
How the **** do I do that?
Making 300+ forensic parsers easily accessible.

Erik Schamper Security Researcher

Lennart Haagsma Incident Handler

2026-02-01 TLP:CLEAR

FOSDEM‘26

Dissect is a pure Python, no
dependencies, open source, forensic
investigation framework.

Goal: Parse any high-level artefact at scale no
matter the container it resides in.

Developed by Fox-IT (part of NCC group) and used (and contributed to) by
government, cybersecurity firms and other private organizations.

Introduction Dissect: workflow
Process artefacts using
Dissect Framework

Investigative material Readable information

Output:
Records

Or:
JSON
CSV

Analyst

Store output on disk
or in SIEM for analysis

Introduction Dissect: usage

Evidence.raw
(Linux server)

Use Dissect to parse command
history from raw disk.

$ target-query -f commandhistory Evidence.raw

Dissect will:
Ø Identify the target .raw file as a full disk image.
Ø Identify and read the EXT4 filesystem
Ø Identify a Linux-like operating system
Ø Run the commandhistory plugin

Ø Iterate user accounts for Linux /etc/passwd
Ø Look for common command history files in

home directories of users
Ø Yield record for each line in found history file

> <unix/history hostname=‘ubuntu’, domain=None,
 ts=None, order=0, command=‘whoami’, shell=‘bash’, source=‘/root/.bash_history’,
 user_id=‘0’, user_group=‘0’, user_home=‘/root/’>

Analyst

Bringing “it just works” to DFIR
from dissect.target.target import Target

t = Target.open(“/path/to/evidence.{vmdk,tar,dd,..}”)
list(t.users())

Parse container

NTFS EXT4

Windows Linux

Iter SAM for
users

Iter /etc/passwd
for users

Yield <user> records

Iter ProfilePath
in registry for

users

Iter /home/*
for users

Shared Folder
of running VM

Dissect under the hood

Loaders VMX VBK VMCX KAPE Raw

Filesystems EXTx NTFS VMFS ZIP ..

..

Artefact Syslog Registry MFT ..

Dissect plugins are
the parsers that
process the data.

Dissect components

Dissect loaders are
the glue that makes
it all work
together.

Volumes GPT LVM2 LUKS MDRAID ..

Containers E01 VMDK VHD ASIF ..

<artefact>
hostname
version
services
users
activitiescache
activity
adpolicy

$ target-query -f /systems/*

ual
usnjrnl
winrar
wireguard
yara
yum
zypper
<artefact>$ target-query -f /systems/*

$ target-query -f ... *.E01

$ target-query -f ... *.vmx / *.vmdk

$ target-query -f ... *.vmcx / *.vhdx

$ target-query -f ... *.vma

$ target-query -f ... smb://...

$ target-query -f ... \
| rdump –w json://

$ target-query -f ... \
| rdump –w csv://

$ target-query -f ... \
| rdump –w splunk://<ip>:1337

$ target-query -f ... \
| rdump –w elastic://<ip>:1337

What you get

• acquire • target-diff
• target-info
• target-mount
• target-query
• target-shell

• target-dd
• target-fs
• target-inspect
• target-qfind
• target-reg
• target-yara

Collection Cool stuff Also cool

Dissect ‘children’ or child-plugins

Targets can have sub-targets, referenced
within Dissect as ‘children’.

Example of a child is a Docker-container running on
a target that runs Docker as a ‘hypervisor’.

Hypervisors are transparent

Artifacts become reachable through
(multiple layers of) hypervisors.

A child-plugin is just another layer to parse
through, like a file-system or container format.

Supported ‘Hypervisors’

Dissect has support for various
‘hypervisors’, example of these are:

[Hyper-v, VMWare {workstation, player, ESXi},
Virtualbox, Proxmox, Docker, ...]

[XenServer, LXC/LXD, ...]
And some Dissect doesn’t support (yet):

Child arguments ;-)

All the target-{query, fs, shell} tools
support the following child arguments:

--list-children # prints a list of identified children
--children # runs command on all child-targets
--child # sets specific child-target as the new target
--recursive # makes –-list-children and -–children recursive

Example of child targets:
[Windows Target]
 [Windows Subsystem for Linux (WSL)]
 [Docker container, …]
 [VMWare Workstation Virtual Machine, …]

Demo: Matryoshka-image

Contributor

Commit History for dissect.target/dissect/target/plugins/child on main
 ~10 authors from multiple organizations since jul 2022

< Standing on the shoulders of giants.txt >
 --
 \ ^__^
 \ (oo)_____
 (__)\)\/\
 || ---w |
 || ||

$ cat giants.txt
[“cecinestpasunepipe”, “ JSCU-CNI”, “lhaagsma”,
“martinvanhensbergen”, “Miauwkeru”, “otnxSl”, “pyrco”,
“Schamper”, “sulonl, “ Zawadidone”]

Demo: working with children

Code is the product
• Library code is first class citizen, CLI tools are secondary
• Challenge: contributions need a lot of attention

•Centered around familiar Python APIs
• Prioritize familiarity instead of reinventing the wheel

•Promotes custom tool development

target-shell --python

Open-source!

• Since 4th of October 2022!
• Open-source? For a more secure society!
• High adoption rate, number of contributors picking up
• Government, competitors, students, researchers

• Incredible, high-quality contributions
• DPAPI decryption, Velociraptor support, improved Linux support, new

parsers

New challenges

• Rate of finding bugs 5x
• Lots more users = more exposure

• Rate of fixing only 1.2x…
• Not everyone is a suitable (core) contributor

• How to collaborate more effectively?
• Tips & tricks are welcome

Tool verification

Tool verification is hard
• How to keep up with OS and tool updates?

Everyone does their own(?)
• Open-source effort for tool verification?

Please involve us if you’re working on this

Community use-cases

Besides forensics / blue team stuff…

• Investigating actor infrastructure at scale

• OT security + compliance insights at scale

Actor tracking at scale
• Put the focus on analysis, skip the “boring” stuff
• Immediate actionable access from any source data

• Uniformity in methodology, results and reporting
• Enforces standardization in analyst tooling too

• Framework and Python is accessible for analysts
• Custom pipelines and analysis scripts for actor tools
• Centralized knowledge, usable on all current and future

source data

OT insights at scale
Limited ability to run software on OT devices

Old hard- and software, stability concerns, certification/warranty,
connectivity
Big % of fleet

Still need visibility
(Cyber) security monitoring, compliance

Current solution: a guy in a golf cart

OT insights at scale
Creative problem solving

Backups are created for disaster recovery
… backups can be inspected with Dissect!

Link backup creation to a processing workflow
Parse all relevant artefacts for security and compliance
Security logs, USB history, …

Insights within minutes, rather than driving around campus for hours

Takeaways

• Dissect as your central processing framework
• Consistent quality and verifiable

• Reusability of tools on any source material

• … and more we don’t have time for!
• Transparent analysis on FDE
• Mobile and appliance analysis
• Red Team use-cases

$ pip install dissect

fox-it/dissect

Thank you!

Get involved:

dissect@fox-it.com

