
Implementing
S3-fronted cold
storage at CERN

Mario Vitale, Computing Engineer @ CERN | FOSDEM 2026

About me

● Computing Engineer @ CERN

● Tape Archival & Backup team

● FOSS enthusiast

● Proud homelab dad

● First task: review S3+Tape PoC

● Goal: design an S3 interface for

our Tape infrastructure

And why am I here

2

What we will discuss

● Project goal

● Technical context
○ CTA

○ S3+Glacier API

● Proof-of-concept analysis

● Solution brainstorming

● Questions

3

4

CERN is the world’s biggest
laboratory for particle
physics.

Our goal is to understand the
most fundamental particles
and laws of the universe.

Located near Geneva on
either side of the Swiss
French border

Project goal

● What does CERN store on tape?
○ Physics experiments data

○ User data archival (compliance, DR, etc)

● How does it store them?
○ CERN Tape Archive (CTA) provides access to our tape libraries

● Target solution: S3+Glacier API backed by CTA
○ Widespread client support

○ Avoid reinventing the wheel

5

Project goal

● What does CERN store on tape?
○ Physics experiments data

○ User data archival (compliance, DR, etc)

● How does it store them?
○ CERN Tape Archive (CTA) provides access to our tape libraries

● Target solution: S3+Glacier API backed by CTA
○ Widespread client support

○ Avoid reinventing the wheel

6

Our target “FOSS tape-backed backup service”

7

Our target

“The Appliance”
● Independent S3 endpoint
● Physical tape storage
● CTA underneath
● FOSS

“FOSS tape-backed backup service”

8

Our challenge: building “The Appliance”

“The Appliance”
● Independent S3 endpoint
● Physical tape storage
● CTA underneath
● FOSS

9

CERN Tape Archive
(aka CTA)

10

About CTA
● Provides an interface to physical tape infrastructure

● Clients can only use CTA through a disk buffer

○ “CTA is a tape backend for the disk buffer”

○ Two disk buffers supported: EOS and dCache

● Supported flows:

○ Archival & Recall

○ Deletion (data not immediately overwritten)

○ Repack

■ Think “defrag a tape into a new tape”

■ Not disk-buffer initiated

● FOSS (GPLv3 licensed)

11

Tape

Disk System Disk System

Client

https://github.com/cern-cta/CTA

Archival flow

12

Recall flow

13

EOS
aka “The Disk Buffer”

● File metadata is stored only on EOS

○ EOS persistency is critical!

● File content may be:

○ “Online”: file content is on-disk

○ “Offline”: file content is not-on-disk

■ But retrievable from tape

■ File content takes no space on-disk

■ Non-trivial semantic!

● Designed for large & stable throughput

○ Array of independent SSDs

○ R/W to SSDs in round-robin fashion

○ No data redundancy

● Network connection to CTA: 25 Gb/s

14

Tape Storage
EOS

CTA’s Nota Bene

● Tape has minimum speed requirements
○ To be provided by the disk buffer

○ Requires stable R/W of at least ~180MB/s (hardware dependent)

○ Current system performs at 400MB/s

○ Too slow → shoe-shining → Inefficient, bad for hardware

● File metadata lives on the disk buffer
○ Mapped back to the object through the Archive ID

○ 1 file on disk buffer = 1 record on tape

○ Disk buffer is critical!

Current

features/constraints

15

CTA’s Nota Bene

● No object affinity logic in CTA (as of today)
○ A tape daemon can’t know which objects should be colocated

○ Result: any object could end up on any tape

○ Solution WIP

● File considered safe when it’s fully on tape
○ The user polls the disk buffer for this confirmation

○ If anything fails before then: the user must send the file again

● Cannot modify files. Only delete
○ Tape storage is linear → To modify is to fragment

Current

features/constraints

16

S3+Glacier API

17

S3 API: AWS’ Object Storage interface

AWS_DEFAULT_REGION=us-east-1

AWS_ENDPOINT_URL=http://192.168.49.2:6001

AWS_SECRET_KEY_ID=*******

AWS_SECRET_ACCESS_KEY=*******

aws s3api get-object \

 --bucket=fs1-cta-backup \

 --key=/my/test \

 /dev/stdout

18

http://192.168.49.2:6001

S3 API: AWS’ Object Storage interface

AWS_DEFAULT_REGION=us-east-1

AWS_ENDPOINT_URL=http://192.168.49.2:6001

AWS_SECRET_KEY_ID=*******

AWS_SECRET_ACCESS_KEY=*******

aws s3api get-object \

 --bucket=fs1-cta-backup \

 --key=/my/test \

 /dev/stdout

19

http://192.168.49.2:6001

S3 API: common actions

● Object
○ {Get,Head,Put,Delete}Object
○ MultiPart upload, Ranged download ← Parallel! Cool!

■ So cool that RGW Cloud Tier uses MultiPart automatically

● Bucket
○ {List,Create,Delete}Bucket
○ Lifecycle configuration

● Metadata
○ {Put,Get,Delete}ObjectTagging
○ PutObject’s x-amz-meta-* HTTP headers

● Policy, Locking, Notifications…and more

20

S3 Glacier API
● Archival → Lifecycle policy (LC)

○ Not user initiated, no imperative API
■ Emulation 1: tag-based rules
■ Emulation 2: direct write-to-GLACIER

○ Under which conditions is it transitioned?
○ Where is it transitioned? (Storage Class)

■ LC rules only make objects colder
■ “GLACIER” = de-facto standard

○ Returns InvalidObjectState until restored

● Recall → RestoreObject action
○ Choice of restore type:

■ Temporary: warm copy expires
■ Permanent: warm copy subject to LC rules

○ Client poll to track restore status (x-amz-restore)

21

S3 Glacier API
● Archival → Lifecycle policy (LC)

○ Not user initiated, no imperative API
■ Emulation 1: tag-based rules
■ Emulation 2: direct write-to-GLACIER

○ Under which conditions is it transitioned?
○ Where is it transitioned? (Storage Class)

■ LC rules only make objects colder
■ “GLACIER” = de-facto standard

○ Returns InvalidObjectState until restored

● Recall → RestoreObject action
○ Choice of restore type:

■ Temporary: warm copy expires
■ Permanent: warm copy subject to LC rules

○ Client poll to track restore status (x-amz-restore)

22

As a user-facing API,
S3 Glacier doesn’t define any interface

to the tape infrastructure

Cold-storage data transfer mechanisms
are implementation specific

S3 API support
Ceph NooBaa Garage

23

https://docs.ceph.com/en/latest/radosgw/s3/
https://github.com/noobaa/noobaa-core/blob/master/docs/design/AWS_API_Compatibility.md
https://garagehq.deuxfleurs.fr/documentation/reference-manual/s3-compatibility

Proof-of-Concept
Analysis

24

PoC architecture

Credits: Pablo Oliver Cortes (CERN), Sarthak Negi

25

Why ?
● FOSS software
● Commercial production usage

NooBaa Deployment
● Kubernetes operator (comes with CRDs)

○ noobaa install → kubectl -n noobaa get service s3

● TAPECLOUD interface to external systems
○

● Online data on NSFS
○ aka “in a directory”, could be CephFS
○ Metadata as xattrs

26

NooBaa Deployment
● Kubernetes operator (comes with CRDs)

○ noobaa install → kubectl -n noobaa get service s3

● TAPECLOUD interface to external systems
○

● Online data on NSFS
○ aka “in a directory”, could be CephFS
○ Metadata as xattrs

27

TAPECLOUD: how does it work?
● File movement is asynchronous

○ File write to GLACIER StorageClass → append to migrate.log

○ RestoreObject API call → append to recall.log

● A cronjob (or operator) will call the log handling scripts…

○ node manage_nsfs.js glacier {migrate,restore}

● …which are mainly wrappers around your executable implementation

○ Exec interface: /opt/cta/glacier/{migrate,recall,low_free_space}

○ Your executable will read {migrate,recall}.log and migrate/recall each file*

○ Plus safety handling (locking, migration log rotation, etc)
28

PoC observations

About NooBaa:

● Exec interface is extremely flexible
○ NB: conditional execution (is there enough space on disk buffer?)

● Documentation could be improved
○ Migration logs format did not match code documentation

○ Boundary of failure handling responsibility was unclear

● Certain useful features are missing
○ StorageClass Lifecycle transitions; object deletion semantics

○ GLACIER files immediately inaccessible - even if still on disk

● Observed failure at around 10k migrations
○ To investigate. PoC obviously not production ready, bash implementation

29

https://github.com/noobaa/noobaa-core/blob/master/docs/design/AWS_API_Compatibility.md

PoC observations
About the architecture:

● Duplicate disk buffer
○ Duplicated metadata

○ Duplicated provisioned space for disk buffer

● “One-more-layer” approach → Troubleshooting was painful

● File content migration initiated by NooBaa
○ Needs either intermediary disk buffer so CTA can pull, or long-running implementation

○ e.g. tape likely not ready to receive when node manage_nsfs.js glacier migrate is invoked

○ The backing buffer needs some control to not be overwhelmed (backoff? Another buffer?)

● Expertise bias
○ Widespread production Ceph use in CERN

30

Solution Brainstorming

31

● SAL: Software Abstraction Layer (aka “zipper project”)
○ Split S3 API protocol handling from Storage layer
○ Lets you implement:

■ Filters (e.g. modify response status code, conditionals, etc)
■ Drivers (e.g. backed by POSIX filesystem, instead of RADOS)

● Cloud Transition & Cloud Restore features
○ Tl;dr: Cold Storage = another S3 endpoint (aka “Cloud Tier”)
○ retain_head_object=true to retain metadata in RGW

○ allow_read_through=true interesting, but HEAD is unsupported

○ Versioning is well supported

○ Implemented through SAL

● Lua scripting
○ Essentially a SAL filter

Premise (1/2): notable Ceph RGW features

32

https://github.com/ceph/ceph/blob/main/src/rgw/rgw_sal.cc

Premise (2/2): the “front bucket”

● Benefits of the split: isolation and control (bandwidth, file layout, policy, metadata…)
● Ceph’s Cloud Tier makes this trivial…
● …minus upstream-bound metadata propagation

○ Not an issue if the bucket chain guarantees uniform data durability
○ allow_read_through=true would help with HEAD support

■ Alternative: Lua filter on HEAD requests
33

Premise (2/2): the “front bucket”

34

● Benefits of the split: isolation and control (bandwidth, file layout, policy, metadata…)
● Ceph’s Cloud Tier makes this trivial…
● …minus upstream-bound metadata propagation

○ Not an issue if the bucket chain guarantees uniform data durability
○ allow_read_through=true would help with HEAD support

■ Alternative: Lua filter on HEAD requests

Solution family 1: “One more layer”

Pros:
● Only additions to an already-working system

○ E.g. performance requirements satisfied
● Low development effort (relatively)

Cons:
● Must still maintain our own storage driver
● Duplication (metadata, provisioned capacity)
● The more there is, the more can fail
● Configuration and debugging is painful

Examples:
● NooBaa with TAPECLOUD executable
● Ceph with EOS SAL driver

35

Solution family 1.5: “One more (thin) layer”

Pros:
● Only additions to an already-working system

○ E.g. performance requirements satisfied
● Low development effort (relatively)

Cons:
● Thorough emulation of S3 API is challenging
● Duplication (metadata, provisioned capacity)
● The more there is, the more can fail (mitigated)
● Configuration and debugging is painful

Examples:
● VersityGW with EOS storage module (see EOSS3 project)
● Ceph with EOS SAL driver (possibly)
● XRootD’s XrdS3 plug-in

36

https://github.com/gmgigi96/eoss3
https://www.epj-conferences.org/articles/epjconf/abs/2025/22/epjconf_chep2025_01334/epjconf_chep2025_01334.html

Solution family 2: “Client-driven emulated Glacier”

Pros:
● Simple

○ One way to access files: S3 client
○ Less moving parts, less failure points

● CTA controls file movement
● MultiPart uploads / Ranged downloads

○ Leverage scale out for performance

Cons:
● Emulation accuracy (e.g. temporary restores)
● Needs careful performance planning

○ But is doable
● How to know if RestoreObject was called?

○ Dependent on Notification API support

Examples:
● Ceph with CTA-driven Lua filter (e.g. CTA writes object tag to mark file as offline)
● VersityGW customization. The company already provides a paid Tape offering

37

https://ceph.io/en/news/blog/2025/benchmarking-object-part1/
https://www.versity.com/products/s3-tape-archive-engine/

Solution family 3: “Out-of-band data control”

Pros:
● Implementation dependent…
● CTA controls file movement
● Low development effort (relatively)

Cons:
● Implementation dependent…
● May expose internal details

○ Could break on new provider releases
● Provider must be aware of offline files
● How to know if RestoreObject was called?

○ Dependent on Notification API support

Examples:
● Ceph, using librados to truncate/rehydrate RGW’s underlying RADOS objects
● Ceph with non-S3-standard API or tooling (e.g. radosgw-admin)

○ Like Cloud Transition truncates/rehydrates file, but client receives/provides data instead

38

Solution family 4: “CTA implements S3 API”

Pros:
● CTA is a standalone, full backup and archival

software appliance
○ No Less dependent on external projects

● Object lifecycle is fully managed by us

Cons:
● New functional scope for CTA, new problems

○ For which other software solutions exist
● Huge development & maintenance effort

○ CTA is now the disk buffer
○ Keep up with S3 API changes

● Reinventing the wheel (good enough reason?)
○ S3 API: Ceph’s SAL exists
○ Distributed disk buffer: EOS exists 39

Solution family 5: “CTA implements disk buffer”

Pros:
● CTA now has a pluggable storage interface
● Object lifecycle is fully managed by us
● Development effort to implement new drivers moved

out of CTA

Cons:
● New functional scope for CTA, new problems

○ For which other software solutions exist
● Large development & maintenance effort

○ CTA is now the disk buffer
● Reinventing the wheel (good enough reason?)

40

What’s your approach?

41

Acknowledgements

● Michael Davis

● Vladimir Bahyl

● Niels Buegel

● https://ceph.io

● https://mermaid.js.org/

42

https://ceph.io
https://mermaid.js.org/

Questions?

43

S3-based Disk Buffer:
implementation draft using Ceph
● CTA saves its metadata in object tags

○ Example: Archive ID, operation-in-progress, etc

○ Don’t use metadata: it’s semantically part of the object

○ Assumes Ceph Cloud Transition doesn’t handle tags

● Lua filter: appliance’s response based on tag content
○ Example: if CTA has marked an object as “offline”, Lua will reply with

InvalidObjectState

● CTA will read/write objects as S3 client
○ When archiving: read, mark with tag, rewrite object with size zero

○ When restoring: recall, write object with its content, mark with tag

44

Focus on major challenges

● Performance level & guarantees

○ 400MB/s per tape drive

● Tape colocation of objects in the

same bucket

○ Scheduling and repacking

● API Notification support

○ How can CTA know that it

needs to perform a

rehydration or eviction?

● How to handle versioning?

○ Clean solution in Ceph

● How to handle file modifications?

○ CTA doesn’t support it

● Propagate info upstream

○ Has an object been

persisted to tape yet?

45

CTA’s file flows (CLI)

● Archival: xrdcp ./file.dat root://ctaeos/eos/ctaeos/cta/file.dat
○ On tape yet? eos root://ctaeos ls eos/ctaeos/cta/file.dat -y

○ Archive ID saved back by CTA as xattr: sys.archive.file_id

○ File content only on tape → Becomes “offline”

○ Metadata still on disk (EOS’ QuarkDB, critical!)

● Retrieval: xrdfs root://ctaeos prepare -s /eos/ctaeos/cta/file.dat
○ On disk yet? See above command

○ Clients initiate disk space reclaim (but GC is also performed)

○ File back on disk → Becomes “online” again

● Deletion: eos root://ctaeos rm eos/ctaeos/cta/file.dat
○ Not really deleted yet → “Shadow data” until relabeling

46

NooBaa TAPECLOUD: usage
1. End-user writes to cold storage: aws s3 cp ~/file.dat s3://mybucket/file.dat --storage-class GLACIER

○ End-user cannot access the file immediately after this operation

2. Cronjob migrates file: node manage_nsfs.js glacier migrate

3. End-user requests restore: aws s3api restore-object --bucket mybucket --key testfile.img

--restore-request Days=2

○ End-user polls for restore completion: aws s3api head-object --bucket mybucket --key file.dat

4. Cronjob recalls files: node manage_nsfs.js glacier recall

5. End-user can access the file again: aws s3 cp s3://mybucket/file.dat ~/file.dat

47

CTA: detailed architecture

48

49

