
Ultrafast1 Lua JSON Parsing
Writing a Lua/JSON encoder + decoder as a LuaJIT module

Adam Ivora

FOSDEM 2026

1At the time of submitting the talk proposal, writing ”Fastest” might have been false advertising.

About me

Software engineer at BeamNG:
▶ Soft-body physics vehicle simulator.
▶ Closed-source C++ engine, Lua code

open-source (not free as in free beer).

I focus on:
▶ Linux port,
▶ Sandboxing untrusted Lua code,
▶ Hacking on LuaJIT.

2 / 71

LuaJIT

Just-In-Time Compiler (JIT) for the Lua programming language.
▶ Lua is a small embeddable scripting language popular in game development.

▶ Comes with a high-performance interpreter.
▶ Compatible with Lua 5.1 API.

Why do we use LuaJIT?
1. It is small (we run a VM for every vehicle in a single thread).
2. It is fast (some BeamNG systems run 2000 times per second).

3 / 71

The problem

▶ JSON: human-readable data interchange format.
▶ Lua: small embeddable scripting language popular in game development.

JavaScript Object Notation (string)

"{\"foo\":3.5,\"arr\":" +

"[\"x\",true,{}]}"

↔ Lua table (object)

{

["foo"] = 3.5,

["arr"] = {"x", true, {}}

}

▶ Concerned not only about parsing, but also construction of Lua table.

4 / 71

There’s no need to reinvent the wheel...

1. C++ libraries:
▶ RapidJSON: https://github.com/Tencent/rapidjson
▶ simdjson: https://github.com/simdjson/simdjson

2. Pure Lua libraries:
▶ json.lua: https://github.com/rxi/json.lua
▶ lunajson: https://github.com/grafi-tt/lunajson

3. Lua libraries using C API:
▶ Lua CJSON: https://github.com/mpx/lua-cjson
▶ RapidJSON bindings: https://github.com/xpol/lua-rapidjson
▶ lua-simdjson: https://github.com/FourierTransformer/lua-simdjson
▶ jit-cjson from OpenResty

▶ not open-source :/

5 / 71

https://github.com/Tencent/rapidjson
https://github.com/simdjson/simdjson
https://github.com/rxi/json.lua
https://github.com/grafi-tt/lunajson
https://github.com/mpx/lua-cjson
https://github.com/xpol/lua-rapidjson
https://github.com/FourierTransformer/lua-simdjson

Solution: Pure Lua libraries

json.lua, lunajson, ...
▶ easy integration,
▶ easily extensible,
▶ quite slow (JSON → Lua less than 100 MB/s).

6 / 71

Solution: C++ libraries

rapidjson, simdjson, ...
▶ very fast (simdjson advertises

gigabytes per seconds JSON
parsing),

▶ extra Lua ↔ C++ bindings needed,
▶ this can make it slower

▶ simdjson not easily extensible (and
only supports strict JSON
decoding). Figure: JSON Parsing Performance from

https://simdjson.org/.

7 / 71

https://simdjson.org/

Solution: Lua libraries using C API

Lua CJSON, RapidJSON bindings, lua-simdjson
▶ easy integration,
▶ as extensible as the underlying C++ library,
▶ Lua C API is (surprisingly?) not very performant.

8 / 71

Time to reinvent the wheel.

Who put comments in my JSON?! aka JBeam (SJSON)

brakepads.jbeam:
{

//BASIC BRAKE PADS

"brakepad_F": {

"information":{

"authors"="BeamNG"

name:"Basic Front Brake Pads",

"value":[150 3 16],

},

...

}

This is a valid JBeam file!
9 / 71

Who put comments in my JSON?! aka JBeam (SJSON)

brakepads.jbeam:
{

//BASIC BRAKE PADS

"brakepad_F": {

"information":{

"authors"="BeamNG"

name:"Basic Front Brake Pads",

"value":[150 3 16],

},

...

}

10 / 71

JBeam (SJSON) format

Like a JSON, but:
▶ single-line // and multi-line /* */ comments are allowed,
▶ object keys do not have to be enclosed in quotes,
▶ all commas are optional,
▶ = can be used instead of a colon :.

Also called Simplified JSON: https://github.com/Autodesk/sjson.

11 / 71

https://github.com/Autodesk/sjson

JBeam parsing alternatives

▶ Rigid parsers (simdjson) are not easily usable.
▶ We rolled our own parser written in pure Lua.

12 / 71

beamng-json.lua

▶ Pure battle-tested Lua implementation, 300 lines of code.
▶ Hand-written recursive descent parser.
▶ As JBeam is a superset of JSON, it is also a JSON parser.

▶ Not a validating parser though!
▶ Written to be JIT friendly as we use LuaJIT.

13 / 71

beamng-json.lua

1 local function decode(str)

2 if str == nil then return nil end

3 gcrunning = collectgarbage("isrunning")

4 collectgarbage("stop")

5 s = str

6 local c, i = skipWhiteSpace(1)

7 local result = peekTable[c](i)

8 s = nil

9 if gcrunning then collectgarbage("restart") end

10 return result

11 end

14 / 71

beamng-json.lua: pausing GC

1 local function decode(str)

2 if str == nil then return nil end

3 gcrunning = collectgarbage("isrunning")

4 collectgarbage("stop") -- disable garbage collection

5 s = str

6 local c, i = skipWhiteSpace(1)

7 local result = peekTable[c](i)

8 s = nil

9 if gcrunning then collectgarbage("restart") end

10 return result

11 end

15 / 71

beamng-json.lua: whitespace skipping

1 local function decode(str)

2 if str == nil then return nil end

3 gcrunning = collectgarbage("isrunning")

4 collectgarbage("stop") -- disable garbage collection

5 s = str

6 local c, i = skipWhiteSpace(1)

7 local result = peekTable[c](i)

8 s = nil

9 if gcrunning then collectgarbage("restart") end

10 return result

11 end

16 / 71

beamng-json.lua: skipWhiteSpace

1 local function skipWhiteSpace(i)

2 local c = byte(s, i); i = i + 1

3 -- matches space tab newline or comma

4 while (c ~= nil and c <= 32) or c == 44 do

5 c = byte(s, i); i = i + 1

6 end

7 if c == 47 then c, i = skipCommentSpace(i) end -- / -- read comment

8 return c, i - 1

9 end

▶ Whitespace skipping can take a substantial portion of the parsing time!

17 / 71

beamng-json.lua: peekTable

1 local function decode(str)

2 if str == nil then return nil end

3 gcrunning = collectgarbage("isrunning")

4 collectgarbage("stop") -- disable garbage collection

5 s = str

6 local c, i = skipWhiteSpace(1)

7 local result = peekTable[c](i)

8 s = nil

9 if gcrunning then collectgarbage("restart") end

10 return result

11 end

18 / 71

beamng-json.lua: What do we peek on?

▶ n: null
▶ t: true
▶ f: false
▶ I: Infinity
▶ 0-9, +, -: numbers
▶ ": strings
▶ /: comments2

2in SJSON/JBeam only. 19 / 71

beamng-json.lua: peekTable value

Some of them are simple:
1 peekTable[116] = function(si) -- t

2 local b1, b2, b3 = byte(s, si+1, si+3)

3 if b1 == 114 and b2 == 117 and b3 == 101 then -- rue

4 return true, si + 4

5 else

6 jsonError('Error reading value: true', si)

7 end

8 end

20 / 71

beamng-json.lua: peekTable object

1 peekTable[123] = function(si) -- {

2 local result = tablenew(0, 3)

3 local c, i = skipWhiteSpace(si + 1)

4 while c ~= 125 do -- }

5 key, i = readKey(i, c)

6 repeat c = byte(s, i); i = i + 1 -- skipWhitespace

7 until (c == nil or c > 32) and c ~= 44 -- whitespace or comma

8 result[key], i = peekTable[c](i - 1)

9 repeat c = byte(s, i); i = i + 1 -- skipWhitespace

10 until c ~= 44 and (c == nil or c > 32) -- whitespace or comma

11 if c == 47 then c, i = skipCommentSpace(i) end -- / -- read comment

12 end

13 return result, i + 1

14 end 21 / 71

beamng-json.lua: peekTable object – Preallocation

1 peekTable[123] = function(si) -- {

2 local result = tablenew(0, 3) -- narray = 0, nhash = 3

3 local c, i = skipWhiteSpace(si + 1)

4 while c ~= 125 do -- }

5 key, i = readKey(i, c)

6 repeat c = byte(s, i); i = i + 1 -- skipWhitespace

7 until (c == nil or c > 32) and c ~= 44 -- whitespace or comma

8 result[key], i = peekTable[c](i - 1)

9 repeat c = byte(s, i); i = i + 1 -- skipWhitespace

10 until c ~= 44 and (c == nil or c > 32) -- whitespace or comma

11 if c == 47 then c, i = skipCommentSpace(i) end -- / -- read comment

12 end

13 return result, i + 1

14 end 22 / 71

beamng-json.lua: peekTable object – Inlining

1 peekTable[123] = function(si) -- {

2 local result = tablenew(0, 3)

3 local c, i = skipWhiteSpace(si + 1)

4 while c ~= 125 do -- }

5 key, i = readKey(i, c)

6 repeat c = byte(s, i); i = i + 1 -- skipWhitespace

7 until (c == nil or c > 32) and c ~= 44 -- whitespace or comma

8 result[key], i = peekTable[c](i - 1)

9 repeat c = byte(s, i); i = i + 1 -- skipWhitespace

10 until c ~= 44 and (c == nil or c > 32) -- whitespace or comma

11 if c == 47 then c, i = skipCommentSpace(i) end -- / -- read comment

12 end

13 return result, i + 1

14 end 23 / 71

Benchmarking protocol

▶ LuaJIT v2.1 rolling (707c12b), Ryzen 5600G (3.9 GHz), Fedora 42
▶ Measuring full passes through the datasets.

1. Run passes until either 1000 passes are complete or 10 seconds pass.
▶ Collect garbage before every pass.
▶ Flush JIT cache before every pass.

2. Take the mean pass time.
3. Repeat previous steps 5 times, take the mean of the means and calculate

throughput (time
file size).

Further reducing variance:
▶ nice -n -20

▶ Forcing the same CPU core using taskset.
24 / 71

JBeam dataset

All 4,950 JBeam (SJSON) files from the latest release of BeamNG.drive.
▶ Describes the physics properties and structure of all the vehicle parts.
▶ Full of numbers and very short strings.

25 / 71

Benchmark on the JBeam dataset (93.8 MB)

Our parser is the fastest!

JIT off JIT on

beamng-json.lua 30.5 MB/s 222.6 MB/s

json.lua – –

lunajson – –

lua-simdjson – –

26 / 71

JSON dataset

20 files from https://github.com/simdjson/simdjson-data:

27 / 71

https://github.com/simdjson/simdjson-data

Benchmark on the JSON dataset (15.5 MB)

Our parser is not the fastest anymore :/

JIT off JIT on

beamng-json.lua 31.9 MB/s 240.7 MB/s

json.lua 16.1 MB/s 40.1 MB/s

lunajson 37.9 MB/s 43.7 MB/s

lua-simdjson 313.7 MB/s 324.4 MB/s

28 / 71

twitter.json dataset

A single file with Twitter statuses, JSON parsers commonly use it for testing, also
part of the JSON dataset.
{ "statuses": [

{

"metadata": {

"result_type": "recent",

"iso_language_code": "ja"

},

"created_at": "Sun Aug 31 00:29:15 +0000 2014",

"id": 505874924095815700,

"text": "... <JAPANESE CHARACTERS>",

...

},

...

]

} 29 / 71

Benchmark on twitter.json (631 kB)

JIT off JIT on

beamng-json.lua 34.2 MB/s 230.9 MB/s

json.lua 19.8 MB/s 78.4 MB/s

lunajson 70.6 MB/s 83.7 MB/s

lua-simdjson 501.7 MB/s 500.7 MB/s

30 / 71

Towards a faster JSON Lua parser

beamng-json.lua parser:
▶ Pure Lua, beats other pure Lua parsers in the benchmark.
▶ Performance heavily relies on JIT.
▶ Slower on JSON files than Lua bindings for simdjson.

Can going closer to the source help us?

31 / 71

LuaJIT source code

▶ C99 + hand-written assembly (we don’t need to touch).
▶ 56 lj *.c and 14 lib *.c files.
▶ We are only interested in lj serialize.c (serialization) and lib buffer.c

(string buffers).

32 / 71

LuaJIT string buffers

As LuaJIT strings are immutable and interned, the string buffer structure is there
for efficient string manipulation. From https://luajit.org/ext_buffer.html:

The string buffer library allows high-performance manipulation of
string-like data. Unlike Lua strings, which are constants, string buffers
are mutable sequences of 8-bit (binary-transparent) characters. Data can
be stored, formatted and encoded into a string buffer and later converted,
extracted or decoded.

▶ The string buffer sbx consists of:
▶ read pointer const char *r,
▶ write pointer char *w.

▶ If r == w, buffer is empty.

33 / 71

https://luajit.org/ext_buffer.html

LuaJIT buffer serialization

▶ Implemented in lj serialize.c.
▶ Internal binary format, but we can borrow the code for creating a JSON

encoder and decoder.

1 buf = require('string.buffer').new()

2 buf:encode({1, 2, 3}) -- appends to buffer (moves w ptr)

3 obj = buf:decode() -- consumes from buffer (moves r ptr)

4 assert(obj[1] == 1 and obj[2] == 2 and obj[3] == 3)

34 / 71

beamng-json.c: initial version

▶ Almost one-to-one rewrite of beamng-json.lua.
▶ Bound checking has to be explicit now.

35 / 71

beamng-json.c: decode

1 char *serialize_json_get(char *r, SBufExt *sbx, TValue *o) {

2 char *w = sbx->w;

3 r = skip_white_space(r, w, sbx);

4 if (LJ_LIKELY(r < w)) {

5 switch (*r) {

6 case '{':

7 case '[':

8 return peek_table(r, w, sbx, o);

9 break;

10 }

11 }

12 }

36 / 71

beamng-json.c: skipWhiteSpace

Naive but working implementation:
1 char *skip_white_space(char *r, char *w, SBufExt *sbx) {

2 while (LJ_LIKELY(r < w) && (*r <= ' ' || *r == ',')) {

3 r++;

4 }

5 if (LJ_LIKELY(r < w) && *r == '/') {

6 r = skip_comment_space(r + 1, w, sbx); // / -- read comment

7 }

8 return r;

9 }

37 / 71

beamng-json.c: peekTable value

1 char *peek_table(char *r, char *w, SBufExt *sbx, TValue *o) {

2 if (LJ_LIKELY(r < w)) {

3 switch (*r) {

4 case 't': {

5 const char val[4] = "true";

6 if (LJ_UNLIKELY(r + sizeof(val) > w ||

7 strncmp(r + 1, val + 1, sizeof(val) - 1) != 0)) {

8 lj_err_callerv(sbufL(sbx), LJ_ERR_BADJSON_INVALIDVAL, val);

9 }

10 setboolV(o, 1);

11 return r + sizeof(val);

12 }

13 ...

14 } } } 38 / 71

beamng-json.c: peekTable value

1 char *peek_table(char *r, char *w, SBufExt *sbx, TValue *o) {

2 if (LJ_LIKELY(r < w)) {

3 switch (*r) {

4 case 't': {

5 const char val[4] = "true";

6 if (LJ_UNLIKELY(r + sizeof(val) > w

7 strncmp(r + 1, val + 1, sizeof(val) - 1) != 0)) {

8 lj_err_callerv(sbufL(sbx), LJ_ERR_BADJSON_INVALIDVAL, val);

9 }

10 setboolV(o, 1);

11 return r + sizeof(val);

12 }

13 ...

14 } } } 39 / 71

beamng-json.c: peekTable array

1 case '[': {

2 GCtab *t = lj_tab_new(sbufL(sbx), 4, hsize2hbits(0));

3 int i = 1;

4 settabV(sbufL(sbx), o, t);

5 r = skip_white_space(r + 1, w, sbx);

6 while (LJ_LIKELY(r < w) && *r != ']') {

7 TValue *v = lj_tab_setint(sbufL(sbx), t, i++);

8 r = peek_table(r, w, sbx, v);

9 r = skip_white_space(r, w, sbx);

10 }

11 if (LJ_LIKELY(r < w && *r == ']')) {

12 return r + 1;

13 }

14 } 40 / 71

beamng-json.c: peekTable array – Preallocation

1 case '[': {

2 GCtab *t = lj_tab_new(sbufL(sbx), 4, hsize2hbits(0));

3 int i = 1;

4 settabV(sbufL(sbx), o, t);

5 r = skip_white_space(r + 1, w, sbx);

6 while (LJ_LIKELY(r < w) && *r != ']') {

7 TValue *v = lj_tab_setint(sbufL(sbx), t, i++);

8 r = peek_table(r, w, sbx, v);

9 r = skip_white_space(r, w, sbx);

10 }

11 if (LJ_LIKELY(r < w && *r == ']')) {

12 return r + 1;

13 }

14 } 41 / 71

Benchmark on the JBeam dataset (93.8 MB)

JIT off JIT on

beamng-json.lua 30.5 MB/s 222.6 MB/s
beamng-json.c

• initial version 219.5 MB/s 216.3 MB/s

No speedup when rewriting to C.

▶ Optimized LuaJIT code can be quite fast.

▶ We’re not done yet, time for optimizations.

42 / 71

Optimizations: Branch predictor hints

▶ LJ LIKELY and LJ UNLIKELY are existing macros from LuaJIT,
▶ We put the annotations to the places where the unlikely path is an error state.

define LJ_LIKELY(x) __builtin_expect(!!(x), 1)

define LJ_UNLIKELY(x) __builtin_expect(!!(x), 0)

43 / 71

Optimizations: Number parsing

Initial implementation:
1 char *read_number(char *r, char *w, SBufExt *sbx, TValue *o) {

2 char *rbegin = r; char back = *r;

3 r = ...; // find the end character of the number

4 TValue tmp;

5 StrScanFmt fmt = lj_strscan_scan(rbegin, r - rbegin, &tmp, ...);

6 if (fmt == STRSCAN_ERROR) {

7 lj_err_caller(sbufL(sbx), LJ_ERR_BADJSON_INVALIDNUM);

8 return NULL;

9 }

10 o->u64 = tmp.u64;

11 return r;

12 }
44 / 71

Optimizations: Number parsing

Simplify the fast path:
1 char *read_number(char *r, char *w, SBufExt *sbx, TValue *o) {

2 char *rbegin = r;

3 TValue tmp; tmp.n = 0.0;

4 while (LJ_JSON_LIKELY(r < sbx->w)) {

5 const unsigned char digit = (unsigned char)(*r - '0');

6 if (digit > 9) break;

7 tmp.n = 10 * tmp.n + digit;

8 r++;

9 }

10 ...

11 }

45 / 71

Optimizations: Number parsing

1 case '.': {

2 lua_Number f = 0, scale = 0.1;

3 r++;

4 while (LJ_JSON_LIKELY(r < sbx->w)) {

5 const unsigned char digit = (unsigned char)(*r - '0');

6 if (digit > 9) break;

7 f += digit * scale;

8 scale *= 0.1;

9 r++;

10 }

11 tmp.n += f;

12 break;

13 }
46 / 71

Optimizations: Number parsing

▶ For parsing floats of the form 6.02+e23, lj strscan scan is still used.
▶ Focus on optimizing the common code path.

47 / 71

Optimizations: Inlining

LuaJIT contains the appropriate macros again:
define LJ_INLINE inline

define LJ_AINLINE inline __attribute__((always_inline))

▶ LJ AINLINE is used for most functions in the parser.

48 / 71

Optimizations: Scratch buffer

▶ Use a profiler to check bottlenecks.
▶ I used perf and Visual Studio profiler.

▶ Substantial amount of time waas spent in lj alloc realloc, which is called
when we need to grow a Lua table.

▶ But we don’t know the size of the table before we parse all its children.
▶ Also this happens at every recursion level at the same time.

▶ Behold the scratch buffer optimization!

49 / 71

Optimizations: Scratch buffer

1 char *lj_json_read_array(char *r, SBufExt *sbx, uint32_t scr) {

2 while (LJ_JSON_LIKELY(r < sbx->w) && *r != ']') {

3 uint32_t v = lj_json_scratch_pushn(L, 1);

4 r = lj_json_deserialize_peek(r, sbx, v);

5 r = lj_json_skip_white_space(r, sbx);

6 asize++;

7 }

8 t = lj_tab_new_ah(L, asize + 1, 0);

9 cTValue *base = &lj_json_scratch[lj_json_scratch_popn(L, asize)];

10 TValue *array = tvref(t->array) + 1;

11 memcpy(array, base, asize*sizeof(TValue));

12 settabV(L, &lj_json_scratch[scr], t);

13 return r;

14 } 50 / 71

Optimizations: Scratch buffer

1 TValue *lj_json_scratch = lj_mem_newvec(L, 32, TValue);
2 // allocate space for n TValues and return index of the first one on the scratch buffer

3 uint32_t lj_json_scratch_pushn(lua_State *L, uint32_t n) {

4 if (LJ_UNLIKELY(lj_json_scratch_count + n >= lj_json_scratch_capacity)) {

5 lj_mem_growvec(L, lj_json_scratch, lj_json_scratch_capacity, ...);

6 }

7 uint32_t scr = lj_json_scratch_count;

8 lj_json_scratch_count += n;

9 return scr;

10 }

11 // pop n TValues on the stack and return index of the first one

12 uint32_t lj_json_scratch_popn(lua_State *L, uint32_t n) {

13 lj_json_scratch_count -= n;

14 return lj_json_scratch_count;

15 }
51 / 71

Optimizations: Scratch buffer

▶ Dynamic stack for temporary Lua values.
▶ We only deal with one dynamically allocated scratch buffer.
▶ While parsing arrays/objects we can always create a table of exact size.
▶ TValues are still copied from the scratch buffer, but realloc copy is avoided.
▶ You cannot do this on Lua level (at least I tried and it doesn’t bring

performance improvement).

52 / 71

Optimizations: Intrinsics

▶ SSE2, SSE4, ARM Neon versions.
▶ Two primitives:

1. Skip until single character → find end of single-line or multi-line comments.
2. Skip to string end → find next quote or \ character.

▶ Similar to RapidJSON implementation.

53 / 71

Optimizations: Intrinsics – SSE4 skipToStringEnd

Acts on 16-byte chunks.
1 char *lj_json_skip_to_string_end_simd(char *p, SBufExt *sbx) {

2 ...

3 const char strend[16] = "\"\\";

4 const __m128i w = _mm_loadu_si128((const __m128i *)(&strend[0]));

5 for (; p <= sbx->w - 16; p += 16) {

6 const __m128i s = _mm_loadu_si128((const __m128i *)(p));

7 const int r = _mm_cmpistri(w, s,

8 _SIDD_UBYTE_OPS | _SIDD_CMP_EQUAL_ANY | _SIDD_LEAST_SIGNIFICANT);

9 if (r != 16) return p + r;

10 }

11 return NULL;

12 }
54 / 71

Optimizations: Intrinsics – SSE4 skipToStringEnd

mm cmpistri does all the heavy lifting:

Search set (w): " \ 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Input (s): X X X X \ X X X X X X " ? ? ? ?

r = 4 (first match found)

Ignored in this iteration

55 / 71

Let’s benchmark again.

Benchmarking protocol

▶ LuaJIT v2.1 rolling (707c12b), Ryzen 5600G (3.9 GHz), Fedora 42
▶ Measuring full passes through the datasets.

1. Run passes until either 1000 passes are complete or 10 seconds pass.
▶ Collect garbage before every pass.
▶ Flush JIT cache before every pass.

2. Take the mean pass time.
3. Repeat previous steps 5 times, take the mean of the means and calculate

throughput (time
file size).

Further reducing variance:
▶ nice -n -20

▶ Forcing the same CPU using taskset.
56 / 71

Benchmark on the JBeam dataset (93.8 MB)

Our parser is the fastest again!

JIT off JIT on

beamng-json.lua 30.5 MB/s 222.6 MB/s

beamng-json.c
• initial version 219.5 MB/s 216.3 MB/s

• final version 368.6 MB/s 370.0 MB/s

57 / 71

Benchmark on the JBeam dataset (93.8 MB) – Ablations

JIT off JIT on

beamng-json.lua 30.5 MB/s 222.6 MB/s

beamng-json.c
• initial version 219.5 MB/s 216.3 MB/s

• final version3 368.6 MB/s 370.0 MB/s
• no branch hints 356.0 MB/s 353.2 MB/s

• no scratch buffer 288.0 MB/s 292.3 MB/s

• no inlining 337.8 MB/s 335.4 MB/s

• no intrinsics 335.8 MB/s 336.1 MB/s

• SSE4 intrinsics 369.0 MB/s 379.7 MB/s

3SSE2 intrinsics. 58 / 71

Benchmark on the JSON dataset (15.5 MB)

Also beats lua-simdjson on the JSON parsing dataset.

JIT off JIT on

beamng-json.c 704.7 MB/s 698.3 MB/s

beamng-json.lua 31.9 MB/s 240.7 MB/s

json.lua 16.1 MB/s 40.1 MB/s

lunajson 37.9 MB/s 43.7 MB/s

lua-simdjson 313.7 MB/s 324.4 MB/s

59 / 71

Benchmark on twitter.json (631 kB)

JIT off JIT on

beamng-json.c 864.8 MB/s 856.8 MB/s

beamng-json.lua 34.2 MB/s 230.9 MB/s

json.lua 19.8 MB/s 78.4 MB/s

lunajson 70.6 MB/s 83.7 MB/s

lua-simdjson 501.7 MB/s 500.7 MB/s

60 / 71

Results from the benchmark

JBeam dataset:
▶ 45% speedup over pure Lua parser when JIT is on.
▶ More than 10x speedup over pure Lua parser when JIT is off.

JSON dataset:
▶ At least 70% faster than lua-simdjson.
▶ More than 10x times faster than pure Lua implementations.

61 / 71

Tips

▶ Try to combine multiple optimization tricks.
▶ Focus on the happy common path, uncommon features can be slower (string

with escape characters, scientific numbers).
▶ Some optimization attempts actually slow the code down, measure regularly.
▶ Use the profiler to find hotspots.
▶ Minimize data copying (realloc).

62 / 71

Limitations

▶ The benchmark measures repeated parsing performance, which is not the
metric we really care about.
▶ We usually parse each .json or .jbeam file once.

▶ Unstable performance numbers in some cases.
▶ Check out the ”How to Reliably Measure Software Performance” from this talk

(already happened).

63 / 71

Are we finished?

JSON encoding

▶ Not our primary focus, decoding is used more often.
▶ Let’s write a Lua → JSON encoder for completion4.

4And to fit the title of the talk :) 64 / 71

JSON encoding: It’s really simple!

1 char *lj_json_serialize_put(char *w, SBufExt *sbx, cTValue *o) {

2 if (LJ_JSON_LIKELY(tvisstr(o))) {

3 w = lj_json_serialize_more(w, sbx, 1);

4 *w++ = '"';

5 w = lj_json_put_string(w, sbx, strV(o));

6 w = lj_json_serialize_more(w, sbx, 1);

7 *w++ = '"';

8 } else if (tvisnum(o)) {

9 w = lj_json_put_number(w, sbx, numV(o));

10 } else if (tvispri(o)) {

11 w = lj_json_put_bool(w, sbx, itype(o));

12 } ...

65 / 71

JSON encoding: It’s really simple!

1 char *lj_json_serialize_put(char *w, SBufExt *sbx, cTValue *o) {

2 if (LJ_JSON_LIKELY(tvisstr(o))) {

3 w = lj_json_serialize_more(w, sbx, 1);

4 *w++ = '"';

5 w = lj_json_put_string(w, sbx, strV(o));

6 w = lj_json_serialize_more(w, sbx, 1);

7 *w++ = '"';

8 } else if (tvisnum(o)) {

9 w = lj_json_put_number(w, sbx, numV(o));

10 } else if (tvispri(o)) {

11 w = lj_json_put_bool(w, sbx, itype(o));

12 } ...

66 / 71

JSON encoding: Writing a value

1 char *lj_json_serialize_put(char *w, SBufExt *sbx, cTValue *o) {

2 if (LJ_JSON_LIKELY(tvisstr(o))) {

3 w = lj_json_serialize_more(w, sbx, 1);

4 *w++ = '"';

5 w = lj_json_put_string(w, sbx, strV(o));

6 w = lj_json_serialize_more(w, sbx, 1);

7 *w++ = '"';

8 } else if (tvisnum(o)) {

9 w = lj_json_put_number(w, sbx, numV(o));

10 } else if (tvispri(o)) {

11 w = lj_json_put_bool(w, sbx, itype(o));

12 } ...

67 / 71

JSON encoding: Writing a value is also really simple

1 char *lj_json_put_bool(char *w, SBufExt *sbx, uint32_t itype) {

2 w = lj_json_serialize_more(w, sbx, 5);

3 switch (itype) {

4 case LJ_TNIL:

5 memcpy(w, "null", 4); w += 4; break;

6 case LJ_TTRUE:

7 memcpy(w, "true", 4); w += 4; break;

8 case LJ_TFALSE:

9 memcpy(w, "false", 5); w += 5; break;

10 }

11 return w;

12 }

68 / 71

Let’s benchmark again.

Benchmark on the JSON dataset – Encoding

Our encoder’s performance is not bad.

JIT off JIT on

beamng-json.lua 42.6 MB/s 90.2 MB/s

beamng-json.c 224.0 MB/s 223.0 MB/s

json.lua 21.5 MB/s 26.9 MB/s

lunajson 32.8 MB/s 42.6 MB/s

lua-simdjson – –

Note: No optimizations were attempted on beamng-json.lua and beamng-json.c.

69 / 71

Benchmark on the JBeam dataset – Encoding

JIT off JIT on

beamng-json.lua 31.1 MB/s 31.2 MB/s

beamng-json.c 586.7 MB/s 590.7 MB/s

json.lua 36.6 MB/s 39.3 MB/s

lunajson 36.7 MB/s 39.4 MB/s

70 / 71

The End; Questions?

Benchmark code:
▶ https://github.com/aivora-beamng/luajit-json-performance

LuaJIT JSON module:
▶ https://github.com/aivora-beamng/LuaJIT-json

Slides: available at the FOSDEM talk page.

Contact:
▶ https://github.com/aivora-beamng

▶ https://www.linkedin.com/in/adam-ivora/

71 / 71

https://github.com/aivora-beamng/luajit-json-performance
https://github.com/aivora-beamng/LuaJIT-json
https://github.com/aivora-beamng
https://www.linkedin.com/in/adam-ivora/

