Linux-PAM demystified and beyond

Dmitry Levin

Brussels, 2026

)

FOSDEM

Agenda

o What and Why

o Core concepts

o Configuration files and modules
o Configuration rules syntax

o Configuration rules control values
o Frozen stack

o The setuid helper issue

o Troubleshooting and Best Practices

What is Linux-PAM?

e shared libraries: libpam, libpamc, libpam_misc

o Pluggable Authentication Modules: pam_*.so

o configuration: /etc/pam.d/*

Purpose
o Enable system administrators to choose how applications
authenticate users.
o Switch between the authentication mechanisms without
recompiling applications.

The " Before PAM" Problem [3/31]

Hardcoded logic

Every application that needed to authenticate a user had its own code
to handle /etc/passwd, later also /etc/shadow.

Rigidity
To introduce a new authentication method like Kerberos or OTP,
every application had to be modified and recompiled.

Different applications might implement authentication, password checking,
or account lockout rules slightly differently.

V.
Limited control

Enforcing system-wide security policies, e.g. all interactive logins must use 2FA,
is difficult.

¥ @

PAM management groups

Authentication: Are you who you say you are?

o Verify the user's identity.

@ Grant credentials.

Account management: Are you allowed to use this service right now?

@ Check account validity and restrictions.

Session management: What needs to be set up for your session?

@ Actions that need to occur before the service is granted.

@ Actions that need to occur after the service termination.

Password management: How can you change your authentication token?

@ Prompting for a new password.
@ Enforcing password quality rules.

@ Changing the password.

¥ @

PAM management groups: Authentication

Are you who you say you are?
o Checking a typed password against /etc/shadow
(e.g. via pam_unix.so).
o Validating a U2F dongle (e.g. via pam_u2f.s0)
or a biometric scan (e.g. via pam_fprintd.so).

o Querying a remote server for credentials
(e.g. via pam_sss.so).

o Prompting for a One-Time Password.

PAM management groups: Account management

Are you allowed to use this service right now?

o Is the account enabled? Is the password not expired?
(pam_unix.so)

o Is the account locked due to too many failed login attempts?
(pam_faillock.so)

o Are there time-based restrictions on when this user can log in?
(pam_time.so)

o Is the user allowed for this service?
(pam_access.so)

PAM management groups: Session management

What needs to be set up for your session?

o Initialize kernel session keyring
(pam_keyinit.so).

o Set resource limits
(pam_limits.so).

o Set the file mode creation mask
(pam_umask.so).

o Register user session in the login manager
(pam_systemd.so).

o Create a home directory
(pam_mkhomedir.so).

¥ @

PAM management groups: Password management [8/31]

How can you change your authentication token?

o Prompting for a new password.

o Enforcing password quality rules
(pam_passwdqc.so or pam_pwquality.so).

o Making sure the user does not use the same password
too frequently (pam_pwhistory.so).

o Changing the password
(pam_unix.so).

Decoupling and Flexibility

Decoupling

@ PAM separates the applications (like login or sshd) from the underlying
authentication, account, session, and password management policies.

@ Applications just talk to the PAM library.
@ Administrators configure PAM.

Applications talk to the PAM library

type API function name | description

auth pam_authenticate Authenticate this user

auth pam_setcred Manage credentials of this user

account | pam_acct_mgmt Check account validity and restrictions for this user
password | pam_chauthtok Change the authentication token for this user
session pam_open_session Set up a session for this user

session pam_close_session End the session for this user

PAM configuration files

Service configuration files
@ PAM configuration is service-specific.
e Configuration files are stored in /etc/pam.d/.
@ Service configuration files are named after services (like login or sshd).

@ When a service, e.g. login, needs to authenticate a user, it tells the PAM library:
I'm the login service, please handle this authentication based on my configuration.

o If a specific service file doesn’t exist, or when it doesn’t specify a management
group, PAM falls back to a default configuration for this management group
defined in /etc/pam.d/other, which usually denies access.

Common configuration files

@ conventionally stored in /etc/pam.d/

@ included by service-specific configuration files and other common configuration
files

ﬁ @ used to implement system-wide policies @

PAM Modules

¥

Modules: the workhorses (pam_*.so)

o Modules are shared objects loaded dynamically
by the PAM library according to the service configuration.

o Typically located in /lib/security/ or /lib64 /security/.
o Each module is designed to perform a specific task.

o There are many modules available:

o standard modules packaged along with the PAM library
o other modules provided by other packages

pam_deny.so always returns failure
pam_permit.so always returns access, useful as a placeholder

Configuration file syntax

PAM rule: type control module-path [module-arguments]

@ type: the management group that the rule corresponds to

@ control: determines how the return value of this module affects the overall
outcome for the management group

@ module-path: the filename of the PAM module to be used

@ module-arguments: optional arguments passed to the module

Example: /etc/pam.d/login (simplified)

auth required pam_unix.so nullok

account required pam_nologin.so

account required pam_unix.so

password requisite pam_passwdqc.so config=/etc/passwdqc.conf
password required pam_unix.so use_authtok shadow nullok
session required pam_loginuid.so

session optional pam_keyinit.so force revoke

session required pam_limits.so

-session optional pam_systemd.so

session required pam_unix.so

PAM config rule control values: required [13/31]

required

o Failure will lead to the PAM framework returning failure but only after the
remaining stacked modules for this management group have been invoked.

Example: /etc/pam.d/login (simplified)

auth required pam_unix.so nullok
account required pam_nologin.so
account required pam_unix.so
password requisite pam_passwdqc.so config=/etc/passwdqc.conf
password requisite pam_pwhistory.so use_authtok
password required pam_unix.so use_authtok shadow nullok
session required pam_loginuid.so
session optional pam_keyinit.so force revoke
session required pam_limits.so
—-session optional pam_systemd.so
ﬁ session required pam_unix.so @

PAM config rule control values: requisite [14/31]

@ Like required, however, in the case that this module returns a failure,
control is directly returned to the application or to the superior PAM stack.

Example: /etc/pam.d/login (simplified)

auth required pam_unix.so nullok

account required pam_nologin.so

account required pam_unix.so

password requisite pam_passwdqc.so config=/etc/passwdqc.conf
password requisite pam_pwhistory.so use_authtok

password required pam_unix.so use_authtok shadow nullok
session required pam_loginuid.so

session optional pam_keyinit.so force revoke

session required pam_limits.so

-session optional pam_systemd.so

ﬁ session required pam_unix.so @

PAM config rule control values: sufficient [15/31]

@ If the module succeeds and no prior required module has failed, the PAM stack
succeeds immediately without calling any further modules in the stack.

@ Otherwise, the return value of the module is ignored and processing of the PAM
module stack continues unaffected.

Example: /etc/pam.d/su (simplified)

auth sufficient pam_rootok.so

auth required pam_unix.so nullok

account sufficient pam_succeed_if.so uid = 0 use_uid quiet
account required pam_unix.so

password requisite pam_passwdqc.so config=/etc/passwdqgc.conf
password required pam_unix.so use_authtok shadow nullok

PAM config rule control values: optional [16/31]

optional
@ The success or failure of this module is only important if it is the only module in
the stack associated with this management group.

Example: /etc/pam.d/su (simplified)

auth sufficient pam_rootok.so

auth required pam_unix.so nullok

account sufficient pam_succeed_if.so uid = O use_uid quiet
account required pam_unix.so

password requisite pam_passwdqc.so config=/etc/passwdqgc.conf
password required pam_unix.so use_authtok shadow nullok
session optional pam_keyinit.so revoke

session required pam_limits.so

—-session optional pam_systemd.so

session required pam_unix.so

a session optional pam_xauth.so @

PAM config rule control values: include [17/31]

@ Include all lines of the same type from the configuration file

specified as an argument to this control.

Example: /etc/pam.d/su

auth
auth
auth
auth
account
account
password
session
session
session

sufficient
required
substack
include
sufficient
include
include
include
include
optional

pam_rootok.so
pam_wheel.so use_uid
system-auth
postlogin
pam_succeed_if.so uid = O use_uid quiet
system—auth
system-auth
system—auth
postlogin
pam_xauth.so

[18/31]

PAM config rule control values: substack

@ Include all lines of the same type from the configuration file
specified as an argument to this control.

@ requisite and sufficient in a substack does not cause skipping
the rest of the complete module stack, but only of the substack.

@ Jumps in a substack also can not jump out of it.

@ The whole substack is counted as one module
when the jump is done in a parent stack.

Example: /etc/pam.d/su (excerpt)

auth sufficient pam_rootok.so
auth substack system-auth
auth include postlogin

PAM config rule control values: advanced syntax [19/31]

The syntax: [valueIl=actionl value2=action2 ... valueN=action\|
valueN corresponds to the return value returned by the module

actionN specifies the action

@ One of predefined PAM return values:
success, open_err, symbol_err, service_err, system _err, buf_err, perm_denied,
auth_err, cred_insufficient, authinfo_unavail, user_unknown, maxtries,
new_authtok_reqd, acct_expired, session_err, cred_unavail, cred_expired, cred_err,
no_module_data, conv_err, authtok_err, authtok_recover_err, authtok_lock_busy,
authtok_disable_aging, try_again, ignore, abort, authtok_expired, module_unknown,
bad_item, conv_again, incomplete.

o default: all PAM return values not mentioned explicitly.

¥ é

PAM config rule control values: advanced syntax [20/31]

The syntax: [valuel=actionl value2=action2 . .. valueN=actionN|

valueN corresponds to the return value returned by the module

actionN specifies the action

ignore: return value ignored, stack processing continues
bad: module fails, stack processing continues
die: module fails, stack processing terminates

ok: module succeeds, stack processing continues

done: module succeeds; stack processing terminates
if no prior required module has failed

reset: the stack resets, stack processing continues

N (an unsigned integer): jump over the next N modules in the stack

PAM config rule control values: advanced syntax [21/31]

¥

The syntax: [valueI=actionl value2=action2 ... valueN=action\|

If a return value is not specifically listed via a valueN token, and
the default value is not specified, the implicit default action for it is bad.

Equivalents of traditional 4 control keywords in the advanced syntax

required [success=ok new_authtok_reqd=ok ignore=ignore default=bad|
requisite [success=ok new_authtok_reqd=ok ignore=ignore default=die]
sufficient [success=done new_authtok_reqd=done default=ignore|

optional [success=ok new_authtok_reqd=ok default=ignore]

@ Complex logic that traditional controls cannot express.

@ Conditional branching.

PAM config rule control values: advanced syntax [22/31]

Example: /etc/pam.d/system-auth (excerpt)

password requisite pam_pwquality.so

password [success=ok default=1 ignore=ignore] \
pam_localuser.so

password requisite pam_pwhistory.so use_authtok

password sufficient pam_unix.so shadow nullok use_authtok

password required pam_deny.so

session optional pam_keyinit.so revoke
session required pam_limits.so

session optional pam_systemd.so

session [success=1 default=ignore] \
pam_succeed_if.so service in crond quiet use_uid
session required pam_unix.so

Frozen stack

¥

Example: https://github.com/linux-pam/linux-pam/issues/680

My custom PAM file:

auth [ignore=1 default=ignore] pam env.so envfile=/etc/test_env
auth required pam_echo.so "111"
auth required pam_echo.so "222"

My /etc/test_env:
TEST_VAR=foo

Looks like:
@ the env variable TEST_VAR is not set at all
@ pam_env.so always return PAM_IGNORE as | didn't see "111" in the logs

[23/31]

Frozen stack [24/31]

Applications talk to the PAM library

type API function name | description

auth pam_authenticate Authenticate this user

auth pam_setcred Manage credentials of this user

account | pam_acct_mgmt Check account validity and restrictions for this user
password | pam_chauthtok Change the authentication token for this user
session pam_open_session Set up a session for this user

session pam_close_session End the session for this user

The PAM library determines and fixes the list and order of modules for a specific
management group (like auth or session) during the first API call to the stack,
and then reusing that exact same (frozen) sequence of modules for subsequent API
calls to this stack.

Frozen stack [25/31]

Example: https://github.com/linux-pam/linux-pam/issues/680

My custom PAM file:

auth [ignore=1 default=ignore] pam env.so envfile=/etc/test_env
auth required pam_echo.so "111"
auth required pam_echo.so "222"

@ When invoked by pam_authenticate, pam_env.so does nothing
and always returns PAM_IGNORE.

@ After pam_authenticate the PAM auth stack is already frozen,
so during pam_setcred the modules are being called in the same order
as they were called during pam_authenticate.

The setuid helper issue [26/31]

pam_unix: traditional approach

o a helper is needed to access /etc/shadow

o unix_chkpwd helper is setuid-root

pam_tcb approach (since 2001)

o /etc/shadow — /etc/tcb/user/shadow
o tcb_chkpwd helper is setgid-shadow

pam_unix: client-server approach (since 2025)
o unix_chkpwd helper is unprivileged

e communicates with pwaccessd via a Unix domain socket

Troubleshooting and best practices

Common issues

o Getting locked out
e Incorrect module order or control directives

o Syntax errors or typos in config files

o Missing module arguments

Troubleshooting and best practices

Best Practices

o Know what you are doing

o Backup before making changes
o Always test the changes
o Make incremental changes

o Always have an emergency root shell open
when testing on a non-disposable system

o Use distribution tools, study distribution defaults

Troubleshooting [29/31]

System logs is the primary tool
@ journalctl -u service-name

Increase PAM verbosity

@ PAM is usually quite verbose already.

@ Many modules become more verbose with debug argument.)
@ Manual pages: PAM(8), pam.conf(5), pam_*(8).
@ The Linux-PAM System Administrators’ Guide.
°
°

The Linux-PAM Module Writers’ Guide.
The Linux-PAM Application Developers’ Guide.

Debugging [30/31]

o -p $PID
o -f/—follow-forks

e -b execve

o -r/—relative-timestamps

