{3 source.dev

Expert-Led Innovation For
The Next Generation Of Devices

About me

Google
e Android OS engineer for nearly 10 years
e Android Runtime - Java, compiler optimizations

e Android Security — hypervisor, virtualization framework

source.dev

e tooling for device manufacturers who use Android

{3 source.dev

#1 complaint from engineers: slow checkouts & builds

e Checkout: 15-20 minutes

o huge repository - 1,000+ Git projects managed by repo tool

o AOSP mirror also quite slow + usage quota

e Full build: 2 hours / $4.40
o huge codebase - 250,000+ build targets

o faster hardware = faster build but higher cost

e Incremental builds: depends
o indispensable during development

o canh be buggy due to incorrect dependencies

{3 source.dev

Test machine specs:

e c4-standard-32-Issd on GCP

e 32VvCPUs, 120 GB RAM, nVME SSD
e S$2.20/hour

Test target:

e androidle-qgpr2-release

e aosp_cf_arm64_phone-bp4a-userdebug

— Expert-Led Innovation For

U SOUI'CG.deV The Next Generation Of Devices

Soong as a step towards Bazel

e Android wanted to migrate from Make to Bazel for along time

o hermetic/reproducible builds, build/test caching, scalability, ...

e Original multi-year plan:
o Step1: develop Soong, using Bazel’s file format but compat with Make
o Step 2: gradually migrate Makefiles to new format
o Step 3: start building parts of the OS with Bazel, phase out Soong/Make

o Step 4: reap the benefits of Bazel and its associated infrastructure

e Culminated in Android 14/ early 2023
o AOSP almost completely migrated to Soong, lower adoption downstream

o Bazel builds appeared on ci.android.com

{3 source.dev

Android Builds — update on Bazel

And then...

“ Caution: Bazel isn't a supported build system. The planned multi-year migration from Soong to Bazel was halted in October
of 2023. You can continue to use Bazel to build kernels, but you should use Soong for full AOSP builds.

{3 source.dev

— Expert-Led Innovation For

U SOUI'CG.deV The Next Generation Of Devices

So what now?

e Soong != Bazel
o hermeticity? sort of... reproducibility? sort of...
o PATH sanitization, genrule sandbox, ...

o but under the hood still compatible with Make = bypass

e Bazel builds are fast because of highly efficient caching
o allinputs/outputs are declared ahead of time
o easy to sandbox tasks, enforce dependencies, capture results

o easy to offload to another machine (remote execution)

e So how much is possible without actually migrating to Bazel?

{3 source.dev

Android Builds — what you need to know

e Build files:

o Android.bp (Blueprint) — similar to Bazel’s Starlark, templates with logic in Go

o Android.mk (Makefile) - legacy format, still used for device config, packaging

e Components:

o soong_ui-top-level process, progress bar oY U

o soong_build - compiles Blueprint to Ninja soong_build kati ninja

o kati- compiles Makefile to Ninja | I | . cmd #1 omd #2
o ninja - primary low-level runner build.ninja P[omd #3 omd #4

See Chris Simmonds’ talk from EOQOSS 2023!!!

2-7 minutes
7GB of data

{3 source.dev

Android Builds - build traces

e Build trace extremely helpful in identifying long-running jobs
e Generated during a build atout/build.trace.gz
e Web Ul: https://ui.perfetto.dev/

”7‘ Perfetto Q Search or type '>' for commands or "' for SQL mode M

00:30:00 01:00:00 01:30:00
Current Trace
build.trace (1).gz (11 MB) N ‘
o 20482422:53143 00:00:00 00:02:00 00:04:00 00:06:00
== Timeline 830 353 000 000 000 000 000 000 000 000 000 000 000 000 000
|———2m 21s 556ms 887ps 18ns ————

Overview XYY &oDefault.. CERREHER

~ Process 1 O
Query (SQL) main thread) O || | out/soong/build...
Al

includin... writin... out/soong... [1 I
p
Downioad s Al VIR B T e
Thiesn 3 Ol 1h| NETPRTTNN B8 o NN e e
New Trace Thigad 4 Ol (11 P ous Lout/s.._ou/soong.. | owt/so.. o~ ||
THiga0 3 il I} | | out/so Jo [oolo BN IINNI INILY (110 o NI I H]

(= Open trace file Throad A (mI NN I] TN IRV (N O] I D

Metrics

{3 source.dev

https://ui.perfetto.dev/

Android builds - rule of thumb for hardware

CPU more is always better, 24/32 cores is a good baseline

more recent architecture is usually worth it

RAM 2GB for every logical core (64GB for 32 cores)

same size swap to handle occasional spikes
nVME low latency is much more important than transfer speed

working directory has 4M files but median size is just 300 bytes!

soong_build scans 1M paths but only reads a fraction of those files

{3 source.dev

— Expert-Led Innovation For

U SOUI'CG.deV The Next Generation Of Devices

Build caching - ccache

e Local cache, wrapper around C/C++ compilers (only)
e Supported by Android for a veeery long time

e Nolongerin prebuilts/ but still works fine

$ export USE_CCACHE=1
$ export CCACHE_DIR=/path/to/storage
$ export CCACHE_EXEC=$(which ccache)

58% faster

$ ccache -M 20 # set cache size in GB
$m # build Android

[100% 244502/244502] Install system fs image
build completed successfully (47:09 (mm:ss))

$ ccache -s

Cacheable calls: 126505 / 131435 (96.25%)
Hits: 126505 / 126505 (100.0%)
Misses: 0 / 126505 (0.00%) 50% coverage }

{3 source.dev

Build caching - reclient

reclient = retrofit of Bazel RBE API for other build systems
e compiler wrapper (just like ccache) which connects to RBE backend

e support for many compilers - clang, linker, javac, metalava, r8, d8, signapk, ...

RBE services
e distributed build cache - exchange results of build steps

e remote execution - offload job to a remote server

Open-source backends
e Buildbarn, Buildfarm, BuildGrid (Apache 2.0)

e https://bazel.build/community/remote-execution-services

{3 source.dev

https://bazel.build/community/remote-execution-services

Build caching - reclient

ninja

l

rewrapper clang -c foo.c -o foo.o

storage

parse CLI preprocessor

hash

command: clang -c foo.c -o foo.o
env: [PATH: “...”, PWD: “...”,
inputs: [

]

-1

Action

(“foo.c”, “9f3c2a7”), (“clang”, “76fa3bl”),
(“stdio.h”, “65e79f”), (“stdlib.h”, “143ee2f”)

{3 source.dev

backend

ActionResult

outputs: [
(“foo.0”, “ac362aa7”),
(“foo.o0.d”, “99fadbe”)
]

Build caching - reclient

{

1. Configure and start an RBE backend menv": {
IlUSE_RBE": Illll’
2_ Create JSON Config f]]e "RBE_DIR": "prebuilts/remoteexecution-client/live",

"RBE_service": "<ip_address>:<port>",
"RBE_instance": "main",
"RBE_service_no_security": "true",

e exampleinbuild/soong/docs/rbe.json

e populate IP address, credentials
"RBE_DS": lllll’

e select toolchains "RBE_JAR": "1",
"RBE_JAVAC": "1",

o use cs.android.com to find the names iR pave man

e select exec strategies (on cache miss)
"RBE_CXX_EXEC_STRATEGY": "local",

o remote_local_fallback-remote execution "RBE_D8_EXEC_STRATEGY": "local",
. "RBE_JAVAC_EXEC_STRATEGY": "local",
O -Loca-l. -NnNo remote eXGCUtlon "RBE_METALAVA_EXEC_STRATEGY": "'loca'l",
o racing-bothin parallel "RBE_R8_EXEC_STRATEGY": "local",
3. Enable RBE with environment variables "RBE_log_dir": "/tmp",

"RBE_output_dir": "/tmp",
"RBE_proxy_log_dir": "/tmp"
}
}
{3 source.dev

http://cs.android.com

Build caching - reclient

$ export ANDROID_BUILD_ENVIRONMENT_CONFIG_DIR=build/soong/docs
$ export ANDROID_BUILD_ENVIRONMENT_CONFIG=rbe

?.T 64% coverage

[100% 247462/247462] Install system fs image
RBE Stats: down 57.00 GB, up 60.72 GB, 144763 cache hits,

59 local fallbacks, 156965 local executions, 1474 local failures,
25 non zero exits

build completed successfully (30:25 (mm:ss))

73% faster

{3 source.dev

What next?

Better coverage, less pre-processing
e heterogeneous codebases (Android, Yocto, ...) need a generic solution

e requires a cheap mechanism to isolate and monitor each build command

Speeding up Ninja-file generation
e ideally the algorithm would get faster (anecdotally seems to have improved)

e extending caching to soong_build/kati would also help

Checkouts still a big problem, especially in CI
e prebuilts form 50% of a checkout but only one version of one architecture used

e Git VFS provides on-demand checkout of files that are actually needed

{3 source.dev

Curious about

T h a n k YO u source.dev?

We’re hiring!

jobs(@source.dev

0O (@)
et x5 e
be S

od Seogs
] x e
k. 125t
et . .22,
p " »)
. 3 b
: s3set,
3, 3
o2
o

Expert-Led Innovation For

O SOUI'CG.deV The Next Generation Of Devices

