
Linux-PAM demystified and beyond

Dmitry Levin

Brussels, 2026

Agenda [1/31]

What and Why

Core concepts

Configuration files and modules

Configuration rules syntax

Configuration rules control values

Frozen stack

The setuid helper issue

Troubleshooting and Best Practices

What is Linux-PAM? [2/31]

Framework
shared libraries: libpam, libpamc, libpam misc

Pluggable Authentication Modules: pam *.so

configuration: /etc/pam.d/*

Purpose

Enable system administrators to choose how applications
authenticate users.

Switch between the authentication mechanisms without
recompiling applications.

The ”Before PAM” Problem [3/31]

Hardcoded logic

Every application that needed to authenticate a user had its own code
to handle /etc/passwd, later also /etc/shadow.

Rigidity

To introduce a new authentication method like Kerberos or OTP,
every application had to be modified and recompiled.

Inconsistency

Different applications might implement authentication, password checking,
or account lockout rules slightly differently.

Limited control

Enforcing system-wide security policies, e.g. all interactive logins must use 2FA,
is difficult.

PAM management groups [4/31]

Authentication: Are you who you say you are?

Verify the user’s identity.

Grant credentials.

Account management: Are you allowed to use this service right now?

Check account validity and restrictions.

Session management: What needs to be set up for your session?

Actions that need to occur before the service is granted.

Actions that need to occur after the service termination.

Password management: How can you change your authentication token?

Prompting for a new password.

Enforcing password quality rules.

Changing the password.

PAM management groups: Authentication [5/31]

Are you who you say you are?

Checking a typed password against /etc/shadow
(e.g. via pam unix.so).

Validating a U2F dongle (e.g. via pam u2f.so)
or a biometric scan (e.g. via pam fprintd.so).

Querying a remote server for credentials
(e.g. via pam sss.so).

Prompting for a One-Time Password.

PAM management groups: Account management [6/31]

Are you allowed to use this service right now?

Is the account enabled? Is the password not expired?
(pam unix.so)

Is the account locked due to too many failed login attempts?
(pam faillock.so)

Are there time-based restrictions on when this user can log in?
(pam time.so)

Is the user allowed for this service?
(pam access.so)

PAM management groups: Session management [7/31]

What needs to be set up for your session?

Initialize kernel session keyring
(pam keyinit.so).

Set resource limits
(pam limits.so).

Set the file mode creation mask
(pam umask.so).

Register user session in the login manager
(pam systemd.so).

Create a home directory
(pam mkhomedir.so).

PAM management groups: Password management [8/31]

How can you change your authentication token?

Prompting for a new password.

Enforcing password quality rules
(pam passwdqc.so or pam pwquality.so).

Making sure the user does not use the same password
too frequently (pam pwhistory.so).

Changing the password
(pam unix.so).

Decoupling and Flexibility [9/31]

Decoupling

PAM separates the applications (like login or sshd) from the underlying
authentication, account, session, and password management policies.

Applications just talk to the PAM library.

Administrators configure PAM.

Applications talk to the PAM library

type API function name description
auth pam authenticate Authenticate this user
auth pam setcred Manage credentials of this user

account pam acct mgmt Check account validity and restrictions for this user

password pam chauthtok Change the authentication token for this user

session pam open session Set up a session for this user
session pam close session End the session for this user

PAM configuration files [10/31]

Service configuration files

PAM configuration is service-specific.

Configuration files are stored in /etc/pam.d/.

Service configuration files are named after services (like login or sshd).

When a service, e.g. login, needs to authenticate a user, it tells the PAM library:
I’m the login service, please handle this authentication based on my configuration.

If a specific service file doesn’t exist, or when it doesn’t specify a management
group, PAM falls back to a default configuration for this management group
defined in /etc/pam.d/other, which usually denies access.

Common configuration files

conventionally stored in /etc/pam.d/

included by service-specific configuration files and other common configuration
files

used to implement system-wide policies

PAM Modules [11/31]

Modules: the workhorses (pam *.so)

Modules are shared objects loaded dynamically
by the PAM library according to the service configuration.

Typically located in /lib/security/ or /lib64/security/.

Each module is designed to perform a specific task.

There are many modules available:

standard modules packaged along with the PAM library

other modules provided by other packages

pam deny.so always returns failure
pam permit.so always returns access, useful as a placeholder

Configuration file syntax [12/31]

PAM rule: type control module-path [module-arguments]

type: the management group that the rule corresponds to

control: determines how the return value of this module affects the overall
outcome for the management group

module-path: the filename of the PAM module to be used

module-arguments: optional arguments passed to the module

Example: /etc/pam.d/login (simplified)

auth required pam_unix.so nullok

account required pam_nologin.so

account required pam_unix.so

password requisite pam_passwdqc.so config=/etc/passwdqc.conf

password required pam_unix.so use_authtok shadow nullok

session required pam_loginuid.so

session optional pam_keyinit.so force revoke

session required pam_limits.so

-session optional pam_systemd.so

session required pam_unix.so

PAM config rule control values: required [13/31]

required

Failure will lead to the PAM framework returning failure but only after the
remaining stacked modules for this management group have been invoked.

Example: /etc/pam.d/login (simplified)

auth required pam_unix.so nullok

account required pam_nologin.so

account required pam_unix.so

password requisite pam_passwdqc.so config=/etc/passwdqc.conf

password requisite pam_pwhistory.so use_authtok

password required pam_unix.so use_authtok shadow nullok

session required pam_loginuid.so

session optional pam_keyinit.so force revoke

session required pam_limits.so

-session optional pam_systemd.so

session required pam_unix.so

PAM config rule control values: requisite [14/31]

requisite

Like required, however, in the case that this module returns a failure,
control is directly returned to the application or to the superior PAM stack.

Example: /etc/pam.d/login (simplified)

auth required pam_unix.so nullok

account required pam_nologin.so

account required pam_unix.so

password requisite pam_passwdqc.so config=/etc/passwdqc.conf

password requisite pam_pwhistory.so use_authtok

password required pam_unix.so use_authtok shadow nullok

session required pam_loginuid.so

session optional pam_keyinit.so force revoke

session required pam_limits.so

-session optional pam_systemd.so

session required pam_unix.so

PAM config rule control values: sufficient [15/31]

sufficient

If the module succeeds and no prior required module has failed, the PAM stack
succeeds immediately without calling any further modules in the stack.

Otherwise, the return value of the module is ignored and processing of the PAM
module stack continues unaffected.

Example: /etc/pam.d/su (simplified)

auth sufficient pam_rootok.so

auth required pam_unix.so nullok

account sufficient pam_succeed_if.so uid = 0 use_uid quiet

account required pam_unix.so

password requisite pam_passwdqc.so config=/etc/passwdqc.conf

password required pam_unix.so use_authtok shadow nullok

...

PAM config rule control values: optional [16/31]

optional

The success or failure of this module is only important if it is the only module in
the stack associated with this management group.

Example: /etc/pam.d/su (simplified)

auth sufficient pam_rootok.so

auth required pam_unix.so nullok

account sufficient pam_succeed_if.so uid = 0 use_uid quiet

account required pam_unix.so

password requisite pam_passwdqc.so config=/etc/passwdqc.conf

password required pam_unix.so use_authtok shadow nullok

session optional pam_keyinit.so revoke

session required pam_limits.so

-session optional pam_systemd.so

session required pam_unix.so

session optional pam_xauth.so

PAM config rule control values: include [17/31]

include

Include all lines of the same type from the configuration file
specified as an argument to this control.

Example: /etc/pam.d/su

auth sufficient pam_rootok.so

auth required pam_wheel.so use_uid

auth substack system-auth

auth include postlogin

account sufficient pam_succeed_if.so uid = 0 use_uid quiet

account include system-auth

password include system-auth

session include system-auth

session include postlogin

session optional pam_xauth.so

PAM config rule control values: substack [18/31]

substack

Include all lines of the same type from the configuration file
specified as an argument to this control.

requisite and sufficient in a substack does not cause skipping
the rest of the complete module stack, but only of the substack.

Jumps in a substack also can not jump out of it.

The whole substack is counted as one module
when the jump is done in a parent stack.

Example: /etc/pam.d/su (excerpt)

auth sufficient pam_rootok.so

auth substack system-auth

auth include postlogin

...

PAM config rule control values: advanced syntax [19/31]

The syntax: [value1=action1 value2=action2 . . . valueN=actionN]

valueN corresponds to the return value returned by the module

actionN specifies the action

valueN

One of predefined PAM return values:
success, open err, symbol err, service err, system err, buf err, perm denied,
auth err, cred insufficient, authinfo unavail, user unknown, maxtries,
new authtok reqd, acct expired, session err, cred unavail, cred expired, cred err,
no module data, conv err, authtok err, authtok recover err, authtok lock busy,
authtok disable aging, try again, ignore, abort, authtok expired, module unknown,
bad item, conv again, incomplete.

default: all PAM return values not mentioned explicitly.

PAM config rule control values: advanced syntax [20/31]

The syntax: [value1=action1 value2=action2 . . . valueN=actionN]

valueN corresponds to the return value returned by the module

actionN specifies the action

actionN

ignore: return value ignored, stack processing continues

bad: module fails, stack processing continues

die: module fails, stack processing terminates

ok: module succeeds, stack processing continues

done: module succeeds; stack processing terminates
if no prior required module has failed

reset: the stack resets, stack processing continues

N (an unsigned integer): jump over the next N modules in the stack

PAM config rule control values: advanced syntax [21/31]

The syntax: [value1=action1 value2=action2 . . . valueN=actionN]

If a return value is not specifically listed via a valueN token, and
the default value is not specified, the implicit default action for it is bad.

Equivalents of traditional 4 control keywords in the advanced syntax

required [success=ok new authtok reqd=ok ignore=ignore default=bad]

requisite [success=ok new authtok reqd=ok ignore=ignore default=die]

sufficient [success=done new authtok reqd=done default=ignore]

optional [success=ok new authtok reqd=ok default=ignore]

Why use this?

Complex logic that traditional controls cannot express.

Conditional branching.

PAM config rule control values: advanced syntax [22/31]

Example: /etc/pam.d/system-auth (excerpt)
...

password requisite pam_pwquality.so

password [success=ok default=1 ignore=ignore] \
pam_localuser.so

password requisite pam_pwhistory.so use_authtok

password sufficient pam_unix.so shadow nullok use_authtok

password required pam_deny.so

session optional pam_keyinit.so revoke

session required pam_limits.so

session optional pam_systemd.so

session [success=1 default=ignore] \
pam_succeed_if.so service in crond quiet use_uid

session required pam_unix.so

...

Frozen stack [23/31]

Example: https://github.com/linux-pam/linux-pam/issues/680

My custom PAM file:

...

auth [ignore=1 default=ignore] pam env.so envfile=/etc/test env

auth required pam echo.so "111"

auth required pam echo.so "222"

...

My /etc/test env:

TEST VAR=foo

Looks like:

the env variable TEST VAR is not set at all

pam env.so always return PAM IGNORE as I didn’t see ”111” in the logs

Frozen stack [24/31]

Applications talk to the PAM library

type API function name description
auth pam authenticate Authenticate this user
auth pam setcred Manage credentials of this user

account pam acct mgmt Check account validity and restrictions for this user

password pam chauthtok Change the authentication token for this user

session pam open session Set up a session for this user
session pam close session End the session for this user

Frozen stack

The PAM library determines and fixes the list and order of modules for a specific
management group (like auth or session) during the first API call to the stack,
and then reusing that exact same (frozen) sequence of modules for subsequent API
calls to this stack.

Frozen stack [25/31]

Example: https://github.com/linux-pam/linux-pam/issues/680

My custom PAM file:

...

auth [ignore=1 default=ignore] pam env.so envfile=/etc/test env

auth required pam echo.so "111"

auth required pam echo.so "222"

...

When invoked by pam authenticate, pam env.so does nothing
and always returns PAM IGNORE.

After pam authenticate the PAM auth stack is already frozen,
so during pam setcred the modules are being called in the same order
as they were called during pam authenticate.

The setuid helper issue [26/31]

pam unix: traditional approach

a helper is needed to access /etc/shadow

unix chkpwd helper is setuid-root

pam tcb approach (since 2001)

/etc/shadow −→ /etc/tcb/user/shadow

tcb chkpwd helper is setgid-shadow

pam unix: client-server approach (since 2025)

unix chkpwd helper is unprivileged

communicates with pwaccessd via a Unix domain socket

Troubleshooting and best practices [27/31]

Common issues
Getting locked out

Incorrect module order or control directives

Syntax errors or typos in config files

Missing module arguments

Troubleshooting and best practices [28/31]

Best Practices
Know what you are doing

Backup before making changes

Always test the changes

Make incremental changes

Always have an emergency root shell open
when testing on a non-disposable system

Use distribution tools, study distribution defaults

Troubleshooting [29/31]

System logs is the primary tool

journalctl -u service-name

Increase PAM verbosity

PAM is usually quite verbose already.

Many modules become more verbose with debug argument.

RTFM

Manual pages: PAM(8), pam.conf(5), pam *(8).

The Linux-PAM System Administrators’ Guide.

The Linux-PAM Module Writers’ Guide.

The Linux-PAM Application Developers’ Guide.

Debugging [30/31]

strace

-p $PID
-f/–follow-forks

-b execve

-r/–relative-timestamps

Questions?

