ekxide

Middleware Pain? Meet iceoryx?2
FOSDEM 2026

Michael Pohnl
Jan 31, 2026

Agenda

Why do you even need middleware?
Introduction to Eclipse iceoryx™

The pain iceoryx2 relieves

BowoNoe

. iceoryx2 community insights

Why do you even need middleware?

All about DAGs

e Robotics applications are typically directed acyclic graphs (DAGs)
* Nodes are the processing steps, edges are communication links

* The whole graph follows a data-in / data-out model

Front Lidar Front Points Ray Ground Euclidean Ob;e_ct
. —> - Cluster Collision
Driver Transformer Filter .
Detector Estimator
Point Cloud Behavior
Fusion Planner
Voxel Grid .
— Downsampler NDT Localizer

Rear Lidar Rear Points
Driver Transformer

Map Loader

autoware subset

All about communication and execution

So you must manage when execution happens and which data is used

DK Y <

Let’s build our robotics application

You start with some timers, read some sensor data from network sockets

...hey, why not use several threads to make use of the multi-core CPU...

e ...hey, why not several processes connected via an OS |IPC mechanism...

¢ ...this needs some glue code to orchestrate communication and execution...

e ...it shall run on different operating systems, so let's add some #ifdefs...

e ...phew, let’s clean it up a bit with abstraction layers to make things nicer...

Welcome to the club

Congratulations, you are building the next middleware!

Photo by Jason Leung on Unsplash

https://unsplash.com/@ninjason?utm_source=unsplash&utm_medium=referral&utm_content=creditCopyText
https://unsplash.com/photos/selective-focus-photography-of-multicolored-confetti-lot-Xaanw0s0pMk?utm_source=unsplash&utm_medium=referral&utm_content=creditCopyText

Why open-source middleware is great

Middleware is infrastructure software, needed across many domains

It’s not trivial: low-level stuff, multi-threaded programming, etc.
Reinventing the wheel makes no sense if your business is not middleware
With a robust OSS solution, teams can focus on applications and products
ROS is one example, allowing roboticists to focus on robotics (ideally)

Applications

Middleware

Operating System

Hardware

Introduction to Eclipse iceoryx™

What is Eclipse iceoryx?

OSS project hosted by the Eclipse Foundation

Inter-process communication (IPC) based on shared memory
Open-source since 2019; second generation (iceoryx2) started in 2023
Based on 70+ years of combined experience in high-performance IPC

1‘
|ceory><

How does it work?

e Sender writes directly into shared memory

* Receiver reads directly from shared memory

* iceoryx provides the whole communication infrastructure

* iceoryx takes care of discovery, message delivery, memory management
* This is what we call true zero-copy communication

Process A Process B

Next Gen iceoryx2 already surpasses the first generation

e Written in Rust, runs everywhere
» Linux, Windows, macOS, QNX, VxWorks, FreeBSD, eMCOS, bare metal
» In addition to Rust APls, language bindings for C, C++, Python, C#

e Huge set of messaging patterns

» publish/subscribe, request/response, key/value storage (blackboard)
» Event mechanism for data-driven triggering of execution

e Developed for mission-critical systems

» No heap allocation during runtime, no blocking calls, Rust “no_std”
» Decentralized and mixed-criticality architecture

OK, an IPC middleware. What else?

The pain iceoryx2 relieves

Causes pain: copies and serialization in IPC

Why copies and serialization inside your |PC cause pain

e This takes CPU cycles, the bigger the message, the more of them
e Advanced robotics systems can have tens of GB/s IPC
e Consequences

» High CPU load
» High latency

Inter-Process Communication Benchmark
Arch Linux on Raspberry Pi 4

—
0
=1

=
>
9
c
9]

o
i}

16

payload size [KB]

Causes pain: copies and serialization in IPC

Real-life pain example

e Autonomous driving based on an end-to-end Al model
* 6 cameras x ~35 MB x 20 fps — more than 4 GB/s camera data stream
* Now think: copying on sender side, copying on receiver side, recording...

Camera
Driver 1

Camera
Driver 2

,\w\

20 \

Camera £ \
00

Driver 3
[cpu
Inference \ ” I B

Camera
Driver 4

Camera
Driver 5

Camera
Driver 6

Relieves pain: iceoryx?2's true zero-copy IPC
How iceoryx?2 relieves the pain

® True zero-copy IPC
e Constant sub-microsecond latency, independent of message size
e More than 1000 times less latency for MB messages (think < ps, not > ms)

Inter-Process Communication Benchmark

Arch Linux on Raspberry Pi 4

16

payload size [KB]

Relieves pain: iceoryx2's true zero-copy |IPC

What it enables

* Dozens of GB/s |IPC with ultra-low CPU load

e Fast reaction times from sensing to acting

Enables use of smaller, cheaper CPUs for the same workload
Scalability: going embedded without going crazy

Photo by Leo_Visions on Unsplash

18

https://unsplash.com/@leo_visions_?utm_source=unsplash&utm_medium=referral&utm_content=creditCopyText
https://unsplash.com/photos/self-driving-car-with-sensors-on-city-street-rT3fpi94lnw?utm_source=unsplash&utm_medium=referral&utm_content=creditCopyText

Causes pain: threads inside the middleware

Why additional threads inside the middleware cause pain

e Background threads in the middleware for discovery, housekeeping, etc.
» When do they wake up to do what?
» How to configure these threads?

e Often additional middleware threads involved in the message passing
» When will the message be delivered?
» A context switch isn't expensive, but how about thousands per second?

e Consequences
» Not deterministic
» High scheduling overhead

Causes pain: threads inside the middleware

Real-life pain examples

Strange latency spikes Message visibility race

(Interference from middleware threads) (Middleware threads pass the message)

no stress PollingUntyped

Histogram
10M:

int main()

{

nodeA.run(); // sends a message

nodeB.run(); // can read the message, or?

iceoryx classic: interference from monitoring thread

Relieves pain: iceoryx2 has no threads
How iceoryx?2 relieves the pain

* iceoryx2 comes with no internal threads.
* Housekeeping is done when entities are created or destroyed
* No surprises behind the scenes

Photo by Keagan Henman on Unsplash

https://unsplash.com/@henmankk?utm_source=unsplash&utm_medium=referral&utm_content=creditCopyText
https://unsplash.com/photos/black-folding-chair-on-canvas-pPxJTtxfV1A?utm_source=unsplash&utm_medium=referral&utm_content=creditCopyText

Relieves pain: iceoryx2 has no threads

What it enables

Together with zero-copy IPC, stable low latencies with low jitter
Deterministic behavior, no mysterious background actions
Reliable message passing along a single thread of execution
Lower scheduling overhead, lower CPU usage

Histogram h Histogram

iceoryx classic: after disabling the monitoring thread

Causes pain: improper queuing in 1PC

Why improper message queuing inside |PC channels results in pain

When there is no message queuing
» Sender may outpace receiver and overwrite unread messages

When there is a queue but it overflows
» Sender gets blocked or drops new messages

When there are no historical messages
» Startup order must be controlled to not miss messages

Consequences
» Backpressure from the receiver to the sender
» Receiver is forced to keep pace with sender to not miss messages

Causes pain: improper queuing in 1PC

Real-life pain example

Use case: low frequency consumer needs 4 latest messages

When all you needed was a queue

High Frequency
High Priority
Low Runtime Budget

Bad-Hack-Node

High Freguency

High Frequency
Sender

R e e T R =

Low Frequency
Low Priority
High Runtime Budget

oy
Long Running

When a usual queue is not enough

High Frequency
High Priority
Low Runtime Budget

Should you:

1. Block the sender?

2. Go into error mode?

3. Process old data?

4. Increase the queue size?

5. Try to reduce system load?

L t 6. Increase the receiver frequency?

Low Frequency
Low Priority
High Runtime Budget

Low Frequency
Long Running

delayed

Relieves pain: iceoryx2’'s queuing and history possibilities
How iceoryx2 relieves the pain

e Per receiver queues with configurable size (N)

Safely overflowing queues
» Provides the latest N messages in case of overflow
» Drops old, unread messages in favor of new ones

* Queue overflow behavior can be configured
» Return an error and drop the new message
» Block the sender, wait for the receiver
» Overflow and drop oldest message

e Optional history on the sender side for late joining receivers

Relieves pain: iceoryx2’'s queuing and history possibilities

What it enables

Decoupling of senders and receivers

iceoryx2 IPC Channels with Queues
“. —
Receiver B

Receiver C

10 Hz Lidar

30 Hz Camera

20 Hz Radar

Receiver D

On-event State

100 Hz CAN Receiver E

Memory efficiency by only queuing messages of interest
Different message consumption patterns, your choice
DDS-style message caching on higher middleware layers

Some Fusion Node

latest greatest

max. 4 latest (drop older messages)

latest greatest

latest greatest + history

all messages (max. queue size)

Causes pain: per-message callbacks

Why per-message callbacks result in pain

This couples communication and execution
» Business logic is forced to react on every message

When you cannot access the receivers side by side
» Forces you to do message caching across callbacks

When the message only lives for the callback duration
» Forces you to copy the message if you want a later processing

Consequences
» Many context switches, high scheduling overhead
» More administrative effort on the user side

Causes pain: per-message callbacks

Real-life pain example

* Fusion node with messages arriving at different frequencies
e Algorithm collects messages and processes them simultaneously (on Lidar)
* In this simple example: 16 individual callbacks for 1 fusion run

Some Fusion Node

Receiver A

10 Hz Lidar

30 Hz Camera

Receiver B

20 Hz Radar Receiver C

Receiver E

100 Hz CAN

ca“backs 1 1]] 1 1 1 [} 1 1 1 1 L} 1 1 1 1 L] 1 1 1 [] 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 11 1 1 1 1 1 1 1 1 1 1 1 1 1 11 1 1 1 1 1 1 1 1 L.
1 1]] 1 1 1 [} 1 1 1 1 L} 1 1 1 1 L] 1 1 1 [] 1 1 1 1 1 1 1 1 =
o . A ' ' o . T I R i . ' t
CAN;CAN;CAN CAN CAN GAN;CAN CAN CAN CAN CANCAN;CAN CAN CAN GAN/CAN|CAN CAN CAN CAN;
Radar . | Radar ' Radar 1 | Radar ' Radar
. .] . . . ' .
Camera Camera i\ Camera Camera Camera . Camera

di Lidsr

Relieves pain: iceoryx2's decoupled event pattern

How iceoryx?2 relieves the pain

Notification with related context switching is decoupled from messaging

Event is a separate pattern with notifiers, listeners and waitsets
» Notifier: sends the notification on event

» Listener: can wait on an event to occur

» Waitset: allows to wait on many events within a single thread

Events can easily be combined with publish/subscribe or request/response
» e.g. a triggering publisher that always notifies when sending

No problem to implement per-message callbacks if this is your philosophy

Relieves pain: iceoryx2's decoupled event pattern

What it enables

Trigger on relevant messages only, efficiently queue the others
Using iceoryx2 events for other notifications (e.g. timer events)
iceoryx2 enables you to implement your specific execution strategy
Less context switching, more CPU time for your applications

B
Notifier Listener triggers the node execution
iceoryx2 IPC Channels with Queues
Sender .
“ leceiver B

Receiver A new Lidar when triggered

30 Hz Camera

20 Hz Radar E.

max. 4 latest Camera messages

latest Radar message, others dropped

100 Hz CAN

all CAN messages queue up

callbacks [y

A J

iceoryx2 community insights

iceoryx2 adopters

Vast community with a need for low latency and high-volume data transfer

a L=
a
o ’) Automotive lml
(l

(OO
Drones Robotics
Agriculture

Financial

— f

Marine o0 Industrial

W oAl P

Rail Medical

iceoryx?2 in the bigger middleware context

iceoryx2 is primarily a shared memory communication technology and can

* be combined with network protocols for a full communication stack
» e.g. with Zenoh, gRPC, MQTT, DDS, SOME/IP

e beintegrated as IPC layer in a broader communication stack
» e.g. based on a standard like DDS defining an IDL and data model

* be integrated as IPC layer in a framework going beyond communication
» e.g. in copper-rs, Eclipse eCAL, via rmw_iceoryx2 in ROS 2

Communication stack: Communication stack: ame beyond communication:
iceoryx2-hased + network gateway iceony=2 as IPC layer in a standards-based stack C layer in a framework

Your Warld Your Warld Your Warld
iceanyx2

e.g. DDS standard (Cyclone DDS) Bigger Framework (e.g. copper-rs)

iceonyx2 iceonyx2
IPC IPC

%
Ceoryx

	Agenda
	All about DAGs
	All about communication and execution
	Let's build our robotics application
	Welcome to the club
	Why open-source middleware is great
	What is Eclipse iceoryx?
	How does it work?
	Next Gen iceoryx2 already surpasses the first generation
	Causes pain: copies and serialization in IPC
	Causes pain: copies and serialization in IPC
	Relieves pain: iceoryx2's true zero-copy IPC
	Relieves pain: iceoryx2's true zero-copy IPC
	Causes pain: threads inside the middleware
	Causes pain: threads inside the middleware
	Relieves pain: iceoryx2 has no threads
	Relieves pain: iceoryx2 has no threads
	Causes pain: improper queuing in IPC
	Causes pain: improper queuing in IPC
	Relieves pain: iceoryx2's queuing and history possibilities
	Relieves pain: iceoryx2's queuing and history possibilities
	Causes pain: per-message callbacks
	Causes pain: per-message callbacks
	Relieves pain: iceoryx2's decoupled event pattern
	Relieves pain: iceoryx2's decoupled event pattern
	iceoryx2 adopters
	iceoryx2 in the bigger middleware context

