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About

● Helps improve deployment process at Bloomberg by 
day

● Tries to understand compilers by night (literally 🥲)

● Has small contribution experience with C++ Reflection 
implementations

● Uses Go regularly, so decided to see how Reflection is 
implemented there!

My first FOSDEM 2 years ago
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Agenda

1. What is Reflection?

2. What’s inside the Go interface?

3. What’s inside the reflect package?
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What is Reflection?

* Usually in runtime but some languages support compile time reflection

Ability* of a program to:

🔍 Introspect existing types and behaviour

🔨 Modify existing types and behaviour

🔮 Create new types or instances from scratch

Source of AI generated image on this slide: ChatGPT
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State of Reflection

Python Java C++ Go

📜 Bytecode + 
Interpreted (VM)

📜 Bytecode + JIT 
(JVM)

📦 AOT compiled 
(native)

🧩Dynamic types 🔒 Static types 🔒 Static types 🔒 Static types

🥇 Runtime 
Reflection

🥈 Runtime 
Reflection

🏗 Compile-time 
Reflection (C++ 26)

🥉 Runtime 
Reflection

📦 AOT compiled 
(native)
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So, how is runtime reflection achieved in Go?
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“Interfaces are, for me, the most exciting part of Go 
from a language design point of view. If I could export 
one feature of Go into other languages, it would be 
interfaces.”

– Russ Cox

“Go Data Structures: Interfaces” blog post (2009)

https://research.swtch.com/interfaces
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Interfaces 101
Inspired by go.dev/blog/laws-of-reflection

file, _ := os.OpenFile("/dev/null", os.O_RDWR, 0)
fmt.Printf("Type of `file`: %T; Value: %v\n", file, file)
// Type of `file`: *os.File; Value: &{0xc0000941e0}

https://go.dev/blog/laws-of-reflection#the-representation-of-an-interface
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Interfaces 101
Inspired by go.dev/blog/laws-of-reflection

file, _ := os.OpenFile("/dev/null", os.O_RDWR, 0)
fmt.Printf("Type of `file`: %T; Value: %v\n", file, file)
// Type of `file`: *os.File; Value: &{0xc0000941e0}

var reader io.Reader = file
fmt.Printf("Type of `reader`: %T; Value: %v\n", reader, reader)
// Type of `reader`: *os.File; Value: &{0xc0000941e0}

https://go.dev/blog/laws-of-reflection#the-representation-of-an-interface
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Interfaces 101
Inspired by go.dev/blog/laws-of-reflection

file, _ := os.OpenFile("/dev/null", os.O_RDWR, 0)
fmt.Printf("Type of `file`: %T; Value: %v\n", file, file)
// Type of `file`: *os.File; Value: &{0xc0000941e0}

var reader io.Reader = file
fmt.Printf("Type of `reader`: %T; Value: %v\n", reader, reader)
// Type of `reader`: *os.File; Value: &{0xc0000941e0}

var writer io.Writer = reader.(io.Writer)
fmt.Printf("Type of `writer`: %T; Value: %v\n", writer, writer)
// Type of `writer`: *os.File; Value: &{0xc0000941e0}

https://go.dev/blog/laws-of-reflection#the-representation-of-an-interface
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Interfaces 101
Inspired by go.dev/blog/laws-of-reflection

var empty any = file // `any` is the same as `interface{}`
fmt.Printf("Type of `empty`: %T; Value: %v\n", empty, empty)
// Type of `empty`: *os.File; Value: &{0xc0000941e0}

https://go.dev/blog/laws-of-reflection#the-representation-of-an-interface
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Interfaces 101
Inspired by go.dev/blog/laws-of-reflection

var empty any = file // `any` is the same as `interface{}`
fmt.Printf("Type of `empty`: %T; Value: %v\n", empty, empty)
// Type of `empty`: *os.File; Value: &{0xc0000941e0}

empty = 42
fmt.Printf("Type of `empty`: %T; Value: %v\n", empty, empty)
// Type of `empty`: int; Value: 42

https://go.dev/blog/laws-of-reflection#the-representation-of-an-interface
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Internals of Interface: Fat Pointer approach

Source: go/src/runtime/runtime2.go  

type iface struct {
tab  *abi.ITab
data unsafe.Pointer

}

*ABI stands for Application Binary Interface

// Type of `reader`: *os.File; Value: &{0xc0000941e0}

https://github.com/golang/go/blob/e39e965e0e0cce65ca977fd0da35f5bfb68dc2b8/src/runtime/runtime2.go#L179-L187
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Internals of Interface: Fat Pointer approach

Source: go/src/runtime/runtime2.go  

type iface struct {
tab  *abi.ITab
data unsafe.Pointer

}

*ABI stands for Application Binary Interface

// Type of `reader`: *os.File; Value: &{0xc0000941e0}

Raw pointer to 
underlying value

Pointer to interface table

https://github.com/golang/go/blob/e39e965e0e0cce65ca977fd0da35f5bfb68dc2b8/src/runtime/runtime2.go#L179-L187
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Internals of Interface: Interface Table

// Type of `reader`: *os.File; Value: &{0xc0000941e0}

*ITab stands for Interface TableSource: go/src/internal/abi/iface.go  

type ITab struct {
Inter *InterfaceType
Type  *Type
Hash  uint32
Fun   [1]uintptr 

}

https://github.com/golang/go/blob/e39e965e0e0cce65ca977fd0da35f5bfb68dc2b8/src/internal/abi/iface.go
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Internals of Interface: Interface Table

// Type of `reader`: *os.File; Value: &{0xc0000941e0}

*ITab stands for Interface TableSource: go/src/internal/abi/iface.go  

type ITab struct {
Inter *InterfaceType
Type  *Type
Hash  uint32
Fun   [1]uintptr 

}

Definition of interface → type + methods

Underlying type which implements interface
e.g. io.Reader = *os.File 

https://github.com/golang/go/blob/e39e965e0e0cce65ca977fd0da35f5bfb68dc2b8/src/internal/abi/iface.go


© 2026 Bloomberg Finance L.P. All rights reserved.

Internals of Interface: Interface Table

*ITab stands for Interface TableSource: go/src/internal/abi/iface.go  

type ITab struct {
Inter *InterfaceType
Type  *Type
Hash  uint32
Fun   [1]uintptr 

}

type InterfaceType struct {
Type
PkgPath Name  

      Methods []Imethod 
}

https://github.com/golang/go/blob/e39e965e0e0cce65ca977fd0da35f5bfb68dc2b8/src/internal/abi/iface.go
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Internals of Interface: Interface Table

Source: go/src/internal/abi/iface.go  

type ITab struct {
Inter *InterfaceType
Type  *Type
Hash  uint32
Fun   [1]uintptr 

}

Copy of Type.Hash. Used for type switches

func do(i any) {
switch v := i.(type) {
case int: // case 12345

// TODO:
case string: // case 54321

// TODO:
default:

panic(“unexpected”)
}

}

https://github.com/golang/go/blob/e39e965e0e0cce65ca977fd0da35f5bfb68dc2b8/src/internal/abi/iface.go
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Internals of Interface: Interface Table

Source: go/src/internal/abi/iface.go  

type ITab struct {
Inter *InterfaceType
Type  *Type
Hash  uint32
Fun   [1]uintptr 

}

Function pointer table.

Variable sized array. fun[0] == 0 means 
Type does not implement InterfaceType.

https://github.com/golang/go/blob/e39e965e0e0cce65ca977fd0da35f5bfb68dc2b8/src/internal/abi/iface.go
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Internals of Type

Source: go/src/internal/abi/type.go 

type Type struct {
      Str            NameOff 

Size_       uintptr
Hash        uint32

      …
Kind_       Kind  
…

}

Common information about all types

https://github.com/golang/go/blob/e63eb98e98709a68bf7781a34a3297b72521826e/src/internal/abi/type.go
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Internals of Type

Source: go/src/internal/abi/type.go 

type Type struct {
      Str            NameOff 

Size_       uintptr
Hash        uint32

      …
Kind_       Kind  
…

}

Common information about all types

https://github.com/golang/go/blob/e63eb98e98709a68bf7781a34a3297b72521826e/src/internal/abi/type.go
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Internals of Type

Source: go/src/internal/abi/type.go 

type Type struct {
      Str            NameOff 

Size_       uintptr
Hash        uint32

      …
Kind_       Kind  
…

}

Common information about all types

Enables access to specific type information

      Bool
Int
…
Array
Chan
Func
Interface
Map
Pointer
Slice
String
Struct
UnsafePointer

https://github.com/golang/go/blob/e63eb98e98709a68bf7781a34a3297b72521826e/src/internal/abi/type.go
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Source: go/src/internal/abi/type.go 

Internals of Type: How to get Interface methods?

func (t *Type) InterfaceType() *InterfaceType 
{

if t.Kind() != Interface {
return nil

}
return (*InterfaceType)(unsafe.Pointer(t))

}

type InterfaceType struct {
Type
PkgPath Name  

      Methods []Imethod 
}

Type info

Package path 

Methods

Memory layout

https://github.com/golang/go/blob/e63eb98e98709a68bf7781a34a3297b72521826e/src/internal/abi/type.go
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Source: go/src/internal/abi/type.go 

Internals of Type: How to get Struct fields?

func (t *Type) StructType() *StructType 
{

if t.Kind() != Struct {
return nil

}
return (*StructType)(unsafe.Pointer(t))

}

Memory layout

Type info

Package path 

Fields

type StructType struct {
Type
PkgPath Name
Fields  []StructField

}

https://github.com/golang/go/blob/e63eb98e98709a68bf7781a34a3297b72521826e/src/internal/abi/type.go
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Connection between Type and Interface
  Inspired by: blog.gopheracademy.com/advent-2018/interfaces-and-reflect 

*tab

*data

Interface

runtime 
object

0xcfcb3a894

Value

*inter

*type

hash

*fun[0]

*fun[1]

…

*fun[n]

struct itab

Method set

size

…

kind

…

name

pointer

    []fields 
(if struct)

struct type

Type

http://blog.gopheracademy.com/advent-2018/interfaces-and-reflect/
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Edge case: Empty Interface

Source: go/src/runtime/runtime2.go  

type eface struct {
type  *abi.Type
data unsafe.Pointer

}

*ABI stands for Application Binary Interface

// Interface any

type iface struct {
tab  *abi.ITab
data unsafe.Pointer

}

// Interface io.Reader

https://github.com/golang/go/blob/e39e965e0e0cce65ca977fd0da35f5bfb68dc2b8/src/runtime/runtime2.go#L179-L187
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But, how is it connected with Reflection?
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Reflection API in Go

reflect.TypeOf(i any) reflect.ValueOf(i any)

pkg.go.dev/reflect

http://pkg.go.dev/reflect
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Reflection API in Go

reflect.TypeOf(i any) reflect.ValueOf(i any)

pkg.go.dev/reflect

Looks familiar?

http://pkg.go.dev/reflect
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Reflection API in Go

pkg.go.dev/reflect

reflect.TypeOf(i any)

reflect.ValueOf(i any)

type eface struct {
type  *abi.Type
data unsafe.Pointer

}

http://pkg.go.dev/reflect
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Inside reflect.TypeOf

Source: go/src/reflect/type.go  

func TypeOf(i any) reflect.Type {
return toType(abi.TypeOf(i))

}

func toType(t *abi.Type) reflect.Type {
if t == nil {

return nil
}
return (*rtype)(unsafe.Pointer(t))

}

type reflect.Type interface {
 Align() int

Method(int) Method
Kind() Kind
Field(i int) StructField
...

}

type rtype struct {
   t abi.Type
}

https://github.com/golang/go/blob/e39e965e0e0cce65ca977fd0da35f5bfb68dc2b8/src/reflect/type.go
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Inside reflect.ValueOf

func ValueOf(i any) reflect.Value {
if i == nil {

return Value{}
}
return unpackEface(i)

}

Source: go/src/reflect/value.go  

type reflect.Value struct {
    typ_ *abi.Type
    ptr unsafe.Pointer
    flag uintptr
}

https://github.com/golang/go/blob/e39e965e0e0cce65ca977fd0da35f5bfb68dc2b8/src/reflect/value.go
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reflect package: Some examples

● reflect.Type.Kind(); 

reflect.Type.Size();

func (t *rtype) Kind() Kind { 
     return Kind(t.t.Kind()) 
}

func (t *rtype) Size() uintptr{
return t.t.Size() 

}

Source: go/src/reflect/type.go  

https://github.com/golang/go/blob/e39e965e0e0cce65ca977fd0da35f5bfb68dc2b8/src/reflect/type.go
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reflect package: Some examples

● reflect.Type.Kind(); 

reflect.Type.Size();

● reflect.Value.SetBool(bool);

Source: go/src/reflect/type.go  

func (v Value) SetBool(x bool) {
v.mustBeAssignable()
v.mustBe(Bool)
*(*bool)(v.ptr) = x

}

https://github.com/golang/go/blob/e39e965e0e0cce65ca977fd0da35f5bfb68dc2b8/src/reflect/type.go
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Connection between Type and Interface (Updated version)
  Inspired by: blog.gopheracademy.com/advent-2018/interfaces-and-reflect 

*tab

*data

Interface

runtime 
object

0xcfcb3a894

Value

*inter

*type

hash

*fun[0]

*fun[1]

…

*fun[n]

struct itab

Method set

size

…

kind

…

name

pointer

    []fields 
(if struct)

struct type

Type

reflect.Value.Kind()

reflect.Value.Field(n)

reflect.Type.Kind()

reflect.Type.Size()

reflect.Type.Name()

reflect.Value.Pointer()

reflect.Type.MethodByName(“Foo”)

reflect.Type.Method(1)

reflect.Type.NumMethod()

http://blog.gopheracademy.com/advent-2018/interfaces-and-reflect/
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Conclusions

● Interface any enables runtime reflection capabilities in Go.

● reflect package provides a safe thin API over underlying information of 
interface.

● It’s not magic! Just good simple design.
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What haven’t we covered?

We have looked only at how runtime information is accessed. 

But how is this information generated and propagated into interfaces during 
compilation?
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Speak to me in between other talks if you have any feedback!

Thank you!
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