
Using eBPF within your Python program using EBPFCat

Martin Teichmann
Spectroscopy and Coherent Scattering (SCS) Instrument
European XFEL

2Using eBPF within your Python program using EBPFCat Martin Teichmann

The world’s largest X-Ray laser

Publicly funded research facility
Located in Hamburg, Germany

3Using eBPF within your Python program using EBPFCat Martin Teichmann

The Electron Birefringent Polarization Focus
(eBPF)

• In our large scientific facility, many small machines
need to be automated

• The automation is often done by scientists, not
engineers

• The EtherCAT bus system used at the European
XFEL is flexible enough to allow for this

• The software, however, is not. And it is not open
source.

=> write a open source EtherCAT software driver
flexible enough to used by users directly, while
retaining all advantages of EtherCAT

4Using eBPF within your Python program using EBPFCat Martin Teichmann

How does EtherCAT work?

CPU
(just a normal computer)

EtherCAT terminals

EtherNet packets

EtherCAT uses normal EtherNET packets, which are handed from terminal to
terminal, at the end returning at the beginning.

The terminals are able to modify the packet on-the-fly in order to send data
to the computer

Outer
world

5Using eBPF within your Python program using EBPFCat Martin Teichmann

eBPF-based control
EtherCAT terminals

We can inject a computer control loop directly into the kernel.

Python controller

eBPF virtual machine

EtherNet network
driver via XDP

User level
Linux kernel level

Outer world

• The EBPF generator in EBPFCat may
also be used for other EBPF use
cases

6Using eBPF within your Python program using EBPFCat Martin Teichmann

Topic of this talk

• How to use EBPFCat for XDP programs with
simple examples
• (XDP is the eBPF program type for

processing network packets)
• How it actually works
• Going through some eBPF features already

supported
• Show EtherCat motion as a cool application for

eBPF

7Using eBPF within your Python program using EBPFCat Martin Teichmann

Constraints
• Highly Dynamic

• The layout of the EtherNet packets is only known at run time
• Even the necessary logic may only be discovered at run time
• several eBPF programs run in parallel
• The programs may be replaced at run time

• Simplicity
• The programs are written by scientists with little programming experience

• Flexibility
• The code should be generic, not limited to our particular problem
• EBPFCat can be used as a speed boost for normal Python programs

8Using eBPF within your Python program using EBPFCat Martin Teichmann

A simple example
from asyncio import run, sleep
from ebpfcat.arraymap import ArrayMap
from ebpfcat.xdp import XDP, XDPExitCode

class Counter(XDP):
 license = "GPL"

 userspace = ArrayMap()
 count = userspace.globalVar()

 def program(self):
 self.count += 1
 self.exit(XDPExitCode.PASS)

async def main():
 c = Counter()

 async with c.run("eth0"):
 for i in range(10):
 await sleep(0.1)
 print("number of packets:", c.count)

if __name__ == "__main__":
 run(main())

• Just count the number of packets
arriving

• Code looks like normal Python code
• the Python code generates eBPF

code: there is no compilation!

9Using eBPF within your Python program using EBPFCat Martin Teichmann

A simple example
from asyncio import run, sleep
from ebpfcat.arraymap import ArrayMap
from ebpfcat.xdp import XDP, XDPExitCode

class Counter(XDP):
 license = "GPL"

 userspace = ArrayMap()
 count = userspace.globalVar()

 def program(self):
 self.count += 1
 self.exit(XDPExitCode.PASS)

async def main():
 c = Counter()

 async with c.run("eth0"):
 for i in range(10):
 await sleep(0.1)
 print("number of packets:", c.count)

if __name__ == "__main__":
 run(main())

This generates eBPF

10Using eBPF within your Python program using EBPFCat Martin Teichmann

A simple example
from asyncio import run, sleep
from ebpfcat.arraymap import ArrayMap
from ebpfcat.xdp import XDP, XDPExitCode

class Counter(XDP):
 license = "GPL"

 userspace = ArrayMap()
 count = userspace.globalVar()

 def program(self):
 self.count += 1
 self.exit(XDPExitCode.PASS)

async def main():
 c = Counter()

 async with c.run("eth0"):
 for i in range(10):
 await sleep(0.1)
 print("number of packets:", c.count)

if __name__ == "__main__":
 run(main())

same variable visible
from eBPF and Python

11Using eBPF within your Python program using EBPFCat Martin Teichmann

Accessing the Packet

class Counter(XDP):
 minimumPacketSize = 16 # keep the eBPF verifier happy
 etherType = PacketVar(12, "!H") # !H from Python struct package

 userspace = ArrayMap()
 count = userspace.globalVar()

 def program(self):
 with self.etherType == 0x800: # always generate code: no if possible
 self.count += 1
 self.exit(XDPExitCode.PASS)

12Using eBPF within your Python program using EBPFCat Martin Teichmann

Accessing the Packet

class Counter(XDP):
 minimumPacketSize = 16 # keep the verifier happy
 etherType = PacketVar(12, "!H")

 userspace = ArrayMap()
 ipv4count = userspace.globalVar()
 ipv6count = userspace.globalVar()

 def program(self):
 with self.etherType == 0x800 as Else:
 self.ipv4count += 1
 with Else, self.etherType == 0x86DD: # read as: elif
 self.ipv6count += 1
 self.exit(XDPExitCode.PASS)

13Using eBPF within your Python program using EBPFCat Martin Teichmann

How eBPF code is generated

1: r2 = *(u32 *)(r8 + 12)
2: r3 = *(i32 *)(r9 + 16)
3: if r3 <= r2 goto pc + 2
4: *(i32 *)(r9 + 16) = r2

class Counter(XDP):
 speed = PacketVar(12, "I")

 userspace = ArrayMap()
 max_speed = userspace.globalVar("i")

 def program(self):
with self.speed > self.max_speed:
 self.speed = self.max_speed

using descriptors
with __get__
and __set__

14Using eBPF within your Python program using EBPFCat Martin Teichmann

Prerequisites

 EBPFCat has no dependencies
 OK, technically Python 3, Linux and libc

So a simple

pip install ebpfcat

And you have a working setup

15Using eBPF within your Python program using EBPFCat Martin Teichmann

Permanent and local programs

eBPF programs used as local speedup within one
Python program, with automatic cleanup at the
end:

program = Program()
async with program.run("eth0"):
 ... # Python business logic

An eBPF program can also run independently from the running Python
program, the starting program executes:

program = Program()
await program.attach("eth0")
program.pin_maps("/sys/fs/bpf/my_maps")
some business logic

at a later time:

program = Program(load_maps="/sys/fs/bpf/my_maps")
some more business logic
and once finally done:
await program.detach("eth0")

16Using eBPF within your Python program using EBPFCat Martin Teichmann

Motion control with EtherCat
1. Read the self-description for all involved terminals
2. Prepare an EtherNet packet for all data to be transferred, e.g.:

3. Program the terminals to accept such a packet
4. Generate the EBPF program, and load into Linux kernel

5. Send prepared packets => eBPF program will cyclically process them
6. Execute slow Python code for communication with outside world

Header Encoder position Motor speed Limit switches

1: r2 = *(u32 *)(r1 + 12)
2: r3 = *(i32 *)(r9 + 16)
3: if r3 <= r2 goto pc + 2
4: *(i32 *)(r9 + 16) = r2

with self.speed > self.max_speed:
 self.speed = self.max_speed

17Using eBPF within your Python program using EBPFCat Martin Teichmann

dispatching on packet content
• A permanent program with a pinned

PROG_ARRAY map
• Packets contain breadcrumbs for

dispatching
• tail_call into the specific program

Incoming Packet:

A local program picks up its
data

class Motion(XDP):
 ...

Header Encoder
position

Motor
speed

Limit
switches

bread
crumb

PROG_ARRAY

Monitor program

Motion program

Vacuum program

18Using eBPF within your Python program using EBPFCat Martin Teichmann

Programming a motor
Python allows us to write very high level code:

class Motor(Device):
 velocity = TerminalVar() # communication with the hardware
 encoder = TerminalVar()

 target = DeviceVar() # communication with the user
 proportional = DeviceVar()

 def program(self):
 self.velocity = (self.target – self.encoder) * self.proportional

19Using eBPF within your Python program using EBPFCat Martin Teichmann

Summary
 EBPFCat can generate eBPF code from Python
 It can be used generically to write eBPF programs, especially XDP programs
 As a special case it can be used for computer control of EtherCAT compatible hardware

Everything can be found at
https://github.com/tecki/ebpfcat

Documentation at
https://ebpfcat.readthedocs.io/en/latest/

Bonus material for the really interested:
https://git.xfel.eu/karaboDevices/karahoff

Thanks to the SCS group at the European XFEL, Carsten Broers and Jan Tolkiehn for the hardware,
Tobias Freyermuth for useful discussions

https://github.com/tecki/ebpfcat
https://ebpfcat.readthedocs.io/en/latest/
https://github.com/tecki/ebpfcat

20Using eBPF within your Python program using EBPFCat Martin Teichmann

Thank you!

Thanks to my group SCS at European XFEL

21Using eBPF within your Python program using EBPFCat Martin Teichmann

Example: parallel motion
• A liquid jet is injected into a

vacuum chamber, and
pumped out by a catcher
system

• The two systems are moved
by independent motors, we
lock the motor movement
between them using
EBPFCat

• Everything here is user-
generated, no experts are
needed

22Using eBPF within your Python program using EBPFCat Martin Teichmann

class MotorDevice(Device):
 velocity = TerminalVar()
 encoder = TerminalVar()
 low_switch = TerminalVar()
 high_switch = TerminalVar()
 enabled = TerminalVar()
 control_word = TerminalVar()
 reduced_current = TerminalVar()
 stepcounter = TerminalVar()
 encoder_error = TerminalVar()
 set_control_word = DeviceVar('H')
 deadband_exceeded = DeviceVar('b')
 max_velocity = DeviceVar('q')
 last_velocity = DeviceVar('q')
 max_acceleration = DeviceVar('Q')
 deadband = DeviceVar('q')
 target = DeviceVar('q')
 proportional = DeviceVar('q')
 lasttime = DeviceVar('Q')
 velocity_diff = LocalVar('q')

 def calculate_speed(self):
 self.ebpf.stmp = (self.proportional * self.ebpf.stmp) >> 16

 def program(self):
 with self.ebpf.tmp:
 self.ebpf.tmp = ktime(self.ebpf)
 self.velocity_diff = (self.max_acceleration
 * (self.ebpf.tmp - self.lasttime)) >> 32
 with self.velocity_diff > 0 as Else:
 self.lasttime = self.ebpf.tmp
 self.control_word = self.set_control_word
 with abs(self.target - self.encoder) > self.deadband as Else:
 if self.reduced_current is not None:
 self.reduced_current = False
 self.deadband_exceeded = 1
 if self.reduced_current is not None:
 with Else:
 self.reduced_current = True
 with self.ebpf.stmp:
 self.ebpf.stmp = self.target - self.encoder
 self.calculate_speed()
 with self.ebpf.stmp > self.max_velocity:
 self.ebpf.stmp = self.max_velocity
 with self.ebpf.stmp + self.max_velocity < 0:
 self.ebpf.stmp = -self.max_velocity
 if not self.isLimitless:
 with ((self.low_switch != 0) & (self.ebpf.stmp < 0)):
 self.ebpf.stmp = 0

 with ((self.high_switch != 0) & (self.ebpf.stmp > 0)):
 self.ebpf.stmp = 0
 if self.encoder_error is not None:
 with self.encoder_error:
 self.ebpf.stmp = 0
 self.velocity = self.ebpf.stmp
 with self.ebpf.stmp > self.last_velocity + self.velocity_diff as Else:
 self.velocity = self.last_velocity + self.velocity_diff
 with Else, self.last_velocity > self.ebpf.stmp + self.velocity_diff:
 self.velocity = self.last_velocity - self.velocity_diff
 with self.enabled as Else:
 self.last_velocity = self.velocity
 with Else:
 self.last_velocity = 0

class FollowerDevice(MotorDevice):
 follow_offset = DeviceVar('q')
 doFollow = DeviceVar('B')

 def calculate_speed(self):
 super().calculate_speed()
 with (self.doFollow != 0) & (self.leader.device.enabled != 0):
 self.ebpf.stmp += (int(self.motors_factor * self.follow_factor
 * (1 << 16)) * self.leader.device.velocity) >> 16

 def program(self):
 with self.doFollow != 0:
 self.target = ((self.leader.device.encoder
 * int(self.follow_factor * (1 << 16))) >> 16) \
 + self.follow_offset
 with abs(self.target - self.encoder) > self.follow_lag:
 self.set_control_word = self.SWITCH_OFF
 self.doFollow = 0
 self.leader.device.set_control_word = \
 self.leader.SWITCH_OFF
 super().program()

The Code for
parallel
motion

23Using eBPF within your Python program using EBPFCat Martin Teichmann

The building blocks of EBPFCat
Motor Terminal M1

Motor Terminal M2

Encoder Terminal E12
Device Motor 1

Device Motor 2

Sync Group 1

Analog Input 1

Digital Input 1

Digital Output 1
Pressure Gauge

Valve

Sync Group 2

• Terminals are the hardware actually
connected to the EtherCAT bus

• Devices are hardware controlled by the
terminals that logically belong together

• Sync Groups are units that run
independently - even in different tasks so
even their code can be modified on-the-fly

	Using eBPF within your Python program using EBPFCat
	The world’s largest X-Ray laser
	The Electron Birefringent Polarization Focus (eBPF)
	How does EtherCAT work?
	eBPF-based control
	Topic of this talk
	Constraints
	A simple example
	A simple example (2)
	A simple example (3)
	Accessing the Packet
	Accessing the Packet (2)
	How eBPF code is generated
	Prerequisites
	Permanent and local programs
	Motion control with EtherCat
	dispatching on packet content
	Programming a motor
	Summary
	Thank you!
	Example: parallel motion
	Slide 22
	The building blocks of EBPFCat

