
© 2026 Bloomberg Finance L.P. All rights reserved.

1

Inside Reflection

Go Devroom @ FOSDEM 2026
February 1, 2026

Valentyn Yukhymenko
Software Engineer

© 2026 Bloomberg Finance L.P. All rights reserved.

About

● Helps improve deployment process at Bloomberg by
day

● Tries to understand compilers by night (literally 🥲)

● Has small contribution experience with C++ Reflection
implementations

● Uses Go regularly, so decided to see how Reflection is
implemented there!

My first FOSDEM 2 years ago

© 2026 Bloomberg Finance L.P. All rights reserved.

Agenda

1. What is Reflection?

2. What’s inside the Go interface?

3. What’s inside the reflect package?

© 2026 Bloomberg Finance L.P. All rights reserved.

What is Reflection?

* Usually in runtime but some languages support compile time reflection

Ability* of a program to:

🔍 Introspect existing types and behaviour

🔨 Modify existing types and behaviour

🔮 Create new types or instances from scratch

Source of AI generated image on this slide: ChatGPT

© 2026 Bloomberg Finance L.P. All rights reserved.

State of Reflection

Python Java C++ Go

📜 Bytecode +
Interpreted (VM)

📜 Bytecode + JIT
(JVM)

📦 AOT compiled
(native)

🧩Dynamic types 🔒 Static types 🔒 Static types 🔒 Static types

🥇 Runtime
Reflection

🥈 Runtime
Reflection

🏗 Compile-time
Reflection (C++ 26)

🥉 Runtime
Reflection

📦 AOT compiled
(native)

6

So, how is runtime reflection achieved in Go?

© 2026 Bloomberg Finance L.P. All rights reserved.

“Interfaces are, for me, the most exciting part of Go
from a language design point of view. If I could export
one feature of Go into other languages, it would be
interfaces.”

– Russ Cox

“Go Data Structures: Interfaces” blog post (2009)

https://research.swtch.com/interfaces

© 2026 Bloomberg Finance L.P. All rights reserved.

Interfaces 101
Inspired by go.dev/blog/laws-of-reflection

file, _ := os.OpenFile("/dev/null", os.O_RDWR, 0)
fmt.Printf("Type of `file`: %T; Value: %v\n", file, file)
// Type of `file`: *os.File; Value: &{0xc0000941e0}

https://go.dev/blog/laws-of-reflection#the-representation-of-an-interface

© 2026 Bloomberg Finance L.P. All rights reserved.

Interfaces 101
Inspired by go.dev/blog/laws-of-reflection

file, _ := os.OpenFile("/dev/null", os.O_RDWR, 0)
fmt.Printf("Type of `file`: %T; Value: %v\n", file, file)
// Type of `file`: *os.File; Value: &{0xc0000941e0}

var reader io.Reader = file
fmt.Printf("Type of `reader`: %T; Value: %v\n", reader, reader)
// Type of `reader`: *os.File; Value: &{0xc0000941e0}

https://go.dev/blog/laws-of-reflection#the-representation-of-an-interface

© 2026 Bloomberg Finance L.P. All rights reserved.

Interfaces 101
Inspired by go.dev/blog/laws-of-reflection

file, _ := os.OpenFile("/dev/null", os.O_RDWR, 0)
fmt.Printf("Type of `file`: %T; Value: %v\n", file, file)
// Type of `file`: *os.File; Value: &{0xc0000941e0}

var reader io.Reader = file
fmt.Printf("Type of `reader`: %T; Value: %v\n", reader, reader)
// Type of `reader`: *os.File; Value: &{0xc0000941e0}

var writer io.Writer = reader.(io.Writer)
fmt.Printf("Type of `writer`: %T; Value: %v\n", writer, writer)
// Type of `writer`: *os.File; Value: &{0xc0000941e0}

https://go.dev/blog/laws-of-reflection#the-representation-of-an-interface

© 2026 Bloomberg Finance L.P. All rights reserved.

Interfaces 101
Inspired by go.dev/blog/laws-of-reflection

var empty any = file // `any` is the same as `interface{}`
fmt.Printf("Type of `empty`: %T; Value: %v\n", empty, empty)
// Type of `empty`: *os.File; Value: &{0xc0000941e0}

https://go.dev/blog/laws-of-reflection#the-representation-of-an-interface

© 2026 Bloomberg Finance L.P. All rights reserved.

Interfaces 101
Inspired by go.dev/blog/laws-of-reflection

var empty any = file // `any` is the same as `interface{}`
fmt.Printf("Type of `empty`: %T; Value: %v\n", empty, empty)
// Type of `empty`: *os.File; Value: &{0xc0000941e0}

empty = 42
fmt.Printf("Type of `empty`: %T; Value: %v\n", empty, empty)
// Type of `empty`: int; Value: 42

https://go.dev/blog/laws-of-reflection#the-representation-of-an-interface

© 2026 Bloomberg Finance L.P. All rights reserved.

Internals of Interface: Fat Pointer approach

Source: go/src/runtime/runtime2.go

type iface struct {
tab *abi.ITab
data unsafe.Pointer

}

*ABI stands for Application Binary Interface

// Type of `reader`: *os.File; Value: &{0xc0000941e0}

https://github.com/golang/go/blob/e39e965e0e0cce65ca977fd0da35f5bfb68dc2b8/src/runtime/runtime2.go#L179-L187

© 2026 Bloomberg Finance L.P. All rights reserved.

Internals of Interface: Fat Pointer approach

Source: go/src/runtime/runtime2.go

type iface struct {
tab *abi.ITab
data unsafe.Pointer

}

*ABI stands for Application Binary Interface

// Type of `reader`: *os.File; Value: &{0xc0000941e0}

Raw pointer to
underlying value

Pointer to interface table

https://github.com/golang/go/blob/e39e965e0e0cce65ca977fd0da35f5bfb68dc2b8/src/runtime/runtime2.go#L179-L187

© 2026 Bloomberg Finance L.P. All rights reserved.

Internals of Interface: Interface Table

// Type of `reader`: *os.File; Value: &{0xc0000941e0}

*ITab stands for Interface TableSource: go/src/internal/abi/iface.go

type ITab struct {
Inter *InterfaceType
Type *Type
Hash uint32
Fun [1]uintptr

}

https://github.com/golang/go/blob/e39e965e0e0cce65ca977fd0da35f5bfb68dc2b8/src/internal/abi/iface.go

© 2026 Bloomberg Finance L.P. All rights reserved.

Internals of Interface: Interface Table

// Type of `reader`: *os.File; Value: &{0xc0000941e0}

*ITab stands for Interface TableSource: go/src/internal/abi/iface.go

type ITab struct {
Inter *InterfaceType
Type *Type
Hash uint32
Fun [1]uintptr

}

Definition of interface → type + methods

Underlying type which implements interface
e.g. io.Reader = *os.File

https://github.com/golang/go/blob/e39e965e0e0cce65ca977fd0da35f5bfb68dc2b8/src/internal/abi/iface.go

© 2026 Bloomberg Finance L.P. All rights reserved.

Internals of Interface: Interface Table

*ITab stands for Interface TableSource: go/src/internal/abi/iface.go

type ITab struct {
Inter *InterfaceType
Type *Type
Hash uint32
Fun [1]uintptr

}

type InterfaceType struct {
Type
PkgPath Name

 Methods []Imethod
}

https://github.com/golang/go/blob/e39e965e0e0cce65ca977fd0da35f5bfb68dc2b8/src/internal/abi/iface.go

© 2026 Bloomberg Finance L.P. All rights reserved.

Internals of Interface: Interface Table

Source: go/src/internal/abi/iface.go

type ITab struct {
Inter *InterfaceType
Type *Type
Hash uint32
Fun [1]uintptr

}

Copy of Type.Hash. Used for type switches

func do(i any) {
switch v := i.(type) {
case int: // case 12345

// TODO:
case string: // case 54321

// TODO:
default:

panic(“unexpected”)
}

}

https://github.com/golang/go/blob/e39e965e0e0cce65ca977fd0da35f5bfb68dc2b8/src/internal/abi/iface.go

© 2026 Bloomberg Finance L.P. All rights reserved.

Internals of Interface: Interface Table

Source: go/src/internal/abi/iface.go

type ITab struct {
Inter *InterfaceType
Type *Type
Hash uint32
Fun [1]uintptr

}

Function pointer table.

Variable sized array. fun[0] == 0 means
Type does not implement InterfaceType.

https://github.com/golang/go/blob/e39e965e0e0cce65ca977fd0da35f5bfb68dc2b8/src/internal/abi/iface.go

© 2026 Bloomberg Finance L.P. All rights reserved.

Internals of Type

Source: go/src/internal/abi/type.go

type Type struct {
 Str NameOff

Size_ uintptr
Hash uint32

 …
Kind_ Kind
…

}

Common information about all types

https://github.com/golang/go/blob/e63eb98e98709a68bf7781a34a3297b72521826e/src/internal/abi/type.go

© 2026 Bloomberg Finance L.P. All rights reserved.

Internals of Type

Source: go/src/internal/abi/type.go

type Type struct {
 Str NameOff

Size_ uintptr
Hash uint32

 …
Kind_ Kind
…

}

Common information about all types

https://github.com/golang/go/blob/e63eb98e98709a68bf7781a34a3297b72521826e/src/internal/abi/type.go

© 2026 Bloomberg Finance L.P. All rights reserved.

Internals of Type

Source: go/src/internal/abi/type.go

type Type struct {
 Str NameOff

Size_ uintptr
Hash uint32

 …
Kind_ Kind
…

}

Common information about all types

Enables access to specific type information

 Bool
Int
…
Array
Chan
Func
Interface
Map
Pointer
Slice
String
Struct
UnsafePointer

https://github.com/golang/go/blob/e63eb98e98709a68bf7781a34a3297b72521826e/src/internal/abi/type.go

© 2026 Bloomberg Finance L.P. All rights reserved.

Source: go/src/internal/abi/type.go

Internals of Type: How to get Interface methods?

func (t *Type) InterfaceType() *InterfaceType
{

if t.Kind() != Interface {
return nil

}
return (*InterfaceType)(unsafe.Pointer(t))

}

type InterfaceType struct {
Type
PkgPath Name

 Methods []Imethod
}

Type info

Package path

Methods

Memory layout

https://github.com/golang/go/blob/e63eb98e98709a68bf7781a34a3297b72521826e/src/internal/abi/type.go

© 2026 Bloomberg Finance L.P. All rights reserved.

Source: go/src/internal/abi/type.go

Internals of Type: How to get Struct fields?

func (t *Type) StructType() *StructType
{

if t.Kind() != Struct {
return nil

}
return (*StructType)(unsafe.Pointer(t))

}

Memory layout

Type info

Package path

Fields

type StructType struct {
Type
PkgPath Name
Fields []StructField

}

https://github.com/golang/go/blob/e63eb98e98709a68bf7781a34a3297b72521826e/src/internal/abi/type.go

© 2026 Bloomberg Finance L.P. All rights reserved.

Connection between Type and Interface
 Inspired by: blog.gopheracademy.com/advent-2018/interfaces-and-reflect

*tab

*data

Interface

runtime
object

0xcfcb3a894

Value

*inter

*type

hash

*fun[0]

*fun[1]

…

*fun[n]

struct itab

Method set

size

…

kind

…

name

pointer

 []fields
(if struct)

struct type

Type

http://blog.gopheracademy.com/advent-2018/interfaces-and-reflect/

© 2026 Bloomberg Finance L.P. All rights reserved.

Edge case: Empty Interface

Source: go/src/runtime/runtime2.go

type eface struct {
type *abi.Type
data unsafe.Pointer

}

*ABI stands for Application Binary Interface

// Interface any

type iface struct {
tab *abi.ITab
data unsafe.Pointer

}

// Interface io.Reader

https://github.com/golang/go/blob/e39e965e0e0cce65ca977fd0da35f5bfb68dc2b8/src/runtime/runtime2.go#L179-L187

27

But, how is it connected with Reflection?

© 2026 Bloomberg Finance L.P. All rights reserved.

Reflection API in Go

reflect.TypeOf(i any) reflect.ValueOf(i any)

pkg.go.dev/reflect

http://pkg.go.dev/reflect

© 2026 Bloomberg Finance L.P. All rights reserved.

Reflection API in Go

reflect.TypeOf(i any) reflect.ValueOf(i any)

pkg.go.dev/reflect

Looks familiar?

http://pkg.go.dev/reflect

© 2026 Bloomberg Finance L.P. All rights reserved.

Reflection API in Go

pkg.go.dev/reflect

reflect.TypeOf(i any)

reflect.ValueOf(i any)

type eface struct {
type *abi.Type
data unsafe.Pointer

}

http://pkg.go.dev/reflect

© 2026 Bloomberg Finance L.P. All rights reserved.

Inside reflect.TypeOf

Source: go/src/reflect/type.go

func TypeOf(i any) reflect.Type {
return toType(abi.TypeOf(i))

}

func toType(t *abi.Type) reflect.Type {
if t == nil {

return nil
}
return (*rtype)(unsafe.Pointer(t))

}

type reflect.Type interface {
 Align() int

Method(int) Method
Kind() Kind
Field(i int) StructField
...

}

type rtype struct {
 t abi.Type
}

https://github.com/golang/go/blob/e39e965e0e0cce65ca977fd0da35f5bfb68dc2b8/src/reflect/type.go

© 2026 Bloomberg Finance L.P. All rights reserved.

Inside reflect.ValueOf

func ValueOf(i any) reflect.Value {
if i == nil {

return Value{}
}
return unpackEface(i)

}

Source: go/src/reflect/value.go

type reflect.Value struct {
 typ_ *abi.Type
 ptr unsafe.Pointer
 flag uintptr
}

https://github.com/golang/go/blob/e39e965e0e0cce65ca977fd0da35f5bfb68dc2b8/src/reflect/value.go

© 2026 Bloomberg Finance L.P. All rights reserved.

reflect package: Some examples

● reflect.Type.Kind();

reflect.Type.Size();

func (t *rtype) Kind() Kind {
 return Kind(t.t.Kind())
}

func (t *rtype) Size() uintptr{
return t.t.Size()

}

Source: go/src/reflect/type.go

https://github.com/golang/go/blob/e39e965e0e0cce65ca977fd0da35f5bfb68dc2b8/src/reflect/type.go

© 2026 Bloomberg Finance L.P. All rights reserved.

reflect package: Some examples

● reflect.Type.Kind();

reflect.Type.Size();

● reflect.Value.SetBool(bool);

Source: go/src/reflect/type.go

func (v Value) SetBool(x bool) {
v.mustBeAssignable()
v.mustBe(Bool)
*(*bool)(v.ptr) = x

}

https://github.com/golang/go/blob/e39e965e0e0cce65ca977fd0da35f5bfb68dc2b8/src/reflect/type.go

© 2026 Bloomberg Finance L.P. All rights reserved.

Connection between Type and Interface (Updated version)
 Inspired by: blog.gopheracademy.com/advent-2018/interfaces-and-reflect

*tab

*data

Interface

runtime
object

0xcfcb3a894

Value

*inter

*type

hash

*fun[0]

*fun[1]

…

*fun[n]

struct itab

Method set

size

…

kind

…

name

pointer

 []fields
(if struct)

struct type

Type

reflect.Value.Kind()

reflect.Value.Field(n)

reflect.Type.Kind()

reflect.Type.Size()

reflect.Type.Name()

reflect.Value.Pointer()

reflect.Type.MethodByName(“Foo”)

reflect.Type.Method(1)

reflect.Type.NumMethod()

http://blog.gopheracademy.com/advent-2018/interfaces-and-reflect/

© 2026 Bloomberg Finance L.P. All rights reserved.

Conclusions

● Interface any enables runtime reflection capabilities in Go.

● reflect package provides a safe thin API over underlying information of
interface.

● It’s not magic! Just good simple design.

© 2026 Bloomberg Finance L.P. All rights reserved.

What haven’t we covered?

We have looked only at how runtime information is accessed.

But how is this information generated and propagated into interfaces during
compilation?

© 2026 Bloomberg Finance L.P. All rights reserved.

Speak to me in between other talks if you have any feedback!

Thank you!

38

