Productive Parallel Programming with
Chapel and Arkouda

Jade Abraham (@jabraham17), Advanced Programming Team, HPE

FOSDEM 2026
February 1, 2026

Parallel Systems are Easy to Find...

But Hard to Program No distributed
Shared Distributed From Portable Solutions .
M emory Memory Vendors (directives) (C++ templates) HPC Experts
& ©

Potentlal Users
MPI+CUDA

m FE] A
BRI %
MPI+O pen

MPI+OpenMP+X

C‘Zz

oyl

All are effective, powerful, essential, and tested technologies!

e ..but

all of these are based on C/C++/Fortran

some paradigms haven’t changed in decades (i.e. MPI)

mixing parallel hardware requires multiple frameworks

higher-level abstractions often exchange performance and control for ease-of-use

As a result, HPC has a high barrier to entry

—1

An Alternative for Productive Parallel Programming

Chapel: A modern parallel programming language
* Portable & scalable

e O - & collaborati
Opensource & collborative MCHAPEL

THE =T
L JLINUX = HPSF
FOUNDATION IR v eiiinon

Goals:

« Support general parallel programming
« Make parallel programming at scale far more productive

Productive Parallel Programming

* Imagine a language that is as...
 ..readable and writeable as Python
- ..fast as Fortran / C / C++/ Rust
 ...scalable as MP| / SHMEM
+ ..GPU-ready as CUDA / HIP / OpenMP / Kokkos / OpenCL / OpenACC/ ...
« ...portable as C
 ..fun as [your favorite language]

This is the motivation for Chapel

Stream Triad: C + MPI + OpenMP vs Chapel

#in oo booo 1 a £ L] L | 2N [!C)
#if ' (c) s
i,y use BlockDist; N
#en ee (a);
::‘:l config const n = 1_0 O O_O O O , iliie; -"Failed to allocate memory (%d).\n", VectorSize);
int alpha = 0.01;
Jjconst Dom = blockDist.createDomain ({1l..n});
M . .
var A’ B ! C: [Dom] real ! STREAM Performance (GB/s)
y 80000 [~ ----- == ==sss s emeessoomooiie
25000 | ChapelEP e oo
r B = 2 o O M B Chape?%elobal ----
M — c .
C - :I- . O 4 0 15000 b--------------"-"-- =T e -
7 O]
} 10000 |- === === oI i
— *x (s 5000 |- - oo s s
A = B + alpha C; 5 . . . ,
1 1632 64 128 256
alll = blJ]+sd Locales (x 36 cores / locale)

VectorSize = HPCC LocalVectorSize(params, 3, sizeof (double), 0);

a = HPCC XMALLOC (double, VectorSize)
b = HPCC XMALIOC(double, VectorSize)
c = HPCC XMALLOC (double, VectorSize)

4
4
’

HPCC free (c)

C) s
HPCC free (b);
HPCC free(a);

return 0O;

HPCC RA: C + MPI vs Chapel

/* Perform updates to main table. The scalar equivalent is:

* for(i=0; i<NUPDATE; i++) {
* Ran = (Ran << 1) * (((s64Int) Ran < 0) ? POLY : 0);
* Table[Ran & (TABSIZE-1)] “= Ran;

* o}

Y/

MPI_1i2cv (&LocalRecvBuffer, localBufferSize, tparams.dtype64,
MrImANY SOURCE, MPI_ANY TAG, MPI_COMM_WORLD, &inreq);

while (i < SendCnt) |

/* receive messages */
do {
MPI_Test (&inreq,
if (have_done) {

&have done, é&status);

/* Perform updates to main table. The scalar equivalent is:

*

* fOI’ (i:O,' |<NUPDATE,' i++) { PT_STATUS_IGNORE);
* Ran = (Ran << 1)) (((864|nt) Ran < O) ? POLY 0 O)' LocalSendBuffer, localBufferSize,
* Table[Ran & (TABSIZE-1)] "= Ran; SSiestes, tpazaas.gEspecd, atipe:

}
*/

c) |

< tparams.NumProcs ;

++proc_count) {

tparams.finish_reqg[tparams.MyProc]

if (status.MPI_TAG == UPDATE_TAG) { T MPI_REQUEST NULL; continue; }
MPI_Get count(&status, tparams.dtype6d4, &recvUpdates); } /* send garbage - who cares, no one will look at it */
bufferRBase = 0 1 MDIT T 1 liRan 0 toaram dizne ol bt ot LINTICHEND TAC
RA Performance (GUPS)
- -
forall (, r) in zip (Updates, RAStream()) do 14

T[r & IndexMask].xor(r)

4 "
w
cee %
TT (ponoarigopaace MaX el Ingopoaces T 1 T (5 a
Ran = (Ran << 1) ~ ((s64Int) Ran < ZERO64B ? POLY : ZEROG4B); } else if (status.MPI_TAG == FINISHED TAG) { ¥
GlobalOffset = Ran & (tparams.TableSize-1); /*we got a done message. Thanks for playing... */
if (GlobalOffset < tparams.Top) NumberReceiving--;
WhichPe = (GlobalOffset / (tparams.MinLocalTableSize + 1)); } else {
else MPI Abort (MPI COMM WORLD, -1);
WhichPe = ((GlobalOffset - tparams.Remainder) / } 16 :‘::" ':--:- 1

tparams.MinLocalTableSize) ;
if (WhichPe == tparams.MyProc) {
LocalOf fset (Ran & (tparams.TableSize - 1))
tparams.GlobalStartMyProc;
HPCC Table[LocalOffset] "= Ran;

MPI TIrecv (&LocalRecvBuffer,
MPI ANY SOURCE,

localBufferSize, tparams.dty
MPI ANY TAG, MPI COMM WORLD, g
}

} while (have done && NumberReceiving > 0);

Locales (x 36 cores / locale)

Key Concerns for Scalable Productive Parallel Computing

1. parallelism: What computational tasks should run simultaneously?

2. locality: Where should tasks run? Where should data be allocated?

Compute Compute Compute Compute
Node O Node1 Node 2 Node 3
& O ol o dk e, o ke,
& O o ke, & & & O
[ePuo GPU1 gug |gu$ hgug th&J
Epén Gipgen |ESpisEm
GPU 3 GPU 2 [epPus [cPu2 [cpPus
1400 (400 | 0
JBH gl (Epssm |SepEEm

Processor Core
] Memory
GPU Core

Basic Features For Locality All Chapel programs start with one task on locale O

Variables are stored using the current
task’s local memory

writeln("Hello from locale ", here.id); ‘+

var A: [1..2, 1..2] real; « .
AI A serial loop for each of the program’s locales ‘

for loc in Locales {g=
on loc {
var B = A;
for gpu in loc.gpu

on gpu {

var C = B, €

on-clauses move the computation to the target locale ‘

Remote variables can be accessed directly ‘

} | Locale O Locale1 ‘ This is distributed serial computation ‘
} <
}
ole|ma ﬁ‘
(I3 mlfiE3ES

Locality + Parallelism

writeln("Hello from locale ", here.id);

The coforall loop creates a
parallel task per iteration

var A: [1..2, 1..2] real;

coforall loc in Locales {

on loc do cobegin {

The cobegin statement creates a
parallel task per child statement

var B = A;
coforall gpu in loc.gpus {
on gpu {
var C = AB;

}

\ Locale O Locale1
) e Xk e o dl e,
) o dbe; o dbe;

[GPu1

(3

| This is distributed parallel computation

GE

10

One Loop To Rule Them All

proc increment (Arr) { equhuﬂenﬂy proc 1increment (Arr) {
var Res: Arr.type; return Arr + 1;
forall i in Arr.domain { }
Res[1] = Arr[i] + 1;

}

return Res;

} The forall loop will invoke the parallel iterator for its
iterand expression, in this case the indices of Arr

var myLocalArr: [1..10] int;
increment (myLocalArr) ; €

—{ Single node parallel computation ‘

use BlockDist;
var myDistributedArr = blockDist.createArray({1..10}, int);

increment (myDistributedArr) ; o i
Distributed parallel computation ‘

on here.gpul[0] {
var myGpuArr: [1..10] int;

increment (myGpuArr) ;4—' Single GPU parallel computation ‘
}

—1

n

One Loop To Rule Them All + Interoperability

extern {
#include <stdint.h>)

static int64 t increment c(inte6e4 t X) { return X + 1; }
}

AI It doesn’t even have to be "external”!

proc increment (Arr) {
var Res: Arr.type;
forall i in Arr.domain {
Res[1] = 1ncrement c(Arr[1i]);

Instead of Chapel code, call an
external procedure

}

return Res;

}

var mylLocalArr: [1..10] int;
increment (myLocalArr) ;

use BlockDist;

var myDistributedArr = blockDist.createArray({1..10}, int);
increment (myDistributedArr) ;

—1

12

Applicat

Applications of Chapel

Python3 Client ma Chapel Server
& . Socket

Dispatcher

Code Modules

e

t - (1-2) (((1.5
g‘;)c«us:c / /' -
ﬁ Platform "WIPP, SMP, Cluster, Laptop, etc. [i-2-3] -a-a) [-2-3] 5-3] llis .
CHAMPS: 3D Unstructured CFD Arkouda: Interactive Data Science at Massive Scale ChOp: Chapel-based Optimization ChplUltra: Simulating Ultralight Dark Matter
Laurendeau,’BourgauIt-Cété, Parenteau, Plante, et al. Mike Merrill, Bill Reus, et al. T. Camneiro, G. Helbecque, N. Melab, et al. Nikhil Padmanabhan, J. Luna Zagorac, et al.
Ecole Polytechnique Montréal U.S. DoD INRIA, IMEC, et al. Yale University et al.

Low-pass filter with LOWESS (intrinsically parallel)
100 —

80 .
60

40|

RH (%) at Lake Mead

20

P

Lattice-Symmetries: a Quantum Many-Body Toolbox Desk dot chpl: Utilities for Environmental Eng. RapidQ: Mapping Coral Biodiversity ChapQG: Layered Quasigeostrophic CFD
Tom Westerhout Nelson Luis Dias Rebecca Green, Helen Fox, Scott Bachman, et al. lan Grooms and Scott Bachman
Radboud University The Federal University of Parana, Brazil The Coral Reef Alliance University of Colorado, Boulder et al.

AN 8

FEATURES ENSEMBLES
EKPLORATIONUPARAMETEM?\TIONALE

Chapel-based Hydrological Model Calibration Arachne Graph Analytics Modeling Ocean Carbon Dioxide Removal CrayAl HyperParameter Optimization (HPO)

Marjan Asgari et al. Bader, Du, Rodriguez, et al. Scott Bachman Brandon Neth, et al. Ben Albrecht et al.
University of Guelph New Jersey Institute of Technology [C]Worthy Cray Inc. / HPE

C—1 [images provided by their respective teams and used with permission] 14

Applications of Chapel: CHAMPS

Whatisit?
« 3D unstructured CFD framework for airplane simulation
« ~100+k lines of Chapel written since 2019

Who wrote it?

« Professor Eric Laurendeau’s students + postdocs at Polytechnique Montreal
= /= POLYTECHNIQUE
= . MONTREAL

Why Chapel?

« performance and scalability competitive with MP| + C++
« students found it far more productive to use
« enabled them to compete with more established CFD centers

C—1 [images provided by the CHAMPS team and used with permission]

{8 S R A B

A L
15

=
——

]

15

Applications of Chapel: Biodiversity

P) M
Whatisit?

« Measures coral reef diversity using high-res satellite image analysis P

« ~230 lines of Chapel code written in late 2022

Who wrote it? ENCAR [ClWorthy
- Scott Bachman, NCAR/[C]Worthy Q CORAL
« with Rebecca Green, Helen Fox, Coral Reef Alliance SRR PLHANEE

Why Chapel?
« easy transition from Matlab, which they had been using
* massive performance improvement:
previous ~10-day run finished in ~2 seconds using 360 cores
« enabled unanticipated algorithmic improvements »
e from O(M-N-P) habitat diversity to O(M-N-P3) spectral diversity B - ELTZZ?ZZT!Z?;";Z:iéiif';ifﬁiéﬁf,i;D: i
« Added another ~90 lines of code to make it GPU-enabled

« ~4-week desktop run » ~20 minutes on 20 nodes / 512 GPUs
C—1 [images provided by Scott Bachman from his CHIUW 2023 talk and used with permission] 16

Roughly 5 orders of magnitude improvement

https://youtu.be/lJhh9KLL2X0

Why Chapel?

Get out of the way of science
« Let scientists express their computations succinctly

« Python and other languages are already good at this
« But to get performance and scalability, you tend to give up the nice abstractions

Easier to write, easier to read, easier to maintain
« Lowers the barrier to entry for new contributors
« You don’t need to be a MPI savant to get good distributed performance

* You don’t need to be a CUDA wizard to use GPUs efficiently

17

Applicat

Data Science In Python at scale?

Motivation: Imagine you work with...
...Python-based data scientists
...HPC-scale data science problems to solve
...access to HPC systems

——

g | | il Bt
: i — A
3 B 3
: N TR | .
e '}
| 27
E HE | LI L
i
¥ v

How will you leverage your Python programmers to get your work done?

—1 9

What is Arkouda?

Q: “What is Arkouda?”

Arkouda Client
(written in Python)

PYter big_add_Sum Las Crcisont 16 ms sgo tosamed

import arkouda as ak

def ak_argsort(N, seed):
a = ak.randint (0, 2xx64, N, dtype=ak.uinté4, seed=seed)
perm = ak.argsort(a)

assert ak.is_sorted(al[perm])

O User writes Python code
ﬂ making familiar NumPy/Pandas calls

— 20

What is Arkouda?

Q: “What is Arkouda?”

Arkouda Client Arkouda Server

~ JUpyter big_add_sum Lut s 16 mnass s icsaesa

(written in Pytho‘n‘?ﬂ (written in Chapel)

O User writes Python code
ﬂ making familiar NumPy/Pandas calls

import arkouda as ak

def ak_argsort(N, seed):
a = ak.randint(@, 2xx64, N, dtype=ak.uinté4, seed=seed)
perm = ak.argsort(a)

assert ak.is_sorted(alperm])

A1: “A scalable version of NumPy / Pandas routines for data scientists”

A2: “A framework for driving supercomputers interactively from Python”

—1

Chap
Perform

Arkouda/Dask/Spark Comparison: 64 nodes w/ 4 TB

Time (Seconds)

EDA Operation Runtime Breakdown
(4.0 TB, 64 Nodes)

Make Gamma Event Find Mean Server Find the Max Rack Find the Covariance between Top
Create DataFrame Object Count Histogram Temperature Temperature Every Interval Gamma Intervals and Temperature
300 300 300 300 300
Arkouda eagerly 250 250 250
reads the data
200 A 200 A 200 A 200 A
150 A 150 A 150 A 150 -
100 \ 100 100 100
I Interactivity I
50 1 50 - 50 50 -
o , , 0 —_—_— ol o
] ~x X] X X] ~x X] X X] X X
g g B S g 5 g 7 : 5 y S $ 3 5
$. 5 ¢ 2 % ¢ ° 5 $ 2 % ¢ o %
< < < < <

23

Arkouda/Dask/Spark Comparison: Zoomed out

EDA Operation Runtime Breakdown
(4.0 TB, 64 Nodes)

Make Gamma Event Find Mean Server Find the Max Rack Find the Covariance between Top
Create DataFrame Object Count Histogram Temperature Temperature Every Interval Gamma Intervals and Temperature
1600 1600 - 1600 2500 1600 -
Arkouda eagerly Arkouda Jjoins are much
1400 - 1400 H 1400
reads the data more efficient due to
better communication
1200 1200 - 1200 - 1200 -
9 1000 1000 - 1000 - 1000 A 1000 A
)
g 800 - 800 - 800 - 800 -
£
600 - 600 - 600 - 600 -

400 A 400 A 400 400 A

200 A 200 A 200 A 200 A

0 - el SN | 0
8 ¥ ¥ g 5 x g 5 x
5 & g S § g 3 g g
o o o
ﬂ‘ (%) 4’5 (%) lk %)
< < <

— 24

Summary

Chapel is built from the ground up for productive parallel computing at any scale

« Language features express clear and concise computation

Chapel applications can meet or beat low-level approaches while still...

« ..avoiding unnecessary boilerplate
e ...being human-readable
« ...working with existing workflows

7 Questions for Bill Reus: Interactive

Supercomputing with Chapel for Cybersecurity
Posted on February 12, 2025.

Tags: | User Experiences || Interviews | Data Analysis || Arkouda

By: Engin Kayraklioglu, Brad Chamberlain

Part of a series: 7 Questions for Chapel Users

https://chapel-lang.ora/blo osts/7ds-reus

W 1 was on the verge of resigning myself to learning MPI
when | first encountered Chapel After writing my first
Chapel program, | knew | had found something much
more appealing.]

25

https://chapel-lang.org/blog/posts/7qs-reus
https://chapel-lang.org/blog/posts/7qs-reus
https://chapel-lang.org/blog/posts/7qs-reus
https://chapel-lang.org/blog/posts/7qs-reus
https://chapel-lang.org/blog/posts/7qs-reus
https://chapel-lang.org/blog/posts/7qs-reus

Ways to engage with the Chapel Community

Synchronous Community Events

* Project Meetings, weekly
« Deep Dive / Demo Sessions, weekly timeslot
« Chapel Teaching Meet-up, monthly

» ChapelCon (formerly CHIUW), annually
Social Media Discussion Forums

FOLLOW US GET IN TOUCH

“ BlueSky @ Dpiscord

0 Facebook D Discourse
[l Linkedin Email

@ Mastodon O GitHub Issues
Reddit O citter

X X (Twitter) Stack Overflow
(]

YouTube

I]

Asynchrounous Communications

« Chapel Blog, typically ~2 articles per month

« Community Newsletter, quarterly
« Announcement Emails, around big events

Ways to Use Chapel
GET STARTED
gl Attempt This Online
-P Docker
ES E4S
O GitHub Releases

) Homebrew

@ Spack

(from the footer of chapel-lang.org)

26

https://github.com/chapel-lang/chapel/discussions/categories/weekly-meeting-topics?discussions_q=
https://github.com/chapel-lang/chapel/discussions/categories/weekly-meeting-topics?discussions_q=
https://github.com/chapel-lang/chapel/discussions/27247
https://github.com/chapel-lang/chapel/discussions/27247
https://chapel-lang.org/meetings/
https://chapel-lang.org/meetings/
https://chapel-lang.org/meetings/
https://chapel-lang.org/meetings/
https://chapel-lang.org/chapelcon/
https://chapel-lang.org/chapelcon/
https://chapel-lang.org/blog/
https://chapel-lang.org/blog/
https://chapel.discourse.group/c/newsletters/24
https://chapel.discourse.group/c/newsletters/24
https://chapel.discourse.group/c/announcements/8
https://chapel.discourse.group/c/announcements/8
https://chapel-lang.org/#footer
https://chapel-lang.org/#footer
https://chapel-lang.org/#footer

	Slide 1: Productive Parallel Programming with Chapel and Arkouda
	Slide 2: Parallel Systems are Easy to Find...
	Slide 3: An Alternative for Productive Parallel Programming
	Slide 4: Productive Parallel Programming
	Slide 5: Stream Triad: C + MPI + OpenMP vs Chapel
	Slide 6: HPCC RA: C + MPI vs Chapel
	Slide 7: Key Language Features
	Slide 8: Key Concerns for Scalable Productive Parallel Computing
	Slide 9: Basic Features For Locality
	Slide 10: Locality + Parallelism
	Slide 11: One Loop To Rule Them All
	Slide 12: One Loop To Rule Them All + Interoperability
	Slide 13: Applications
	Slide 14: Applications of Chapel
	Slide 15: Applications of Chapel: CHAMPS
	Slide 16: Applications of Chapel: Biodiversity
	Slide 17: Why Chapel?
	Slide 18: Applications: Arkouda
	Slide 19: Data Science In Python at scale?
	Slide 20: What is Arkouda?
	Slide 21: What is Arkouda?
	Slide 22: Chapel/Arkouda Performance
	Slide 23: Arkouda/Dask/Spark Comparison: 64 nodes w/ 4 TB
	Slide 24: Arkouda/Dask/Spark Comparison: Zoomed out
	Slide 25: Summary
	Slide 26: Ways to engage with the Chapel Community

