FOXI

partof nccg

Dissect 1s a pure Python, no
dependencies, open source, forensic

investigation framework.

Goal: Parse any high-level artefact at scale no
matter the container 1t resides 1in.

Developed by Fox-IT (part of NcC group) and used (and contributed to) by
government, cybersecurity firms and other private organizations.

N | §' FoxXIT

part of nccgroup

Introduction Dissect: workflow

Analyst

W %q

Process artefacts us
Dissect Framework

ing

\Investigative materi

y

_

)

Output:
Records
Or:

JSON
CSv

Store output on disk
or in SIEM for analysis

Ceadable information/

~

/

N |

FOXIT

part of nccgroup

Introduction Dissect: usage

target-query -f commandhistory Evidence.raw

Use Dissect to parse command
history from raw disk.

Analyst [
¥ 32V =)

_

L]

Evidence.raw
(Linux server)

N

v

Dissect will:

» ldentify the target .raw file as a full disk image.

» ldentify and read the EXT4 filesystem

» ldentify a Linux-like operating system

» Run the commandhistory plugin
» lterate user accounts for Linux /etc/passwd
» Look for common command history files in

home directories of users

» Yield record for each line in found history file

<unix/history hostname=‘ubuntu’, domain=None,
ts=None, order=0, command=‘whoami’, shell=‘bash’, source=¢/root/.bash history’,

user_id=@’, user_group=‘0’, user_ home=¢/root/’> § ‘ v FOXIT

part of nccgroup

Bringing “it just works” to DFIR

from dissect.target.target import Target

t
list(t.users())

Target.open(

’i., A
Y am

Shared Folder
of running VM

-

[Parse container]

|

NTFS

|

EXT4

[Windows]

~

[

Linux

]

Ilter SAM for
users

[

I

Iter ProfilePath
in registry for
users

Iter /home/*
for users

|

lter /etc/passwd
for users

]

[

Yield <user> records

v

_

FOXIT

part of nccgroup

NV

Dissect under the hood

/ Dissect components \
[Artefact [Syslog][Registry][MFT][.]]

esystems _exne J(wres J(wwrs) (e)] |
[votumes o1 (w2) (s J(womao) ()|
[contaners [_eon) (wor] (w0 J(Case ()]

Dissect plugins are
the parsers that [Loaders l VMX " VBK ll VMCX ll KAPE ll Raw ll . l I
process the data.

Dissect loaders are
the glue that makes
it all work
together.

ll‘

target-query -f <artefact> /systems/*

target-query -f <artefact> /systems/*

target-query - ... *.EOL

target-query -t ... *.vmx / *.vmdk

target-query -t ... *.vmcx / *.vhdx

N | ' FoxIT

part of nccgroup

target-query -f ... *.vma

N | ' FoxIT

part of nccgroup

target-query -f ... smb://...

target-query -t ... \
| rdump -w json://

target-query -t ... \
| rdump -w csv://

target-query -t ... \
| rdump -w splunk://<ip>:1337

target-query -t ... \
| rdump -w elastic://<ip>:1337

What you get

Collection

e acquire

Cool stuff

e target-diff
 target-info
* target-mount
* target-query
 target-shell

Also cool

 target-dd

e target-fs
 target-inspect
 target-qgqfind

* target-reg

* target-yara

N | ¢ FoxIT

Dissect ‘children’ or child-plugins

Targets can have sub-targets, referenced
within Dissect as f‘children”’.

Example of a child is a Docker-container running on
a target that runs Docker as a ‘hypervisor’.

oooooooooooooo

Hypervisors are transparent

Artifacts become reachable through
(multiple Layers of) hypervisors.

‘== A child-plugin 1s just another layer to parse

O

= through, like a file-system or container format.

Supported ‘Hypervisors’

Dissect has support for various
‘hypervisors’, example of these are:

[Hyper-v, VMWare {workstation, player, ESXi},
Virtualbox, Proxmox, Docker, ...]

And some Dissect doesn’t support (yet):
[XenServer, LXC/LXD, ...]

oooooooooooooo

Child arguments

All the target-{query, fs, shell} tools
support the following child arguments:

--list-children # prints a list of identified children

\.

[Windows Target]

[Windows Subsystem for Linux (WSL)]
[Docker container, ..]

[VMWare Workstation Virtual Machine,."l)

N |

--children # runs command on all child-targets

--child # sets specific child-target as the new target

--recursive # makes --list-children and --children recursive
€ Example of child targets: R

FOXIT

part of nccgroup

Demo: Matryoshka-image

< Standing on the shoulders of giants.txt >

Contributor - \)\/\
|
|

”

Commit History for dissect.target/dissect/target/plugins/child on
~10 authors from multiple organizations since jul 2022

cat giants.txt
[“cecinestpasunepipe”, “JSCU-CNI”, “lhaagsma”,
“martinvanhensbergen”, “Miauwkeru”, “otnxSl”, “pyrco”,

“Schamper”, “sulonl, “Zawadidone”]
N | ' FoxiIt

part of nccgro

root@pve:~/dev/fox# I

N | ' FoxIT

part of nccgroup

from dissect.target.target import Target

_, ¢ = list(Target.open("local").list _children())[6] # Get info about 'parent' from 'local' pve.
<target/child hostname='pve' domain=None type='proxmox' name='Never' path='/etc/pve/qemu-server/106.conf'>

t = Target.open(str(c.path))
index = '<parent>'

print(f"{index:<17} type: {c.type:<19} name: {c.name:<6} os: {t.os:<8} {t.version:<48} hostname: {t.hostname}")
for index, c¢ in t.list_children(recursive=True):

ct = t.open_child(index)
print(f"{index:<17} type: {c.type:<19} name: {c.name:<6} os: {ct.os:<8} {ct.version:<48} hostname: {ct.hostname}")

N | ' FoxIT

part of nccgroup

from dissect.target.target import Target

_, ¢ = list(Target.open("local").list_children())[6] # Get info about 'parent' from 'local' pve.
<target/child hostname='pve' domain=None type='proxmox' name='Never' path='/etc/pve/qemu-server/106.conf'>

t = Target.open(str(c.path))
index = '<parent>'

print(f"{index:<17} type: {c.type:<19} name: {c.name:<6} os: {t.os:<8} {t.version:<48} hostname: {t.hostname}")

for index, c¢ in t.list_children(recursive=True):
ct = t.open_child(index)
print(f"{index:<17} type: {c.type:<19} name: {c.name:<6} os: {ct.os:<8} {ct.version:<48} hostname: {ct.hostname}")

root@pve:~/dev/fox# |

Code is the product

* Library code is first class citizen, CLI tools are secondary
. . contributions need a lot of attention

* Centered around familiar Python APIs
* Prioritize familiarity instead of reinventing the wheel

* Promotes custom tool development

oooooooooooooo

In [1]: t.hostname

‘e target-shell --python

In [2]: t.version
Outl2]: '"Cent0S Linux 8'

In [3]: t.fs.path("/etc/hosts").read_text()

Out[3]: "127.0.0.1 localhost localhost.localdomain localhost4 localhost4.lo
caldomaind\n::1 localhost localhost.localdomain localhost6 localhost6
. localdomain6\n'

In [4]: from dissect.cstruct import dumpstruct
In [5]: dumpstruct(t.filesystems[1].get("/etc/hostname").entry.inode)

00000000
00000010
00000020
00000030
00000040
00000050
00000060
00000070
00000080
00000090
000000a0

struct xfs_dinode:
- di_magic: 0x494e
- : 0x81la4
- di_version: 0x3

- di_format: 0x2

- di_onlink: 0x0

— di_uid: 0x0

- di_gid: 0x0

N |

FOXIT

part of nccgroup

Open-source!

e Since 4t of October 2022!
* Open-source? For a more secure society!

* High adoption rate, number of contributors picking up
* Government, competitors, students, researchers

* Incredible, high-quality contributions

 DPAPI decryption, Velociraptor support, improved Linux support, new
parsers

§ | ¥ FoxIT

New challenges

e Rate of finding bugs 5x

* Lots more users = more exposure
e Rate of fixing only 1.2x...

 Not everyone is a suitable (core) contributor
 How to collaborate more effectively?

* Tips & tricks are welcome

fox-it / dissect.target

(») Issues 200 i1 Pull requests 48

§ | FOXIT

Tool verification

Tool verification is hard

e How to keep up with OS and tool updates?
Everyone does their own(?)

 Open-source effort for tool verification?

Please involve us if you’re working on this

N | ' FoxIT

part of nccgroup

9 Community use-cases

Besides forensics / blue team stuff...
* Investigating actor infrastructure at scale

 OT security + compliance insights at scale

N | ' FoxIT

part of nccgroup

Actor tracking at scale

Put the focus on analysis, skip the “boring” stuff

 Immediate actionable access from any source data
Uniformity in methodology, results and reporting

* Enforces standardization in analyst tooling too
Framework and Python is accessible for analysts
Custom pipelines and analysis scripts for actor tools

* Centralized knowledge, usable on all current and future
source data

§ | FOXIT

OT insights at scale

Limited ability to run software on OT devices
Old hard- and software, stability concerns, certification/warranty,
connectivity
Big % of fleet

Still need visibility
(Cyber) security monitoring, compliance

Current solution: a guy in a golf cart

§ | FOXIT

OT insights at scale

Creative problem solving
Backups are created for disaster recovery
.. backups can be inspected with Dissect!

Link backup creation to a processing workflow
Parse all relevant artefacts for security and compliance
Security logs, USB history, ...

Insights within minutes, rather than driving around campus for hours

§ | FOXIT

IELGEVENR

Dissect as your central processing framework

* Consistent quality and verifiable
Reusability of tools on any source material

... and more we don’t have time for!
* Transparent analysis on FDE
* Mobile and appliance analysis
 Red Team use-cases

N | ¢ FoxIT

Thank you!

pip 1nstall dissect

Get 1nvolved:
() fox-it/dissect
dissect@fox-it.com

