as MiniTool
CH32V003 GXFA0260001

○ More advanced

○ USBC with serial UART for debug

○ Function and test keys

○ Power switch

○ 10-pin header pins on each side

13

C
O

D
ETH

IN
K.C

O
.U

K | O
PEN

 SO
U

RC
E

Embedded Tooling

1414

C
O

D
ETH

IN
K.C

O
.U

K | O
PEN

 SO
U

RC
E

1414

wlink: WCHLink(RV) command line tool in Rust
● Flash firmware, support Intel HEX, ELF and raw binary format

● Erase chip

● Halt, resume, reset support

● Read chip info

● Read chip memory(flash)

● Read/write chip register - very handy for debugging

● Code-Protect & Code-Unprotect for supported chips

● Enable or Disable 3.3V, 5V output

● SDI print support, requires 2.10+ firmware

● Serial port watching for a smooth development experience

● Windows native driver support, no need to install libusb manually (requires x86 build)

1515

C
O

D
ETH

IN
K.C

O
.U

K | O
PEN

 SO
U

RC
E

1515

wlink: WCHLink(RV) command line tool in Rust cont.
● cargo install --git https://github.com/ch32-rs/wlink

● wlink list
●

● wlink status

1616

C
O

D
ETH

IN
K.C

O
.U

K | O
PEN

 SO
U

RC
E

1616

wlink: WCHLink(RV) command line tool in Rust cont.
● wlink regs

1717

C
O

D
ETH

IN
K.C

O
.U

K | O
PEN

 SO
U

RC
E

1717

wlink: WCHLink(RV) command line tool in Rust cont.
● wlink regs cont.

1818

C
O

D
ETH

IN
K.C

O
.U

K | O
PEN

 SO
U

RC
E

1818

probe-rs: Embedded programming made easy
● User-friendly and flexible embedded toolkit that just works

● Run programs on your microcontroller with ease of native applications

● Easily print to STDOUT via RTT and defmt encoding when using probe-rs run

● cargo-flash to just flash a target

● cargo-embed to get full RTT terminal to send commands and view multiple channels

● Easy debugging in VSCode

● cargo install probe-rs-tools

19

C
O

D
ETH

IN
K.C

O
.U

K | O
PEN

 SO
U

RC
E

Embedded Rust

2020

C
O

D
ETH

IN
K.C

O
.U

K | O
PEN

 SO
U

RC
E

2020

Rust Embedded Devices Working Group
● Build an ergonomic and composable ecosystem for embedded Rust developers

● Peripheral access crates

○ How to access hardware peripheral registers?

○ Machine readable hardware definitions in System View Description SVD) format

○ svd2rust: automatic tooling to generate API for peripherals

○ WinChipHead case distributed as part of Eclipse-derived IDE MounRiver Studio

● Embedded Hardware Abstraction Layer (embedded-hal)

○ Abstraction crate

○ Defines a set of traits that describe common peripheral functionality

○ Interfaces for different peripheral types like GPIOs, timers, busses etc.

○ Making sure abstractions are zero-cost

○ Model platform differences reasonably well

2121

C
O

D
ETH

IN
K.C

O
.U

K | O
PEN

 SO
U

RC
E

2121

WCH CH32V003 with Rust
● WCH CH32V003 embedded-hal available as part of ch32-rs project

● Same project wlink comes from

● embedded-hal requires Rust Nightly
rustup install nightly
rustup override set nightly

● Also needs sources of standard libraries in order to build core later on
rustup component add rust-src

2222

C
O

D
ETH

IN
K.C

O
.U

K | O
PEN

 SO
U

RC
E

2222

Target Specification File
riscv32ec-unknown-none-elf.json
{
 "arch": "riscv32",
 "atomic-cas": false,
 "cpu": "generic-rv32",
 "crt-objects-fallback": "false",
 "data-layout": "e-m:e-p:3232-i6464-n32S32",
 "eh-frame-header": false,
 "emit-debug-gdb-scripts": false,
 "features": "+e,+c,+forced-atomics",
 "linker": "rust-lld",
 "linker-flavor": "gnu-lld",
 "llvm-target": "riscv32",
 "llvm-abiname": "ilp32e",
 "max-atomic-width": 32,
 "panic-strategy": "abort",
 "relocation-model": "static",
 "target-pointer-width": "32"
}

2323

C
O

D
ETH

IN
K.C

O
.U

K | O
PEN

 SO
U

RC
E

2323

Cargo Configuration File
.cargo/config.toml

[build]
target = "riscv32ec-unknown-none-elf.json"
[target.riscv32ec-unknown-none-elf]
runner = "probe-rs run --chip ch32v003"
rustflags = ["C", "link-arg=-Tlink.x"]
[unstable]
build-std = ["core"]

2424

C
O

D
ETH

IN
K.C

O
.U

K | O
PEN

 SO
U

RC
E

2424

Dependencies and Profile Settings
Cargo.toml

[package]
name = "ch32v003-blinky-rust"
version = "0.1.0"
edition = "2021"
[dependencies]
panic-halt = "1.0.0"
ch32-hal = { git = "https://github.com/ch32-rs/ch32-hal", features = [
 "ch32v003f4u6",
] }
qingke-rt = "0.4.0"
qingke = "0.4.0"
embedded-hal = "1.0.0"
[profile.dev]
strip = false
lto = true
opt-level = "s"

2525

C
O

D
ETH

IN
K.C

O
.U

K | O
PEN

 SO
U

RC
E

2525

Main File to Blink an LED
#![no_std]
#![no_main]
use hal::delay::Delay;
use hal::gpioLevel, Output};
use ch32_hal as hal;
use panic_halt as _;
#[qingke_rt::entry]
fn main() → ! {
 let config = hal::Config::default();
 let peripherals = hal::init(config);
 let mut led = Output::new(peripherals.PD6, Level::Low, Default::default());
 let mut delay = Delay;
 loop {
 led.toggle();
 delay.delay_ms(1000);
 }
}

2626

C
O

D
ETH

IN
K.C

O
.U

K | O
PEN

 SO
U

RC
E

2626

Run to Compile and Upload
● cargo run

27

C
O

D
ETH

IN
K.C

O
.U

K | O
PEN

 SO
U

RC
E

VS Code

2828

C
O

D
ETH

IN
K.C

O
.U

K | O
PEN

 SO
U

RC
E

2828

VS Code
● Install a few extensions

○ rust-analyzer

○ Debugger for probe-rs

● Given I'm on Fedora Silverblue it uses the Flatpak version of VS Code

○ Problem, can't access host tools from sandbox

○ That's where Dev Containers come in handy, so install that extension as well

○ Use a Toolbox container configured with your Rust environment

○ Configure a few things like dockerPath and dockerSocketPath

2929

C
O

D
ETH

IN
K.C

O
.U

K | O
PEN

 SO
U

RC
E

2929

VS Code cont.
● For dockerPath you can use a wrapper script

● For USB debugging probe to work you need access to plugdev

● Find out what user VS Code dev container uses by spawning a sleep 1000

● Outside, in native environment, check what user that is

● And configure it accordingly in your /etc/group

3030

C
O

D
ETH

IN
K.C

O
.U

K | O
PEN

 SO
U

RC
E

3030

VS Code cont.
● Alternatively run your container privileged

registry.fedoraproject.org%2ffedora-toolbox%3a43.json
{

"workspaceFolder": "/var/home/zim/Downloads/WinChipHead
WCH/CH32V003/ch32v003-blinky-rust",

"extensions": [
"probe-rs.probe-rs-debugger",
"rust-lang.rust-analyzer"

],
"privileged": true,

 "runArgs": [
"--privileged",
"--security-opt=label=disable",

]
}

31

C
O

D
ETH

IN
K.C

O
.U

K | O
PEN

 SO
U

RC
E

Live Demo

3232

C
O

D
ETH

IN
K.C

O
.U

K | O
PEN

 SO
U

RC
E

3232

References
● WinChipHead CH32V003

https://www.wch-ic.com/products/CH32V003.html

● WCH MCU for Rust
https://github.com/ch32-rs

● probe-rs
https://probe.rs

● Rust on the CH32V003
https://noxim.xyz/blog/rust-ch32v003

● Getting Started with CH32V003 Firmware in Rust
https://albertskog.se/ch32v-in-rust

https://www.wch-ic.com/products/CH32V003.html
https://github.com/ch32-rs
https://probe.rs
https://noxim.xyz/blog/rust-ch32v003
https://albertskog.se/ch32v-in-rust

3333

C
O

D
ETH

IN
K.C

O
.U

K | O
PEN

 SO
U

RC
E

Codethink LTD

3rd Floor Dale House,
35 Dale Street,
MANCHESTER,
M1 2HF
United Kingdom

Thank You.

33

