
Middleware Pain? Meet iceoryx2
FOSDEM 2026

Michael Pöhnl

Jan 31, 2026



Agenda

1. Why do you even need middleware?

2. Introduction to Eclipse iceoryx™

3. The pain iceoryx2 relieves

4. iceoryx2 community insights

2



Why do you even need middleware?



All about DAGs

• Robotics applications are typically directed acyclic graphs (DAGs)

• Nodes are the processing steps, edges are communication links

• The whole graph follows a data-in / data-out model

4



All about communication and execution

 

So you must manage when execution happens and which data is used

5



Let’s build our robotics application

• You start with some timers, read some sensor data from network sockets

• …hey, why not use several threads to make use of the multi-core CPU…

• …hey, why not several processes connected via an OS IPC mechanism…

• …this needs some glue code to orchestrate communication and execution…

• …it shall run on different operating systems, so let’s add some #ifdefs…

• …phew, let’s clean it up a bit with abstraction layers to make things nicer…

6



Welcome to the club

Congratulations, you are building the next middleware!

Photo by Jason Leung on Unsplash

7

https://unsplash.com/@ninjason?utm_source=unsplash&utm_medium=referral&utm_content=creditCopyText
https://unsplash.com/photos/selective-focus-photography-of-multicolored-confetti-lot-Xaanw0s0pMk?utm_source=unsplash&utm_medium=referral&utm_content=creditCopyText


Why open-source middleware is great

• Middleware is infrastructure software, needed across many domains
• It’s not trivial: low-level stuff, multi-threaded programming, etc.
• Reinventing the wheel makes no sense if your business is not middleware
• With a robust OSS solution, teams can focus on applications and products
• ROS is one example, allowing roboticists to focus on robotics (ideally)

8



Introduction to Eclipse iceoryx™



What is Eclipse iceoryx?

• OSS project hosted by the Eclipse Foundation
• Inter-process communication (IPC) based on shared memory
• Open-source since 2019; second generation (iceoryx2) started in 2023
• Based on 70+ years of combined experience in high-performance IPC

10



How does it work?

• Sender writes directly into shared memory
• Receiver reads directly from shared memory
• iceoryx provides the whole communication infrastructure
• iceoryx takes care of discovery, message delivery, memory management
• This is what we call true zero-copy communication

11



Next Gen iceoryx2 already surpasses the first generation

• Written in Rust, runs everywhere
‣ Linux, Windows, macOS, QNX, VxWorks, FreeBSD, eMCOS, bare metal
‣ In addition to Rust APIs, language bindings for C, C++, Python, C#

• Huge set of messaging patterns
‣ publish/subscribe, request/response, key/value storage (blackboard)
‣ Event mechanism for data-driven triggering of execution

• Developed for mission-critical systems
‣ No heap allocation during runtime, no blocking calls, Rust “no_std”
‣ Decentralized and mixed-criticality architecture

12



OK, an IPC middleware. What else?



The pain iceoryx2 relieves



Causes pain: copies and serialization in IPC

Why copies and serialization inside your IPC cause pain

• This takes CPU cycles, the bigger the message, the more of them
• Advanced robotics systems can have tens of GB/s IPC
• Consequences

‣ High CPU load
‣ High latency

0.1

1

10

100

1000

10000

0.25 1 4 16 64 256 1024 4096

unix domain socket
message queue

la
te

nc
y 

[µ
s]

payload size [KB]

Arch Linux on Raspberry Pi 4

Inter-Process Communication Benchmark

15



Causes pain: copies and serialization in IPC

Real-life pain example

• Autonomous driving based on an end-to-end AI model
• 6 cameras × ~35 MB × 20 fps → more than 4 GB/s camera data stream
• Now think: copying on sender side, copying on receiver side, recording…

16



Relieves pain: iceoryx2′s true zero-copy IPC

How iceoryx2 relieves the pain

• True zero-copy IPC
• Constant sub-microsecond latency, independent of message size
• More than 1000 times less latency for MB messages (think < µs, not > ms)

0.1

1

10

100

1000

10000

0.25 1 4 16 64 256 1024 4096

unix domain socket
message queue

iceoryx2

la
te

nc
y 

[µ
s]

payload size [KB]

Arch Linux on Raspberry Pi 4

Inter-Process Communication Benchmark

17



Relieves pain: iceoryx2′s true zero-copy IPC

What it enables

• Dozens of GB/s IPC with ultra-low CPU load
• Fast reaction times from sensing to acting
• Enables use of smaller, cheaper CPUs for the same workload
• Scalability: going embedded without going crazy

Photo by Leo_Visions on Unsplash

18

https://unsplash.com/@leo_visions_?utm_source=unsplash&utm_medium=referral&utm_content=creditCopyText
https://unsplash.com/photos/self-driving-car-with-sensors-on-city-street-rT3fpi94lnw?utm_source=unsplash&utm_medium=referral&utm_content=creditCopyText


Causes pain: threads inside the middleware

Why additional threads inside the middleware cause pain

• Background threads in the middleware for discovery, housekeeping, etc.
‣ When do they wake up to do what?
‣ How to configure these threads?

• Often additional middleware threads involved in the message passing
‣ When will the message be delivered?
‣ A context switch isn’t expensive, but how about thousands per second?

• Consequences
‣ Not deterministic
‣ High scheduling overhead

19



Causes pain: threads inside the middleware

Real-life pain examples

Strange latency spikes Message visibility race
(Interference from middleware threads) (Middleware threads pass the message)

iceoryx classic: interference from monitoring thread

20



Relieves pain: iceoryx2 has no threads

How iceoryx2 relieves the pain

• iceoryx2 comes with no internal threads.
• Housekeeping is done when entities are created or destroyed
• No surprises behind the scenes

Photo by Keagan Henman on Unsplash

21

https://unsplash.com/@henmankk?utm_source=unsplash&utm_medium=referral&utm_content=creditCopyText
https://unsplash.com/photos/black-folding-chair-on-canvas-pPxJTtxfV1A?utm_source=unsplash&utm_medium=referral&utm_content=creditCopyText


Relieves pain: iceoryx2 has no threads

What it enables

• Together with zero-copy IPC, stable low latencies with low jitter
• Deterministic behavior, no mysterious background actions
• Reliable message passing along a single thread of execution
• Lower scheduling overhead, lower CPU usage

iceoryx classic: after disabling the monitoring thread

22



Causes pain: improper queuing in IPC

Why improper message queuing inside IPC channels results in pain

• When there is no message queuing
‣ Sender may outpace receiver and overwrite unread messages

• When there is a queue but it overflows
‣ Sender gets blocked or drops new messages

• When there are no historical messages
‣ Startup order must be controlled to not miss messages

• Consequences
‣ Backpressure from the receiver to the sender
‣ Receiver is forced to keep pace with sender to not miss messages

23



Causes pain: improper queuing in IPC

Real-life pain example

Use case: low frequency consumer needs 4 latest messages

When all you needed was a queue When a usual queue is not enough

24



Relieves pain: iceoryx2′s queuing and history possibilities

How iceoryx2 relieves the pain

• Per receiver queues with configurable size (N)

• Safely overflowing queues
‣ Provides the latest N messages in case of overflow
‣ Drops old, unread messages in favor of new ones

• Queue overflow behavior can be configured
‣ Return an error and drop the new message
‣ Block the sender, wait for the receiver
‣ Overflow and drop oldest message

• Optional history on the sender side for late joining receivers

25



Relieves pain: iceoryx2′s queuing and history possibilities

What it enables

• Decoupling of senders and receivers
• Memory efficiency by only queuing messages of interest
• Different message consumption patterns, your choice
• DDS-style message caching on higher middleware layers

26



Causes pain: per-message callbacks

Why per-message callbacks result in pain

• This couples communication and execution
‣ Business logic is forced to react on every message

• When you cannot access the receivers side by side
‣ Forces you to do message caching across callbacks

• When the message only lives for the callback duration
‣ Forces you to copy the message if you want a later processing

• Consequences
‣ Many context switches, high scheduling overhead
‣ More administrative effort on the user side

27



Causes pain: per-message callbacks

Real-life pain example

• Fusion node with messages arriving at different frequencies
• Algorithm collects messages and processes them simultaneously (on Lidar)
• In this simple example: 16 individual callbacks for 1 fusion run

28



Relieves pain: iceoryx2′s decoupled event pattern

How iceoryx2 relieves the pain

• Notification with related context switching is decoupled from messaging

• Event is a separate pattern with notifiers, listeners and waitsets
‣ Notifier: sends the notification on event
‣ Listener: can wait on an event to occur
‣ Waitset: allows to wait on many events within a single thread

• Events can easily be combined with publish/subscribe or request/response
‣ e.g. a triggering publisher that always notifies when sending

• No problem to implement per-message callbacks if this is your philosophy

29



Relieves pain: iceoryx2′s decoupled event pattern

What it enables

• Trigger on relevant messages only, efficiently queue the others
• Using iceoryx2 events for other notifications (e.g. timer events)
• iceoryx2 enables you to implement your specific execution strategy
• Less context switching, more CPU time for your applications

30



iceoryx2 community insights



iceoryx2 adopters

Vast community with a need for low latency and high-volume data transfer

Industrial

32



iceoryx2 in the bigger middleware context

iceoryx2 is primarily a shared memory communication technology and can

• be combined with network protocols for a full communication stack
‣ e.g. with Zenoh, gRPC, MQTT, DDS, SOME/IP

• be integrated as IPC layer in a broader communication stack
‣ e.g. based on a standard like DDS defining an IDL and data model

• be integrated as IPC layer in a framework going beyond communication
‣ e.g. in copper-rs, Eclipse eCAL, via rmw_iceoryx2 in ROS 2

33



Questions?


	Agenda
	All about DAGs
	All about communication and execution
	Let's build our robotics application
	Welcome to the club
	Why open-source middleware is great
	What is Eclipse iceoryx?
	How does it work?
	Next Gen iceoryx2 already surpasses the first generation
	Causes pain: copies and serialization in IPC
	Causes pain: copies and serialization in IPC
	Relieves pain: iceoryx2's true zero-copy IPC
	Relieves pain: iceoryx2's true zero-copy IPC
	Causes pain: threads inside the middleware
	Causes pain: threads inside the middleware
	Relieves pain: iceoryx2 has no threads
	Relieves pain: iceoryx2 has no threads
	Causes pain: improper queuing in IPC
	Causes pain: improper queuing in IPC
	Relieves pain: iceoryx2's queuing and history possibilities
	Relieves pain: iceoryx2's queuing and history possibilities
	Causes pain: per-message callbacks
	Causes pain: per-message callbacks
	Relieves pain: iceoryx2's decoupled event pattern
	Relieves pain: iceoryx2's decoupled event pattern
	iceoryx2 adopters
	iceoryx2 in the bigger middleware context

