Ultrafast! Lua JSON Parsing

Writing a Lua/JSON encoder + decoder as a LuaJIT module

Adam lvora
FOSDEM 2026

At the time of submitting the talk proposal, writing “Fastest” might have been false advertising.

About me

Software engineer at BeamNG:
> Soft-body physics vehicle simulator. *% BeamNG ol
» Closed-source C++ engine, Lua code ’

open-source (not free as in free beer).
| focus on:
> Linux port,
» Sandboxing untrusted Lua code,
» Hacking on LuaJIT.

2/ 71

LuadIT

Just-In-Time Compiler (JIT) for the Lua programming language.
» Lua is a small embeddable scripting language popular in game development.
» Comes with a high-performance interpreter.
» Compatible with Lua 5.1 API.

Why do we use LuaJIT?
1. Itis small (we run a VM for every vehicle in a single thread).
2. ltis fast (some BeamNG systems run 2000 times per second).

3/ 71

The problem

» JSON: human-readable data interchange format.
» Lua: small embeddable scripting language popular in game development.

JavaScript Object Notation (string) < Luatable (object)
] |
"{\"fOO\"23.5,\"31‘1‘\"I" + {
n [\“x\",true,{}]}” [“fOO"] — 35’
[Ilarrll] — {"X" s true, {}}
}

» Concerned not only about parsing, but also construction of Lua table.

4/ 71

There’s no need to reinvent the wheel...

1. C++ libraries:
» RapidJSON: https://github.com/Tencent/rapidjson
> simdjson: https://github.com/simdjson/simdjson
2. Pure Lua libraries:
> json.lua: https://github.com/rxi/json.lua
> lunajson: https://github.com/grafi-tt/lunajson
3. Lua libraries using C API:

Lua CJSON: https://github.com/mpx/lua-cjson
RapidJSON bindings: https://github.com/xpol/lua-rapidjson
lua-simdjson: https://github. com/FourierTransformer/lua-simdjson
jit-cjson from OpenResty

> not open-source :/

v

vvyy

5/ 71

https://github.com/Tencent/rapidjson
https://github.com/simdjson/simdjson
https://github.com/rxi/json.lua
https://github.com/grafi-tt/lunajson
https://github.com/mpx/lua-cjson
https://github.com/xpol/lua-rapidjson
https://github.com/FourierTransformer/lua-simdjson

Solution: Pure Lua libraries

json.lua, lunajson, ...
> easy integration,
> easily extensible,
» quite slow (JSON — Lua less than 100 MB/s).

6/71

Solution: C++ libraries

rapidjson, simdjson, ... 00 s ey
40001 twitter,json
» very fast (simdjson advertises 3500
gigabytes per seconds JSON g
. = 2500
parsing), £ oo
» extra Lua <+ C++ bindings needed, F 1500
> this can make it slower -
» simdjson not easily extensible (and

0
nlohmann::json Rapid)SON Serde (Rust) yyjson simdjson

only supports strict JSON . .
decoding). Figure: JSON Parsing Performance from
https://simdjson.org/.

7/71

https://simdjson.org/

Solution: Lua libraries using C API

Lua CJSON, RapidJSON bindings, lua-simdjson
> easy integration,
> as extensible as the underlying C++ library,
» Lua C APl is (surprisingly?) not very performant.

8/ 71

Time to reinvent the wheel.

Who put comments in my JSON?! aka JBeam (SJSON)

brakepads. jbeam:
{
//BASIC BRAKE PADS
"brakepad_F": {
"information":{
"authors"="BeamNG"

name: "Basic Front Brake Pads",
"value":[150 3 16],
},

}
This is a valid JBeam file!

9/ 71
.

Who put comments in my JSON?! aka JBeam (SJSON)

brakepads. jbeam:

{
//BASIC BRAKE PADS
"brakepad_F": {
"information":{
"authors'"="BeamNG"
name: "Basic Front Brake Pads"

"value":[150 3 16],
},

10/ 71
.

JBeam (SJSON) format

Like a JSON, but:
» single-line // and multi-line /*x */ comments are allowed,
> object keys do not have to be enclosed in quotes,
» all commas are optional,
» = can be used instead of a colon :.
Also called Simplified JSON: https://github.com/Autodesk/sjson.

11/ 71

https://github.com/Autodesk/sjson

JBeam parsing alternatives

» Rigid parsers (simdjson) are not easily usable.
» We rolled our own parser written in pure Lua.

12/ 71

beamng-json.lua

> Pure battle-tested Lua implementation, 300 lines of code.

» Hand-written recursive descent parser.
» As JBeam is a superset of JSON, it is also a JSON parser.
> Not a validating parser though!

> Written to be JIT friendly as we use LuaJIT.

13/ 71

beamng-json.lua

1

10

11

local function decode(str)
if str == nil then return nil end
gcrunning = collectgarbage("isrunning")
collectgarbage("stop")
s = str
local ¢, i = skipWhiteSpace(1)
local result = peekTable[c] (i)
s = nil
if gcrunning then collectgarbage('"restart") end
return result

end

14/ 71

beamng-json.lua: pausing GC

1

10

11

local function decode(str)

if str == nil then return nil end

gcrunning = collectgarbage("isrunning")
collectgarbage("stop") -- disable garbage collection
s = str

local c, i = skipWhiteSpace(1)

local result = peekTable[c] (i)

s = nil

if gcrunning then collectgarbage('"restart") end
return result

end

15/ 71

beamng-json.lua: whitespace skipping

1

10

11

local function decode(str)

if str == nil then return nil end

gcrunning = collectgarbage("isrunning")
collectgarbage("stop") -- disable garbage collection
s = str

local c, i = skipWhiteSpace(1)

local result = peekTable[c] (i)

s = nil

if gcrunning then collectgarbage('"restart") end
return result

end

16 / 71

beamng-json.lua: skipWhiteSpace

1 local function skipWhiteSpace(i)
2 local ¢ = byte(s, 1); i =1 + 1

3 -— matches space tab newline or comma

4 while (¢ "= nil and c¢ <= 32) or ¢ == 44 do

5 c = byte(s, i); i =1 + 1

6 end

7 if ¢ == 47 then c, i = skipCommentSpace(i) end -- / -- read comment
8 return c, i - 1

9 end

» Whitespace skipping can take a substantial portion of the parsing time!

17/ 71

beamng-json.lua: peekTable

1

10

11

local function decode(str)

if str == nil then return nil end

gcrunning = collectgarbage("isrunning")
collectgarbage("stop") -- disable garbage collection
s = str

local ¢, i = skipWhiteSpace(1)

local result = peekTable[c] (i)

s = nil

if gcrunning then collectgarbage('"restart") end
return result

end

18/ 71

beamng-json.lua: What do we peek on?

n: null

t: true

f: false

I: Infinity

0-9, +, -: numbers
": strings

vVvvyVvYVYyyypy

/: comments?

%in SUSON/JBeam only. 19 / 71
.

beamng-json.lua: peekTable value

Some of them are simple:
1 peekTable[116] = function(si) -- ¢
2 local bl, b2, b3 = byte(s, si+l, si+3)
3 if bl == 114 and b2 == 117 and b3 == 101 then —-- rue
4 return true, si + 4

5 else

6 jsonError('Error reading value: true', si)
7 end

s end

20/ 71

beamng-json.lua: peekTable object

10

11

12

13

14

peekTable[123] = function(si) -- {

local result = tablenew(0, 3)

local c, i = skipWhiteSpace(si + 1)

while ¢ "= 125 do -- }
key, i = readKey(i, c)
repeat ¢ = byte(s, 1); i =i + 1 -
until (¢ == nil or ¢ > 32) and ¢ "= 44 --
result[key]l, i = peekTable[c](i - 1)
repeat ¢ = byte(s, 1); i =i + 1 -=
until ¢ "= 44 and (c == nil or c > 32) --

skipWhitespace
whitespace or comma

skipWhitespace
whitespace or comma

if ¢ == 47 then c, i = skipCommentSpace(i) end -- / -- read comment

end
return result, i + 1
end

21/ 71

beamng-json.lua: peekTable object — Preallocation

1 peekTable[123] = function(si) -- {

2 local result = tablenew(0, 3) -- narray = 0, nhash = 3
3 local c, i = skipWhiteSpace(si + 1)

4 while ¢ "= 125 do -- }

5 key, i = readKey(i, c)

6 repeat ¢ = byte(s, i); i =i + 1 -- skipWhitespace

7 until (¢ == nil or ¢ > 32) and ¢ "= 44 -- whitespace or comma

8 result[key]l, i = peekTable[c](i - 1)

9 repeat ¢ = byte(s, 1); i =i + 1 -- skipWhitespace

10 until ¢ "= 44 and (c == nil or ¢ > 32) -- whitespace or comma

11 if ¢ == 47 then c, i = skipCommentSpace(i) end -- / -- read comment
12 end

13 return result, i + 1

14 end 22/ 71

beamng-json.lua: peekTable object — Inlining

10

11

12

13

14

peekTable[123] = function(si) -- {

local result = tablenew(0, 3)

local c, i = skipWhiteSpace(si + 1)

while ¢ "= 125 do -- }
key, i = readKey(i, c)
repeat ¢ = byte(s, 1); i =i + 1 -—
until (¢ == nil or ¢ > 32) and ¢ "= 44 --
result[key]l, i = peekTable[c](i - 1)
repeat ¢ = byte(s, i); i = i + 1 ==
until ¢ "= 44 and (c == nil or ¢ > 32) --

skipWhitespace
whitespace or comma

skipWhitespace
whitespace or comma

if ¢ == 47 then c, i = skipCommentSpace(i) end -- / -- read comment

end
return result, i + 1
end

23 /71

Benchmarking protocol

» LuadIT v2.1 rolling (707c12b), Ryzen 5600G (3.9 GHz), Fedora 42
» Measuring full passes through the datasets.

1. Run passes until either 1000 passes are complete or 10 seconds pass.

> Collect garbage before every pass.
» Flush JIT cache before every pass.

2. Take the mean pass time.
3. Repeat previous steps 5 times, take the mean of the means and calculate
throughput (i€).

file size

Further reducing variance:
> nice -n -20
» Forcing the same CPU core using taskset. on) 71
)

JBeam dataset

All 4,950 JBeam (SJSON) files from the latest release of BeamNG.drive.
> Describes the physics properties and structure of all the vehicle parts.
» Full of numbers and very short strings.

Front ||
{"group”:["firewall”,"body"]1},
[“w2rr , -0.72, 0.89],
[w2 , -0.76, 0.955],
["w2l", ©.25, -8.76, ©.955],
["w21l", ©.615, -0.72, 0.89],

{"nodeweight":0.5},
("gf‘OUP"ll. illar”},
i ", =@.58, -0.51, 1.11, {"group”:["a pillar",
.58, -0.415, 1.06],
, -0.465, 1.088, {"group”:"",
,+-0.51,+1.11,-{"group™:["a pil
,-0.415, :1.06],
, -90.465, 1.088, {"group™:"","collision":

{"nodeweight":0.7},
{"group”:"b_pillar'},
["bérr", -0.60, ©.29, 1.14], Selected Nodes: 3
Total Mass: 1.50 kg
Bounding Box: Min(0.49, 1.06, 0.41) - Max(0.58, 1.11, 0.51)

["b7rr", -0.60, 0.41, 1.14],
[. 0.60,0.29.1.14],

Benchmark on the JBeam dataset (93.8 MB)

Our parser is the fastest!

JIT off JIT on
beamng-json.lua 30.5 MB/s 222.6 MB/s
json.lua - -
lunajson - -
lua-simdjson - -

26 /71

JSON dataset

20 files from https://github.com/simdjson/simdjson-data:

127275 apache_builds.json
2251051 canada.json

1727204 citm_catalog.json
65132 github_events.json

11812 google_maps_api_compact_response.json

26102 google_maps_api_response.json
3327831 gsoc—-2018.json

220346 instruments.json

2983466 marine_ik.json

723597 mesh.json

1577353 mesh.pretty.json

150124 numbers.json

510476 random.json

11356 repeat.json

10075 twitter_api_compact_response.json
15253 twitter_api_response.json
562408 twitterescaped.json

631515 twitter.json

42233 twitter_timeline.json

533178 update-center.json

https://github.com/simdjson/simdjson-data

Benchmark on the JSON dataset (15.5 MB)

Our parser is not the fastest anymore :/

beamng-json.lua
json.lua

lunajson
lua-simdjson

JIT off

31.9 MB/s
16.1 MB/s
37.9 MB/s
313.7 MB/s

JIT on
240.7 MB/s
40.1 MB/s
43.7 MB/s
324.4 MB/s

28 /71

twitter.json dataset

A single file with Twitter statuses, JSON parsers commonly use it for testing, also
part of the JSON dataset.

{ "statuses": [
{
"metadata": {
"result_type": "recent",
"iso_language_code": "ja"
3,
"created_at": "Sun Aug 31 00:29:15 +0000 2014",
"id": 505874924095815700,
"text": "... <JAPANESE CHARACTERS>",

} 29/ 71

Benchmark on twitter.json (631 kB)

beamng-json.lua
json.lua

lunajson
lua-simdjson

JIT off

34.2 MB/s
19.8 MB/s
70.6 MB/s
501.7 MB/s

JIT on
230.9 MB/s
78.4 MB/s
83.7 MB/s
500.7 MB/s

30/ 71

Towards a faster JSON Lua parser

beamng-json.lua parser:
» Pure Lua, beats other pure Lua parsers in the benchmark.
» Performance heavily relies on JIT.
» Slower on JSON files than Lua bindings for simdjson.

Can going closer to the source help us?

31/ 71

LuadJIT source code

> C99 + hand-written assembly (we don’t need to touch).
» 56 1j *.cand 14 1ib_x*.c files.

» We are only interested in 1j_serialize.c (serialization) and 1ib_buffer.c
(string buffers).

32/ 71

LuadJIT string buffers

As LuadlT strings are immutable and interned, the string buffer structure is there

for efficient string manipulation. From https://luajit.org/ext_buffer.html:

The string buffer library allows high-performance manipulation of
string-like data. Unlike Lua strings, which are constants, string buffers
are mutable sequences of 8-bit (binary-transparent) characters. Data can
be stored, formatted and encoded into a string buffer and later converted,
extracted or decoded.

» The string buffer sbx consists of:

> read pointer const char *r,
> write pointer char *w.

> If r == w, buffer is empty.

33/ 71

https://luajit.org/ext_buffer.html

LuaJIT buffer serialization

= w [=

» Implemented in 1j_serialize.c.

» Internal binary format, but we can borrow the code for creating a JSON
encoder and decoder.

buf = require('string.buffer').new()

buf:encode({1, 2, 3}) -- appends to buffer (moves w ptr)
obj = buf:decode() -- consumes from buffer (moves r ptr)
assert(obj[1] == 1 and obj[2] == 2 and obj[3] == 3)

34/ 71

beamng-json.c: initial version

» Almost one-to-one rewrite of beamng-json.lua.
» Bound checking has to be explicit now.

35/ 71

beamng-json.c: decode

1 char #*serialize_json_get(char *r, SBufExt #*sbx, TValue *o0) {
2 char *w = sbx->w;

3 r = skip_white_space(r, w, sbx);

4 if (LJ_LIKELY(r < w)) {

5 switch (xr) {

6 case '{':

7 case '[':

8 return peek_table(r, w, sbx, o);
9 break;

10 }

11 }

12 }

36/ 71

beamng-json.c: skipWhiteSpace

Naive but working implementation:

1 char *skip_white_space(char *r, char *w, SBufExt *sbx) {

2 while (LJ_LIKELY(r < w) && (¥r <= ' ' [| *r == ' ")) {

3 r++;

4 }

5 if (LIJ_LIKELY(r < w) && *r == '/') {

6 r = skip_comment_space(r + 1, w, sbx); // / -- read comment
7 }

8 return r;

o }

37/ 71

beamng-json.c: peekTable value

10

11

12

13

14

char *peek_table(char *r, char *w, SBufExt *sbx, TValue *o0) {
if (LJ_LIKELY(r < w)) {
switch (*r) {
case 't': {

}

const char val[4] = "true'";
if (LJ_UNLIKELY(r + sizeof(val) > w ||
strncmp(r + 1, val + 1, sizeof(val) - 1) != 0)) {
1j_err_callerv(sbufL(sbx), LJ_ERR_BADJSON_INVALIDVAL, val);
}
setboolV(o, 1);
return r + sizeof(val);

Pl

38 /71

beamng-json.c: peekTable value

10

11

12

13

14

char *peek_table(char *r, char *w, SBufExt *sbx, TValue *o0) {
if (LJ_LIKELY(r < w)) {
switch (xr) {
case 't': {

}

const char val[4] = "true'";
if (LJ_UNLIKELY(r + sizeof(val) > w
strncmp(r + 1, val + 1, sizeof(val) - 1) != 0)) {
1j_err_callerv(sbufL(sbx), LJ_ERR_BADJSON_INVALIDVAL, val);
}
setboolV(o, 1);
return r + sizeof(val);

Pl

39/ 71

beamng-json.c: peekTable array

1

10

11

12

13

14

case '[': {

}

GCtab *t = 1j_tab_new(sbufL(sbx), 4, hsize2hbits(0));
int i = 1;
settabV(sbufL(sbx), o, t);
r = skip_white_space(r + 1, w, sbx);
while (LJ_LIKELY(r < w) && *r !'= ']1'") {
TValue *v = 1j_tab_setint(sbufL(sbx), t, i++);

r = peek_table(r, w, sbx, v);
r = skip_white_space(r, w, sbx);

}

if (LJ_LIKELY(r < w && *r == '1"')) {
return r + 1;

}

40 / 71

beamng-json.c: peekTable array — Preallocation

1

10

11

12

13

14

case '[': {

}

GCtab *t = 1j_tab_new(sbufL(sbx), 4, hsize2hbits(0));
int i = 1;
settabV(sbufL(sbx), o, t);
r = skip_white_space(r + 1, w, sbx);
while (LJ_LIKELY(r < w) && *r !'= ']1'") {
TValue *v = 1j_tab_setint(sbufL(sbx), t, i++);

r = peek_table(r, w, sbx, v);
r = skip_white_space(r, w, sbx);

}

if (LJ_LIKELY(r < w && *r == '1"')) {
return r + 1;

}

41/ 71

Benchmark on the JBeam dataset (93.8 MB)

JIT off JIT on
beamng-json.lua 30.5MB/s 222.6 MB/s
beamng-json.c
e initial version 219.5 MB/s 216.3 MB/s

No speedup when rewriting to C.
» Optimized LuaJIT code can be quite fast.

» We’re not done yet, time for optimizations.

42/ 71

Optimizations: Branch predictor hints

» LJ_LIKELY and LJ_UNLIKELY are existing macros from LuaJlT,
» We put the annotations to the places where the unlikely path is an error state.

#define LJ_LIKELY(z) __builtin_exzpect(!!(z), 1)
#define LJ_UNLIKELY(z) __builtin_ezpect(!!(z), 0)

43 /71

Optimizations: Number parsing

10

11

12

Initial implementation:

char *read_number(char *r, char *w, SBufExt #*sbx, TValue *o) {

char *rbegin = r; char back = *r;

r=...; // find the end character of the number

TValue tmp;

StrScanFmt fmt = 1j_strscan_scan(rbegin, r - rbegin, &tmp,

if (fmt == STRSCAN_ERROR) {
1j_err_caller(sbufL(sbx), LJ_ERR_BADJSON_INVALIDNUM) ;
return NULL;

}

o->u64 = tmp.u64;

return r;

50D g

44 / 71

Optimizations: Number parsing

10

11

Simplify the fast path:

char *read_number (char *r, char *w, SBufExt #*sbx, TValue *0) {
char *rbegin = r;
TValue tmp; tmp.n = 0.0;
while (LJ_JSON_LIKELY(r < sbx->w)) {
const unsigned char digit = (unsigned char) (xr - '0');
if (digit > 9) break;
tmp.n = 10 * tmp.n + digit;
r++;

45/ 71

Optimizations: Number parsing

10

11

12

13

case '.': {

lua_Number f = 0, scale = 0.1;

T++;

b

while (LJ_JSON_LIKELY(r < sbx->w)) {

const unsigned char digit
if (digit > 9) break;

f += digit * scale;

scale *= 0.1;

r++;
b

tmp.n += f;
break;

(unsigned char) (xr - '0');

46 / 71

Optimizations: Number parsing

» For parsing floats of the form 6.02+e23, 1j_strscan_scan is still used.
» Focus on optimizing the common code path.

47 /1 71

Optimizations: Inlining

LuadIT contains the appropriate macros again:

#define LJ_INLINE <nline
#define LJ_AINLINE inline

_attribute__ ((always_inline))

» LJ_AINLINE is used for most functions in the parser.

48 / 71

Optimizations: Scratch buffer

> Use a profiler to check bottlenecks.
> | used perf and Visual Studio profiler.

» Substantial amount of time waas spent in 1j_alloc_realloc, which is called
when we need to grow a Lua table.
» But we don’t know the size of the table before we parse all its children.
> Also this happens at every recursion level at the same time.

» Behold the scratch buffer optimization!

49 / 71

Optimizations: Scratch buffer

10

11

12

13

14

char *1j_json_read_array(char *r, SBufExt *sbx, uint32_t scr) {

while (LJ_JSON_LIKELY(r < sbx->w) && *r != ']1') {
uint32_t v = 1j_json_scratch_pushn(L, 1);
r = 1j_json_deserialize_peek(r, sbx, v);
r = 1j_json_skip_white_space(r, sbx);
asize++;
}
t = 1j_tab_new_ah(L, asize + 1, 0);
cTValue *base = &1lj_json_scratch[lj_json_scratch_popn(L, asize)];
TValue *array = tvref(t->array) + 1;
memcpy (array, base, asize*sizeof(TValue));
settabV(L, &1j_json_scratch[scr], t);
return r;

50/ 71

Optimizations: Scratch buffer

© 0 N O e W N

_ e
= o

12

TValue *1j_json_scratch = 1j_mem_newvec(L, 32, TValue);
// allocate space for n TValues and return index of the first one on the scratch
uint32_t 1j_json_scratch_pushn(lua_State *L, uint32_t n) {
if (LJ_UNLIKELY(1lj_json_scratch_count + n >= 1j_json_scratch_capacity)) {
1j_mem_growvec(L, 1lj_json_scratch, 1j_json_scratch_capacity, ...);
¥
uint32_t scr = 1j_json_scratch_count;
1j_json_scratch_count += n;
return scr;
+
// pop n TValues on the stack and return index of the first one
uint32_t 1j_json_scratch_popn(lua_State *L, uint32_t n) {
1j_json_scratch_count -= n;
return 1j_json_scratch_count;

}
51/ 71

Optimizations: Scratch buffer

Dynamic stack for temporary Lua values.

We only deal with one dynamically allocated scratch buffer.

While parsing arrays/objects we can always create a table of exact size.
TValues are still copied from the scratch buffer, but realloc copy is avoided.

You cannot do this on Lua level (at least | tried and it doesn’t bring
performance improvement).

vVvyYyyVvyy

52 /71

Optimizations: Intrinsics

» SSE2, SSE4, ARM Neon versions.

» Two primitives:
1. Skip until single character — find end of single-line or multi-line comments.
2. Skip to string end — find next quote or \ character.

» Similar to RapidJSON implementation.

53/ 71

Optimizations: Intrinsics — SSE4 skipToStringEnd

10

11

12

Acts on 16-byte chunks.
char *1j_json_skip_to_string_end_simd(char *p, SBufExt *sbx) {

const char strend[16] = "\"\\";

const __m128i w = _mm_loadu_si128((const

for (; p <= sbx—>w - 16; p += 16) {
const __ml128i s = _mm_loadu_sil128((const
const int r = _mm_cmpistri(w, s,

_SIDD_UBYTE_OPS | _SIDD_CMP_EQUAL_ANY | _SIDD_LEAST_SIGNIFICANT);

if (r !'= 16) return p + r;

}

return NULL;

_m128i *) (&strend[0]));

_m128i *)(p));

54 /71

Optimizations: Intrinsics — SSE4 skipToStringEnd

_mm_cmpistri does all the heavy lifting:

Search set (w): DI

Input(s):‘x|x|x|x|\|x|x|x|x|x|xi:'7|?|?
5

?|?

L — — Ignored in this iteration

r = 4 (first match found)

55/ 71

Let’'s benchmark again.

Benchmarking protocol

» LuadIT v2.1 rolling (707c12b), Ryzen 5600G (3.9 GHz), Fedora 42
» Measuring full passes through the datasets.

1. Run passes until either 1000 passes are complete or 10 seconds pass.

> Collect garbage before every pass.
» Flush JIT cache before every pass.

2. Take the mean pass time.
3. Repeat previous steps 5 times, take the mean of the means and calculate
throughput (i€).

file size

Further reducing variance:
> nice -n -20
» Forcing the same CPU using taskset. 6) 71
s

Benchmark on the JBeam dataset (93.8 MB)

Our parser is the fastest again!

JIT off JIT on
beamng-json.lua 30.5MB/s 222.6 MB/s
beamng-json.c
e initial version 219.5MB/s 216.3 MB/s
o final version 368.6 MB/s 370.0 MB/s

57/ 71

Benchmark on the JBeam dataset (93.8 MB) — Ablations

JIT off JIT on
beamng-json.lua 30.5MB/s 222.6 MB/s
beamng-json.c
e initial version 219.5 MB/s 216.3 MB/s
o final version® 368.6 MB/s 370.0 MB/s
e no branch hints 356.0 MB/s 353.2 MB/s
e no scratch buffer 288.0 MB/s 292.3 MB/s
e no inlining 337.8 MB/s 335.4 MB/s
e no intrinsics 335.8 MB/s 336.1 MB/s
e SSE4 intrinsics 369.0 MB/s 379.7 MB/s

3SSE2 intrinsics. 58 / 71

Benchmark on the JSON dataset (15.5 MB)

Also beats lua-simdjson on the JSON parsing dataset.

JIT off JIT on
beamng-json.c 704.7 MB/s 698.3 MB/s
beamng-json.lua 31.9 MB/s 240.7 MB/s
json.lua 16.1 MB/s 40.1 MB/s
lunajson 37.9MB/s 43.7 MB/s
lua-simdjson 313.7 MB/s 324.4 MB/s

59 /71

Benchmark on twitter.json (631 kB)

JIT off JIT on
beamng-json.c 864.8 MB/s 856.8 MB/s
beamng-json.lua 34.2 MB/s 230.9 MB/s
json.lua 19.8 MB/s 78.4 MB/s
lunajson 70.6 MB/s 83.7 MB/s
lua-simdjson 501.7 MB/s 500.7 MB/s

60 / 71

Results from the benchmark

JBeam dataset:

» 45% speedup over pure Lua parser when JIT is on.

» More than 10x speedup over pure Lua parser when JIT is off.
JSON dataset:

> At least 70% faster than 1lua-simdjson.

» More than 10x times faster than pure Lua implementations.

61/ 71

Tips

» Try to combine multiple optimization tricks.

» Focus on the happy common path, uncommon features can be slower (string
with escape characters, scientific numbers).

» Some optimization attempts actually slow the code down, measure regularly.
» Use the profiler to find hotspots.
» Minimize data copying (realloc).

62 /71

Limitations

» The benchmark measures repeated parsing performance, which is not the
metric we really care about.

> We usually parse each .json or .jpeam file once.
» Unstable performance numbers in some cases.

» Check out the "How to Reliably Measure Software Performance” from this talk
(already happened).

63 /71

Are we finished?

JSON encoding

» Not our primary focus, decoding is used more often.
> Let’s write a Lua — JSON encoder for completion®.

“And to fit the title of the talk :) 64 / 71
|

JSON encoding: It’s really simple!

1 char *1j_json_serialize_put(char *w, SBufExt *sbx, cTValue *o0) {
2 if (LJ_JSON_LIKELY (tvisstr(o))) {

3 w = 1j_json_serialize_more(w, sbx, 1);

4 Wt = "

5 w = 1j_json_put_string(w, sbx, strV(o));
6 w = 1j_json_serialize_more(w, sbx, 1);

7 Wt = "

8 } else if (tvisnum(o)) {

9 w = 1j_json_put_number(w, sbx, numV(o));
10 } else if (tvispri(o)) {

1 w = 1j_json_put_bool(w, sbx, itype(o));
12 oL,

65 /71

JSON encoding: It’s really simple!

1 char *1j_json_serialize_put(char *w, SBufExt *sbx, cTValue *o0) {
2 if (LJ_JSON_LIKELY (tvisstr(o))) {

3 w = 1j_json_serialize_more(w, sbx, 1);

4 *xwtt = '

5 w = 1j_json_put_string(w, sbx, strV(o));
6 w = 1j_json_serialize_more(w, sbx, 1);

7 Wt = "

8 } else if (tvisnum(o)) {

9 w = 1j_json_put_number(w, sbx, numV(o));
10 } else if (tvispri(o)) {

1 w = 1j_json_put_bool(w, sbx, itype(o));
12 oL,

66 / 71

JSON encoding: Writing a value

1 char *1j_json_serialize_put(char *w, SBufExt *sbx, cTValue *o0) {
2 if (LJ_JSON_LIKELY (tvisstr(o))) {

3 w = 1j_json_serialize_more(w, sbx, 1);

4 Wt = "

5 w = 1j_json_put_string(w, sbx, strV(o));
6 w = 1j_json_serialize_more(w, sbx, 1);

7 Wt = "

8 } else if (tvisnum(o)) {

9 w = 1j_json_put_number(w, sbx, numV(o));
10 } else if (tvispri(o)) {

1 w = 1j_json_put_bool(w, sbx, itype(o));
12 oL,

67 / 71

JSON encoding: Writing a value is also really simple

1 char *1j_json_put_bool(char *w, SBufExt *sbx, uint32_t itype) {
2 w = 1j_json_serialize_more(w, sbx, 5);

3 switch (itype) {

4 case LJ_TNIL:

5 memcpy (w, "null", 4); w += 4; break;
6 case LJ_TTRUE:

7 memcpy (w, "true", 4); w += 4; break;
8 case LJ_TFALSE:

9 memcpy(w, "false", 5); w += 5; break;
10 }

11 return w;

12}

68 / 71

Let’'s benchmark again.

Benchmark on the JSON dataset — Encoding

Our encoder’s performance is not bad.

JIT off JIT on
beamng-json.lua 426 MB/s 90.2 MB/s
beamng-json.c 224.0 MB/s 223.0 MB/s

json.lua 21.5MB/s 26.9 MB/s
lunajson 32.8 MB/s 42.6 MB/s
lua-simdjson - -

Note: No optimizations were attempted on beamng-json.lua and beamng-json.c.

69 / 71

Benchmark on the JBeam dataset — Encoding

JIT off JIT on
beamng-json.lua 31.1 MB/s 31.2 MB/s
beamng-json.c 586.7 MB/s 590.7 MB/s
json.lua 36.6 MB/s 39.3 MB/s
lunajson 36.7 MB/s 39.4 MB/s

70/ 71

The End; Questions?

Benchmark code:

> https://github.com/aivora-beamng/luajit-json-performance
LuadIT JSON module:

> https://github.com/aivora-beamng/LuaJIT-json
Slides: available at the FOSDEM talk page.

Contact:

» https://github.com/aivora-beamng

» https://www.linkedin.com/in/adam-ivora/

https://github.com/aivora-beamng/luajit-json-performance
https://github.com/aivora-beamng/LuaJIT-json
https://github.com/aivora-beamng
https://www.linkedin.com/in/adam-ivora/

