
Jade Abraham (@jabraham17), Advanced Programming Team, HPE

FOSDEM 2026
February 1, 2026

Productive Parallel Programming with
Chapel and Arkouda

1

• …but

• all of these are based on C/C++/Fortran

• some paradigms haven’t changed in decades (i.e. MPI)

• mixing parallel hardware requires multiple frameworks

• higher -level abstractions often exchange performance and control for ease -of -use

As a result, HPC has a high barrier to entry

But Hard to Program

Parallel Systems are Easy to Find...

2

OpenMP
Potential Users HPC Experts

MPI
MPI+Open

MP

CUDA

HIP

SYCL

OpenAcc

OpenMP

RAJA

Kokkos

MPI+CUDA

MPI+OpenMP+X

All are effective, powerful, essential, and tested technologies!

Shared

Memory

Distributed

Memory

From

Vendors

Portable Solutions

(directives)

GPU Programming
No distributed memory

support here

(C++ templates)

Chapel: A modern parallel programming language

• Portable & scalable

• Open -source & collaborative

• An HPSF / Linux Foundation project

Goals :
• Support general parallel programming

• Make parallel programming at scale far more productive

An Alternative for Productive Parallel Programming

3

• Imagine a language that is as…

• …readable and writeable as Python

• … fast as Fortran / C / C++ / Rust

• ...scalable as MPI / SHMEM

• …GPU -ready as CUDA / HIP / OpenMP / Kokkos / OpenCL / OpenACC / …

• …portable as C

• … fun as [your favorite language]

Productive Parallel Programming

4

This is the motivation for Chapel

Stream Triad: C + MPI + OpenMP vs Chapel

5

#include <hpcc.h>

#ifdef _OPENMP

#include <omp.h>

#endif

static int VectorSize;

static double *a, *b, *c;

int HPCC_StarStream(HPCC_Params *params) {

int myRank, commSize;

int rv, errCount;

MPI_Comm comm = MPI_COMM_WORLD;

MPI_Comm_size(comm, &commSize);

MPI_Comm_rank(comm, &myRank);

rv = HPCC_Stream(params, 0 == myRank);

MPI_Reduce(&rv, &errCount, 1, MPI_INT, MPI_SUM, 0, comm);

return errCount;

}

int HPCC_Stream(HPCC_Params *params, int doIO) {

register int j;

double scalar;

VectorSize = HPCC_LocalVectorSize(params, 3, sizeof(double), 0);

a = HPCC_XMALLOC(double, VectorSize);

b = HPCC_XMALLOC(double, VectorSize);

c = HPCC_XMALLOC(double, VectorSize);

if (!a || !b || !c) {

if (c) HPCC_free(c);

if (b) HPCC_free(b);

if (a) HPCC_free(a);

if (doIO) {

fprintf(outFile, "Failed to allocate memory (%d).\n", VectorSize);

fclose(outFile);

}

return 1;

}

#ifdef _OPENMP

#pragma omp parallel for

#endif

for (j=0; j<VectorSize; j++) {

b[j] = 2.0;

c[j] = 1.0;

}

scalar = 3.0;

#ifdef _OPENMP

#pragma omp parallel for

#endif

for (j=0; j<VectorSize; j++)

a[j] = b[j]+scalar*c[j];

HPCC_free(c);

HPCC_free(b);

HPCC_free(a);

return 0;

}

use BlockDist;

config const n = 1_000_000,

alpha = 0.01;

const Dom = blockDist.createDomain({1..n});

var A, B, C: [Dom] real;

B = 2.0;

C = 1.0;

A = B + alpha * C;

HPCC RA: C + MPI vs Chapel

6

/* Perform updates to main table. The scalar equivalent is:
*
* for (i=0; i<NUPDATE; i++) {
* Ran = (Ran << 1) ^ (((s64Int) Ran < 0) ? POLY : 0);
* Table[Ran & (TABSIZE -1)] ^= Ran;

* }
*/

MPI_Irecv(&LocalRecvBuffer, localBufferSize, tparams.dtype64,

MPI_ANY_SOURCE, MPI_ANY_TAG, MPI_COMM_WORLD, &inreq);

while (i < SendCnt) {

/* receive messages */
do {

MPI_Test(&inreq, &have_done, &status);

if (have_done) {

if (status.MPI_TAG == UPDATE_TAG) {

MPI_Get_count(&status, tparams.dtype64, &recvUpdates);

bufferBase = 0;

for (j=0; j < recvUpdates; j ++) {

inmsg = LocalRecvBuffer[bufferBase+j];

LocalOffset = (inmsg & (tparams.TableSize - 1)) –

tparams.GlobalStartMyProc;

HPCC_Table[LocalOffset] ^= inmsg;

}

} else if (status.MPI_TAG == FINISHED_TAG) {

NumberReceiving--;

} else

MPI_Abort(MPI_COMM_WORLD, -1);

MPI_Irecv(&LocalRecvBuffer, localBufferSize, tparams.dtype64,

MPI_ANY_SOURCE, MPI_ANY_TAG, MPI_COMM_WORLD, &inreq);

}

} while (have_done && NumberReceiving > 0);

if (pendingUpdates < maxPendingUpdates) {

Ran = (Ran << 1) ^ ((s64Int) Ran < ZERO64B ? POLY : ZERO64B);

GlobalOffset = Ran & (tparams.TableSize-1);

if (GlobalOffset < tparams.Top)

WhichPe = (GlobalOffset / (tparams.MinLocalTableSize + 1));

else

WhichPe = ((GlobalOffset - tparams.Remainder) /

tparams.MinLocalTableSize);

if (WhichPe == tparams.MyProc) {

LocalOffset = (Ran & (tparams.TableSize - 1)) –

tparams.GlobalStartMyProc;

HPCC_Table[LocalOffset] ^= Ran;

} else {

HPCC_InsertUpdate(Ran, WhichPe, Buckets);

pendingUpdates++;

}

i++;

}

else {

MPI_Test(&outreq, &have_done, MPI_STATUS_IGNORE);

if (have_done) {

outreq = MPI_REQUEST_NULL;

pe = HPCC_GetUpdates(Buckets, LocalSendBuffer, localBufferSize,

&peUpdates);

MPI_Isend(&LocalSendBuffer, peUpdates, tparams.dtype64, (int)pe,

UPDATE_TAG, MPI_COMM_WORLD, &outreq);

pendingUpdates -= peUpdates;

}

}

}

/* send remaining updates in buckets */
while (pendingUpdates > 0) {

/* receive messages */
do {

MPI_Test(&inreq, &have_done, &status);

if (have_done) {

if (status.MPI_TAG == UPDATE_TAG) {

MPI_Get_count(&status, tparams.dtype64, &recvUpdates);

bufferBase = 0;

for (j=0; j < recvUpdates; j ++) {

inmsg = LocalRecvBuffer[bufferBase+j];

LocalOffset = (inmsg & (tparams.TableSize - 1)) –

tparams.GlobalStartMyProc;

HPCC_Table[LocalOffset] ^= inmsg;

}

} else if (status.MPI_TAG == FINISHED_TAG) {

/* we got a done message. Thanks for playing... */
NumberReceiving--;

} else {

MPI_Abort(MPI_COMM_WORLD, -1);

}

MPI_Irecv(&LocalRecvBuffer, localBufferSize, tparams.dtype64,

MPI_ANY_SOURCE, MPI_ANY_TAG, MPI_COMM_WORLD, &inreq);

}

} while (have_done && NumberReceiving > 0);

MPI_Test(&outreq, &have_done, MPI_STATUS_IGNORE);

if (have_done) {

outreq = MPI_REQUEST_NULL;

pe = HPCC_GetUpdates(Buckets, LocalSendBuffer, localBufferSize,

&peUpdates);

MPI_Isend(&LocalSendBuffer, peUpdates, tparams.dtype64, (int)pe,

UPDATE_TAG, MPI_COMM_WORLD, &outreq);

pendingUpdates -= peUpdates;

}

}

/* send our done messages */
for (proc_count = 0 ; proc_count < tparams.NumProcs ; ++proc_count) {

if (proc_count == tparams.MyProc) { tparams.finish_req[tparams.MyProc] =

MPI_REQUEST_NULL; continue; }

/* send garbage - who cares, no one will look at it */

MPI_Isend(&Ran, 0, tparams.dtype64, proc_count, FINISHED_TAG,

MPI_COMM_WORLD, tparams.finish_req + proc_count);

}

/* Finish everyone else up... */
while (NumberReceiving > 0) {

MPI_Wait(&inreq, &status);

if (status.MPI_TAG == UPDATE_TAG) {

MPI_Get_count(&status, tparams.dtype64, &recvUpdates);

bufferBase = 0;

for (j=0; j < recvUpdates; j ++) {

inmsg = LocalRecvBuffer[bufferBase+j];

LocalOffset = (inmsg & (tparams.TableSize - 1)) –

tparams.GlobalStartMyProc;

HPCC_Table[LocalOffset] ^= inmsg;

}

} else if (status.MPI_TAG == FINISHED_TAG) {

/* we got a done message. Thanks for playing... */
NumberReceiving--;

} else {

MPI_Abort(MPI_COMM_WORLD, -1);

}

MPI_Irecv(&LocalRecvBuffer, localBufferSize, tparams.dtype64,

MPI_ANY_SOURCE, MPI_ANY_TAG, MPI_COMM_WORLD, &inreq);

}

MPI_Waitall(tparams.NumProcs, tparams.finish_req, tparams.finish_statuses);

/* Perform updates to main table. The scalar equivalent is:
*
* for (i=0; i<NUPDATE; i++) {
* Ran = (Ran << 1) ^ (((s64Int) Ran < 0) ? POLY : 0);
* Table[Ran & (TABSIZE -1)] ^= Ran;
* }
*/

…

forall (_, r) in zip(Updates, RAStream()) do

T[r & indexMask].xor(r);

…

Key Language Features

7

1. parallelism: What computational tasks should run simultaneously?

2. locality: Where should tasks run? Where should data be allocated?

Key Concerns for Scalable Productive Parallel Computing

8

Compute
Node 0

Compute
Node 1

Compute
Node 2

Compute
Node 3

GPU Core

Processor Core

Memory

GPU 0 GPU 1

GPU 2 GPU 3

GPU 0 GPU 1

GPU 2 GPU 3

GPU 0 GPU 1

GPU 2 GPU 3

GPU 0 GPU 1

GPU 2 GPU 3

Basic Features For Locality

9

writeln("Hello from locale ", here.id);

var A: [1..2, 1..2] real;

for loc in Locales {

on loc {

var B = A;

for gpu in loc.gpus {

on gpu {

var C = B;

}

}

}

}

Locale 0

GPU 0 GPU 1

Locale 1

GPU 0 GPU 1

All Chapel programs start with one task on locale 0

Variables are stored using the current
task’s local memory

A serial loop for each of the program’s locales

on -clauses move the computation to the target locale

Remote variables can be accessed directly

This is distributed serial computation

Locality + Parallelism

10

writeln("Hello from locale ", here.id);

var A: [1..2, 1..2] real;

coforall loc in Locales {

on loc do cobegin {

var B = A;

coforall gpu in loc.gpus {

on gpu {

var C = AB;

}

}

}

}

The coforall loop creates a
parallel task per iteration

The cobegin statement creates a
parallel task per child statement

This is distributed parallel computationLocale 0

GPU 0 GPU 1

Locale 1

GPU 0 GPU 1

var myLocalArr: [1..10] int;

increment(myLocalArr);

use BlockDist;

var myDistributedArr = blockDist.createArray({1..10}, int);

increment(myDistributedArr);

on here.gpu[0] {

var myGpuArr: [1..10] int;

increment(myGpuArr);

}

One Loop To Rule Them All

11

proc increment(Arr) {

var Res: Arr.type;

forall i in Arr.domain {

Res[i] = Arr[i] + 1;

}

return Res;

} The forall loop will invoke the parallel iterator for its
iterand expression, in this case the indices of Arr

Single node parallel computation

Distributed parallel computation

Single GPU parallel computation

proc increment(Arr) {

return Arr + 1;

}

equivalently

proc increment(Arr) {

var Res: Arr.type;

forall i in Arr.domain {

Res[i] = increment_c(Arr[i]);

}

return Res;

}

One Loop To Rule Them All + Interoperability

12

extern {

#include <stdint.h>

static int64_t increment_c(int64_t X) { return X + 1; }

}

It doesn’t even have to be "external”!

Instead of Chapel code, call an
external procedure

var myLocalArr: [1..10] int;

increment(myLocalArr);

use BlockDist;

var myDistributedArr = blockDist.createArray({1..10}, int);

increment(myDistributedArr);

Applications

13

Applications of Chapel

14

CHAMPS: 3D Unstructured CFD
Laurendeau , Bourgault -Côté , Parenteau, Plante, et al.

École Polytechnique Montréal

ChplUltra : Simulating Ultralight Dark Matter
Nikhil Padmanabhan, J. Luna Zagorac , et al.

Yale University et al.

Arkouda: Interactive Data Science at Massive Scale
Mike Merrill, Bill Reus, et al.

U.S. DoD

ChOp : Chapel -based Optimization
T. Carneiro, G. Helbecque , N. Melab , et al.

INRIA, IMEC, et al.

Chapel -based Hydrological Model Calibration
Marjan Asgari et al.

University of Guelph

Arachne Graph Analytics
Bader, Du, Rodriguez, et al.

New Jersey Institute of Technology

Modeling Ocean Carbon Dioxide Removal
Scott Bachman Brandon Neth, et al.

[C]Worthy

Lattice -Symmetries: a Quantum Many -Body Toolbox
Tom Westerhout

Radboud University

ChapQG : Layered Quasigeostrophic CFD
Ian Grooms and Scott Bachman

University of Colorado, Boulder et al.

Desk dot chpl: Utilities for Environmental Eng.
Nelson Luis Dias

The Federal University of Paraná, Brazil

RapidQ : Mapping Coral Biodiversity
Rebecca Green, Helen Fox, Scott Bachman, et al.

The Coral Reef Alliance

CrayAI HyperParameter Optimization (HPO)
Ben Albrecht et al.

Cray Inc. / HPE

[images provided by their respective teams and used with permission]

What is it?

• 3D unstructured CFD framework for airplane simulation

• ~100+k lines of Chapel written since 2019

Who wrote it?

• Professor Éric Laurendeau’s students + postdocs at Polytechnique Montreal

•

Why Chapel?

• performance and scalability competitive with MPI + C++

• students found it far more productive to use

• enabled them to compete with more established CFD centers

Applications of Chapel: CHAMPS

15[images provided by the CHAMPS team and used with permission]

What is it?

• Measures coral reef diversity using high -res satellite image analysis

• ~230 lines of Chapel code written in late 2022

Who wrote it?

• Scott Bachman, NCAR/[C]Worthy

• with Rebecca Green, Helen Fox, Coral Reef Alliance

Why Chapel?

• easy transition from Matlab , which they had been using

• massive performance improvement:

previous ~10 -day run finished in ~2 seconds using 360 cores

• enabled unanticipated algorithmic improvements

• from O(M·N·P) habitat diversity to O(M·N·P 3) spectral diversity

• Added another ~90 lines of code to make it GPU -enabled

• ~4-week desktop run → ~20 minutes on 20 nodes / 512 GPUs

Applications of Chapel: Biodiversity

16[images provided by Scott Bachman from his CHIUW 2023 talk and used with permission]

https://youtu.be/lJhh9KLL2X0

Get out of the way of science

• Let scientists express their computations succinctly

• Python and other languages are already good at this

• But to get performance and scalability, you tend to give up the nice abstractions

Easier to write, easier to read, easier to maintain

• Lowers the barrier to entry for new contributors

• You don’t need to be a MPI savant to get good distributed performance

• You don’t need to be a CUDA wizard to use GPUs efficiently

Why Chapel?

17

Applications: Arkouda

18

Motivation: Imagine you work with…

…Python -based data scientists

…HPC -scale data science problems to solve

…access to HPC systems

How will you leverage your Python programmers to get your work done?

Data Science In Python at scale?

19

Q: “What is Arkouda?”

What is Arkouda?

20

Q: “What is Arkouda?”

A1: “A scalable version of NumPy / Pandas routines for data scientists”

A2: “A framework for driving supercomputers interactively from Python”

What is Arkouda?

21

Chapel/Arkouda
Performance

22

Arkouda/Dask/Spark Comparison: 64 nodes w/ 4 TB

23

Arkouda eagerly
reads the data

Interactivity

Arkouda/Dask/Spark Comparison: Zoomed out

24

Arkouda joins are much
more efficient due to
better communication

Arkouda eagerly
reads the data

Interactivity

Chapel is built from the ground up for productive parallel computing at any scale

• Language features express clear and concise computation

Chapel applications can meet or beat low - level approaches while still…

• …avoiding unnecessary boilerplate

• …being human -readable

• …working with existing workflows

Summary

25

https://chapel -lang.org /blog/posts/7qs -reus

https://chapel-lang.org/blog/posts/7qs-reus
https://chapel-lang.org/blog/posts/7qs-reus
https://chapel-lang.org/blog/posts/7qs-reus
https://chapel-lang.org/blog/posts/7qs-reus
https://chapel-lang.org/blog/posts/7qs-reus
https://chapel-lang.org/blog/posts/7qs-reus

Synchronous Community Events

• Project Meetings , weekly

• Deep Dive / Demo Sessions , weekly timeslot

• Chapel Teaching Meet -up , monthly

• ChapelCon (formerly CHIUW), annually

Social Media Discussion Forums

Asynchrounous Communications

• Chapel Blog , typically ~2 articles per month

• Community Newsletter , quarterly

• Announcement Emails , around big events

Ways to Use Chapel

Ways to engage with the Chapel Community

(from the footer of chapel -lang.org)
26

https://github.com/chapel-lang/chapel/discussions/categories/weekly-meeting-topics?discussions_q=
https://github.com/chapel-lang/chapel/discussions/categories/weekly-meeting-topics?discussions_q=
https://github.com/chapel-lang/chapel/discussions/27247
https://github.com/chapel-lang/chapel/discussions/27247
https://chapel-lang.org/meetings/
https://chapel-lang.org/meetings/
https://chapel-lang.org/meetings/
https://chapel-lang.org/meetings/
https://chapel-lang.org/chapelcon/
https://chapel-lang.org/chapelcon/
https://chapel-lang.org/blog/
https://chapel-lang.org/blog/
https://chapel.discourse.group/c/newsletters/24
https://chapel.discourse.group/c/newsletters/24
https://chapel.discourse.group/c/announcements/8
https://chapel.discourse.group/c/announcements/8
https://chapel-lang.org/#footer
https://chapel-lang.org/#footer
https://chapel-lang.org/#footer

	Slide 1: Productive Parallel Programming with Chapel and Arkouda
	Slide 2: Parallel Systems are Easy to Find...
	Slide 3: An Alternative for Productive Parallel Programming
	Slide 4: Productive Parallel Programming
	Slide 5: Stream Triad: C + MPI + OpenMP vs Chapel
	Slide 6: HPCC RA: C + MPI vs Chapel
	Slide 7: Key Language Features
	Slide 8: Key Concerns for Scalable Productive Parallel Computing
	Slide 9: Basic Features For Locality
	Slide 10: Locality + Parallelism
	Slide 11: One Loop To Rule Them All
	Slide 12: One Loop To Rule Them All + Interoperability
	Slide 13: Applications
	Slide 14: Applications of Chapel
	Slide 15: Applications of Chapel: CHAMPS
	Slide 16: Applications of Chapel: Biodiversity
	Slide 17: Why Chapel?
	Slide 18: Applications: Arkouda
	Slide 19: Data Science In Python at scale?
	Slide 20: What is Arkouda?
	Slide 21: What is Arkouda?
	Slide 22: Chapel/Arkouda Performance
	Slide 23: Arkouda/Dask/Spark Comparison: 64 nodes w/ 4 TB
	Slide 24: Arkouda/Dask/Spark Comparison: Zoomed out
	Slide 25: Summary
	Slide 26: Ways to engage with the Chapel Community

