
builds so slow?

Expert-Led Innovation For
The Next Generation Of Devices

Why are Android

FOSDEM 2026

Google
● Android OS engineer for nearly 10 years
● Android Runtime – Java, compiler optimizations
● Android Security – hypervisor, virtualization framework

source.dev
● tooling for device manufacturers who use Android

About me

● Checkout: 15-20 minutes
○ huge repository – 1,000+ Git projects managed by repo tool
○ AOSP mirror also quite slow + usage quota

● Full build: 2 hours / $4.40
○ huge codebase – 250,000+ build targets
○ faster hardware ⇒ faster build but higher cost

● Incremental builds: depends
○ indispensable during development
○ can be buggy due to incorrect dependencies

#1 complaint from engineers: slow checkouts & builds

 Test machine specs:
● c4-standard-32-lssd on GCP
● 32 vCPUs, 120 GB RAM, nVME SSD
● $2.20/hour

 Test target:
● android16-qpr2-release
● aosp_cf_arm64_phone-bp4a-userdebug

Expert-Led Innovation For
The Next Generation Of Devices

+ Bazel ??
Android

Soong as a step towards Bazel
● Android wanted to migrate from Make to Bazel for a long time

○ hermetic/reproducible builds, build/test caching, scalability, …

● Original multi-year plan:
○ Step 1: develop Soong, using Bazel’s file format but compat with Make
○ Step 2: gradually migrate Makefiles to new format
○ Step 3: start building parts of the OS with Bazel, phase out Soong/Make
○ Step 4: reap the benefits of Bazel and its associated infrastructure

● Culminated in Android 14 / early 2023
○ AOSP almost completely migrated to Soong, lower adoption downstream
○ Bazel builds appeared on ci.android.com

Android Builds – update on Bazel

And then…

Expert-Led Innovation For
The Next Generation Of Devices

what now?
So…

● Soong != Bazel
○ hermeticity? sort of… reproducibility? sort of…
○ PATH sanitization, genrule sandbox, …
○ but under the hood still compatible with Make ⇒ bypass

● Bazel builds are fast because of highly efficient caching
○ all inputs/outputs are declared ahead of time
○ easy to sandbox tasks, enforce dependencies, capture results
○ easy to offload to another machine (remote execution)

● So how much is possible without actually migrating to Bazel?

So what now?

● Build files:
○ Android.bp (Blueprint) – similar to Bazel’s Starlark, templates with logic in Go
○ Android.mk (Makefile) – legacy format, still used for device config, packaging

● Components:
○ soong_ui – top-level process, progress bar
○ soong_build – compiles Blueprint to Ninja
○ kati – compiles Makefile to Ninja
○ ninja – primary low-level runner

See Chris Simmonds’ talk from EOSS 2023!!!

Android Builds – what you need to know

soong_ui

soong_build kati

build.ninja

ninja

cmd #1

cmd #3

cmd #N

cmd #2

cmd #4

2-7 minutes
7GB of data

● Build trace extremely helpful in identifying long-running jobs
● Generated during a build at out/build.trace.gz
● Web UI: https://ui.perfetto.dev/

Android Builds – build traces

https://ui.perfetto.dev/

CPU more is always better, 24/32 cores is a good baseline
more recent architecture is usually worth it

RAM 2GB for every logical core (64GB for 32 cores)
same size swap to handle occasional spikes

nVME low latency is much more important than transfer speed
working directory has 4M files but median size is just 300 bytes!
soong_build scans 1M paths but only reads a fraction of those files

Android builds – rule of thumb for hardware

Expert-Led Innovation For
The Next Generation Of Devices

with Soong
Caching

● Local cache, wrapper around C/C++ compilers (only)
● Supported by Android for a veeery long time
● No longer in prebuilts/ but still works fine

Build caching – ccache

$ export USE_CCACHE=1
$ export CCACHE_DIR=/path/to/storage
$ export CCACHE_EXEC=$(which ccache)

$ ccache -M 20 # set cache size in GB
$ m # build Android
...
[100% 244502/244502] Install system fs image
build completed successfully (47:09 (mm:ss))

$ ccache -s
Cacheable calls: 126505 / 131435 (96.25%)
 Hits: 126505 / 126505 (100.0%)
 Misses: 0 / 126505 (0.00%) 50% coverage

58% faster

Build caching – reclient

reclient = retrofit of Bazel RBE API for other build systems
● compiler wrapper (just like ccache) which connects to RBE backend
● support for many compilers – clang, linker, javac, metalava, r8, d8, signapk, …

RBE services
● distributed build cache – exchange results of build steps
● remote execution – offload job to a remote server

Open-source backends
● Buildbarn, Buildfarm, BuildGrid (Apache 2.0)
● https://bazel.build/community/remote-execution-services

https://bazel.build/community/remote-execution-services

Build caching – reclient

ninja

rewrapper clang -c foo.c -o foo.o

parse CLI preprocessor hash

command: clang -c foo.c -o foo.o
env: [PATH: “...”, PWD: “...”, ...],
inputs: [
 (“foo.c”, “9f3c2a7”), (“clang”, “76fa3b1”),
 (“stdio.h”, “65e79f”), (“stdlib.h”, “143ee2f”)
]

Action

outputs: [
 (“foo.o”, “ac362aa7”),
 (“foo.o.d”, “99fa4be”)
]

ActionResult

backend

storage

1. Configure and start an RBE backend
2. Create JSON config file

● example in build/soong/docs/rbe.json
● populate IP address, credentials
● select toolchains

○ use cs.android.com to find the names
● select exec strategies (on cache miss)

○ remote_local_fallback – remote execution
○ local - no remote execution
○ racing – both in parallel

3. Enable RBE with environment variables

Build caching – reclient
{
 "env": {
 "USE_RBE": "1",
 "RBE_DIR": "prebuilts/remoteexecution-client/live",

 "RBE_service": "<ip_address>:<port>",
 "RBE_instance": "main",
 "RBE_service_no_security": "true",

 "RBE_D8": "1",
 "RBE_JAR": "1",
 "RBE_JAVAC": "1",
 "RBE_METALAVA": "1",
 "RBE_R8": "1",
 ...

 "RBE_CXX_EXEC_STRATEGY": "local",
 "RBE_D8_EXEC_STRATEGY": "local",
 "RBE_JAVAC_EXEC_STRATEGY": "local",
 "RBE_METALAVA_EXEC_STRATEGY": "local",
 "RBE_R8_EXEC_STRATEGY": "local",
 ...

 "RBE_log_dir": "/tmp",
 "RBE_output_dir": "/tmp",
 "RBE_proxy_log_dir": "/tmp"
 }
}

http://cs.android.com

Build caching – reclient

$ export ANDROID_BUILD_ENVIRONMENT_CONFIG_DIR=build/soong/docs
$ export ANDROID_BUILD_ENVIRONMENT_CONFIG=rbe

$ m
...

[100% 247462/247462] Install system fs image

RBE Stats: down 57.00 GB, up 60.72 GB, 144763 cache hits,
59 local fallbacks, 156965 local executions, 1474 local failures,
25 non zero exits

build completed successfully (30:25 (mm:ss))

73% faster

64% coverage

What next?

Better coverage, less pre-processing
● heterogeneous codebases (Android, Yocto, …) need a generic solution
● requires a cheap mechanism to isolate and monitor each build command

Speeding up Ninja-file generation
● ideally the algorithm would get faster (anecdotally seems to have improved)
● extending caching to soong_build/kati would also help

Checkouts still a big problem, especially in CI
● prebuilts form 50% of a checkout but only one version of one architecture used
● Git VFS provides on-demand checkout of files that are actually needed

Curious about
source.dev?

We’re hiring!

jobs@source.dev

Expert-Led Innovation For
The Next Generation Of Devices

Thank You

