

No Line Like Mainline

Update On The Fully Mainline
Software Stack For Rockchip SoCs

FOSDEM'26

COLLABORA

:-\$ whoami

- Nicolas Frattaroli <nicolas.frattaroli@collabora.com>
- From Switzerland
- Linux kernel contributor since 2021
 - First contribution: upstreaming the Rockchip I2S/TDM driver
- Started to work as a Software Engineer at Collabora in January 2025
 - Several contributions to mainline Rockchip since then
 - ```
$ git log --oneline --author="Nicolas Frattaroli" --since=2025-01-01 --grep='rockchip' -i | wc -l
```

71
  - However, talk is about community contributions as a whole, not just Collabora

# Why Rockchip?

- Affordable & widely available development boards
- Reasonable performance, great multimedia capabilities
  - First vendor to have hardware decoding for obscure H.264 10-bit profile, years before interest grew due to HDR and HEVC licensing mess
- Technical Reference Manuals readily available, with full memory map
  - Sometimes even from Rockchip themselves publicly :)
- Company participates in upstream development
  - Means many engineers are familiar with upstream processes and code style

# A Brief Introduction To Rockchip Naming

- General naming scheme: **RK3<X><YY>**
  - There are others, we will not talk about the others today
  - **X**: “Generation”, so far: 0, 1, 2, 3, 5.
    - Why no 4? Educated guess: Chinese numerology
    - “Generation” is marketing, hardware designs sometimes get substantially reworked between SoCs within the same “generation”
  - **YY**: Performance class within that generation, higher = more powerful
    - Lots of digit “8”, educated guess again: Chinese numerology
  - Sometimes followed by a letter to denote some variant
    - e.g. “J” for industrial, “S” for low power, etc.

# Some Examples

- RK3588: Current flagship, 4P+4E (Cortex-A76 + Cortex-A55), Mali-G610, 4-channel LPDDR5
  - About 2022 entry-level Intel Chromebook performance, good I/O for SBCs
- RK3588S: Cut-down version of flagship, missing PCIe3x4, HDMI input, and CAN
- RK3576: Sub-flagship, older licensed IP (A72/A53, Bifrost GPU), but newer in-house IP
- RK3399: Previous generation flagship
- PX30: I thought we agreed we wouldn't talk about the others
- RV1126B: Come on I only have so many slides

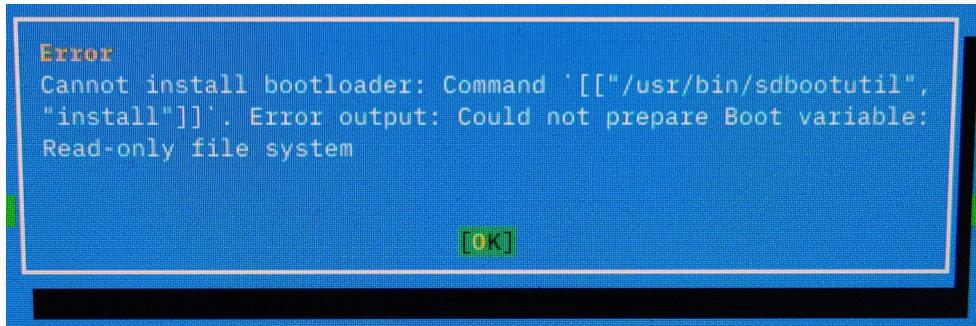
# The Big Picture

Let's try to use  
an RK3588 like  
a PC

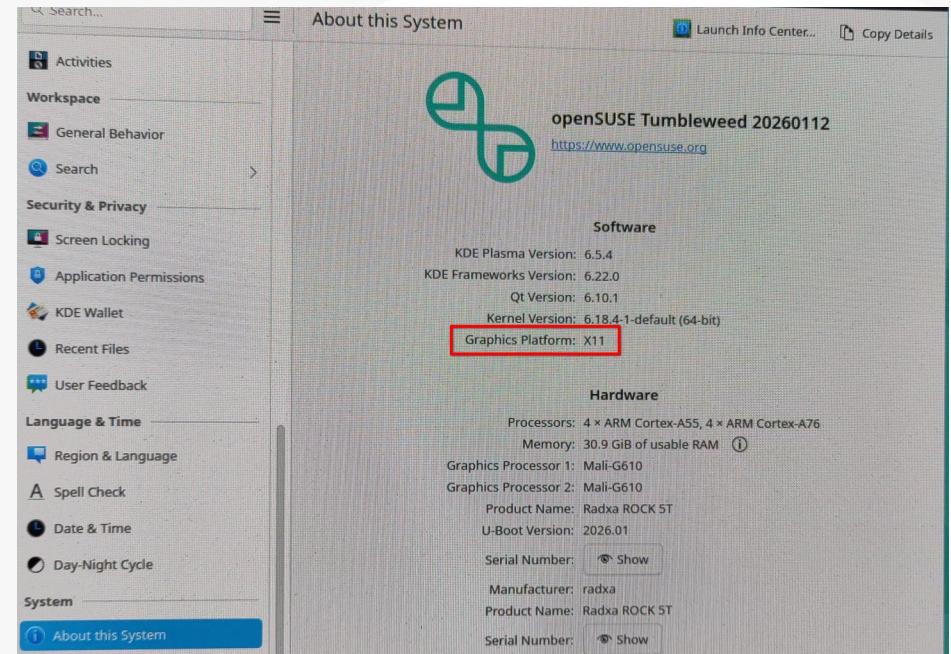



Radxa ROCK 5T with  
U-Boot v2026.01 on  
SPI flash and an  
empty NVMe drive  
installed below.

Generic aarch64  
distro installer on  
USB3 thumb drive.

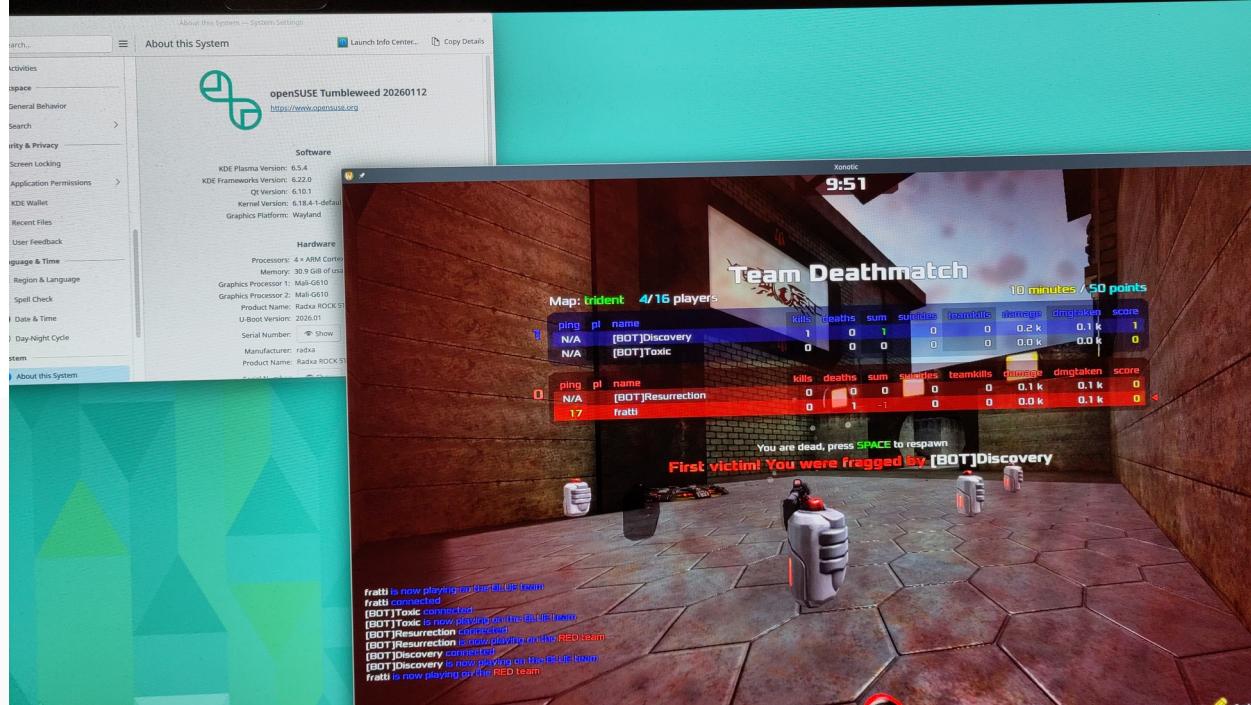

HDMI monitor,  
keyboard, network.

# Trying openSUSE Tumbleweed




Boots into a Linux kernel that clearly can display video output (right monitor), but then only shows a text installer on serial (left)

# Installs Fine Though




Non-fatal sdboot error, installation completes after ignoring it however and system boots fine from NVMe



... into the terrible unaccelerated X11 session

# Finally



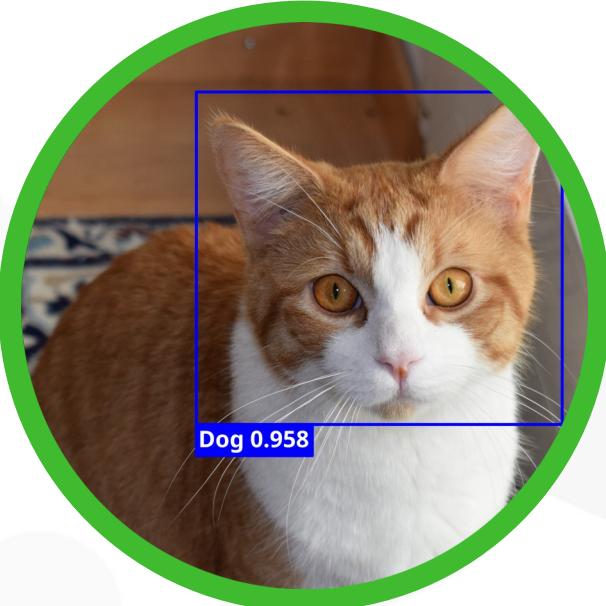
Once in Wayland, we can enjoy our high-octane gaming

# Conclusion Of This Experiment

- Distro installers are horrendous garbage, though openSUSE TW limped to the finish line
  - Video output in U-Boot for RK3588 would be nice to make this smoother though
- If you work on a distribution, pick up any mainline supported board with a mainline supported SoC and try your UEFI installer on mainline U-Boot
  - Even if your ARM SystemReady IoT version works, if your desktop edition's installer falls over, users will assume there's a deeper issue than just installers sucking
- Beyond the installer snags, mainline U-Boot + Linux Just Works™ for a Desktop-like experience. No need for device specific images
- If you're deploying these boards in an embedded IoT context, installers don't matter anyway, so your generic ARM SystemReady UEFI images should work with no issues

# Mali GPUs and Open Drivers

- RK3588 uses a licensed Arm Mali-G610 GPU design
  - SoC serves as widely available development platform for Mali Valhall CSF GPUs
- Allowed us to write a new kernel driver (Panthor) that userspace Mesa targets
- Userspace drivers (panfrost/panvk) in upstream Mesa
- PanVK officially passed Vulkan 1.4 conformance on RK3588 this year
  - Panfrost also officially passes OpenGL ES 3.1 conformance on RK3588


# Video Output

- HDMI Output on RK3588 and RK3576 up to HDMI 1.4b
  - Includes HDMI audio and CEC
  - HDMI 2.0 and 2.1 support is a Work-in-Progress
- DisplayPort on RK3588
  - New driver that uses the bridge framework, not just downstream copypaste
  - Written and submitted by Rockchip themselves
  - RK3576 support in the same driver WIP, on list
  - USB-C alt mode still needs work for... USB-C reasons
- MIPI-DSI support for RK3588 and RK3576

# Video Input

- HDMI Capture on RK3588 had its v4l2-based driver upstreamed
- New mainline MIPI-CSI drivers for RK3588 and RK3568/RK3566 by Michael Riesch
  - He had a talk on this work at FOSDEM yesterday, my condolences if you missed it
  - Partially merged, work still ongoing
- No Image Signal Processor support for RK35xx yet
  - Ergo no hardware debayering, inputs from CSI cameras will look very green
  - There is work on-going to bring up this hardware in mainline :)

# Neural Processing Unit



- **Rocket:** A new mainline driver for RK3588's NPU
  - Written from scratch by Tomeu Vizoso
  - Hardware is derived from NVDLA design several generations removed
- Userspace implemented as a “Teflon” Tensorflow delegate in upstream Mesa
- Kernel side driver is a DRM\_ACCEL driver
- NPU designs for RK3568/RK3566, RV1126B, RK3562, and RK3576 appear to be similar hardware
  - Not yet supported by mainline driver, however
  - Additional work needed

# Multimedia

- Mainline hardware video decoding drivers use v4l2-requests cross-vendor stateless API
  - Not vendor's downstream “MPP” uAPI and library, leave FFmpeg drama at the door
- AV1 on RK3588 already enabled in mainline in 2024
- Detlev Casanova wrote RK3588/RK3576 H.264/AVC and H.265/HEVC decoder drivers
  - Merged just recently, first 8K decoder driver in mainline
- Jonas “Kwiboo” Karlman working on v4l2-requests support in FFmpeg, in review
- Upstream GStreamer should already support it

# RK3576 Support

- Why is this SoC interesting? It's Cortex-A72/A53 and Bifrost!
  - Looks to be a “test bed” for taping out future hardware designs
    - Audio, UFS, PWM, FlexBUS, I<sup>3</sup>C all new
    - New in-house AV1 video decoder hardware, to replace licensed one in RK3588
    - Licensed ARM interconnect with coherent PCIe extensions 
    - New in-house JPEG encoder hardware (???)
  - Cheaper way to get NPU and video codec hardware that's close to what RK3588 has
  - Can piggyback on some of the RK3588 work that was done already
- Basic SoC support has landed (Clocks + resets, GPIO, power domains, thermal sensor, ...)
- Many peripheral drivers needed no modification: ADC, SD, eMMC, PCIe, SATA, SPI, I<sup>2</sup>C, SPDIF TX, much of USB, Ethernet, ...

# RK3576 Support Cont.

- Rockchip themselves upstreamed the UFS driver to both Linux and U-Boot
- Driver for USB/DisplayPort Combo-PHY upstreamed
- Audio output driver upstreamed (by me!), needed some clock controller extending
- ARM Trusted Firmware had RK3576 support upstreamed by Rockchip
  - Meaning: BL31 for this SoC is now also open-source
- Sebastian Reichel is squashing suspend/resume issues in various Rockchip-related drivers, and making the watchdog bark to an appropriate degree
- Rockchip's Elaine Zhang is upstreaming CAN support, currently at v10 on the list
- Two months after sending an RK3588 Hardware RNG driver, I submitted an RK3576 one
- I'm still working on PWM output + capture as time allows

# Miscellaneous Shout-Outs

- Jonas “Kwiboo” Karlman, for doing stellar work on mainline U-Boot for many Rockchip SoCs this year, like RK3576, RK3528, RK3506
- Heiko Stübner, for being mainline Linux’s Rockchip maintainer
- Rockchip employees: Kever Yang, Andy Yan, Damon Ding, Chayoi Chen, Elaine Zhang, Shawn Lin, Joseph Chen, and Ye Zhang
  - Thank you for participating in upstreaming and reviews ❤️
- Danct12 for working on mainline RK3566/RK3568 video output in U-Boot
- Everyone else who participates, too many to name!

# Looking Into The Future



- RK3506 support patches for mainline Linux and U-Boot starting to trickle in
  - I assume we'll be able to boot this SoC with mainline this year
- U-Boot should probably market itself better, with prebuilt binaries for supported boards
- v4l2-requests stateless encoding uAPI a big unresolved question
  - If you are a company and your purse feels a little heavy, you can help
- Moving Rockchip to the generic interconnect subsystem would be nice
  - Latency/Bandwidth QoS handled by that instead of ad-hoc in device drivers
- Hoping we'll see more camera things in 2026
- Plenty of stuff left to do!
  - <https://col.la/rk3588status> and <https://col.la/rk3576status>
  - Make RK3576 drivers work on RK3562, RK3528, and RK3506
  - Submit a device tree for your board to mainline!

# Questions?

For questions after the talk, join IRC:  
**#linux-rockchip** @ Libera.chat

# Thank you!

We are hiring - [col.la/careers](https://col.la/careers)