A Unified 1/0 Monitoring Framework
Using eBPF

Mahendra Paipuri
Head of Digital Projects, CDSP, SciencesPo Paris, CNRS

FOSDEM 2026 - eBPF Devroom
31th January 2026

SciencesPo @

CENTRE DE DONNEES SOCIO-POLITIQUES

Context

[]

[]

Al is transforming HPC

Traditional HPC tools are focused on MPI workloads and cannot be used “out-of-the-box” with AI workloads

Al workloads are often limited by 1/0

It is very important to understand application’s I/0 pattern to optimize workflows

Non standardised telemetry of Parallel File Systems

Sometimes metrics are available only at the node level

Standard tools like Darshan are strongly coupled with MPI

Limited support for non MPI workloads and still require compile time modifications

Ideally what we need?

[] 170 monitoring agnostic of app and file system

Improves portability of the tool and helps in standardisation of telemetry systems

[] Minimal to no changes to apps either at compile time or runtime

Allows plug and play approach across different platforms

[] Minimally intrusive and negligible overhead

A bonus if this can be done on production workflows without losing performance

[] Ability to capture I/0 events at any level in the stack

Tracing events both in kernel and user spaces.

eBPF - extended Berkeley Packet Filter

[] Extend capabilities of the kernel at RUNTIME

No need of kernel modules, no need to recompile kernel and no reboots required

[] Successor to Berkeley Packet Filter (BPF)

Classical BPF only dealt with network packet processing

[1 Programs are triggered by kernel events

eBPF programs receives pointers to kernel and user space memory

[] Maps allow sharing data between kernel and user space

Very efficient way to read data from and into kernel space from user space programs

[] Heavily adopted in cloud-native landscape

Became an indispensable technology in Observability and Telemetry

Tracing VFS using eBPF

[Process]

write()

oy]

read()

[File Descriptor

]

(VFS

&

Y

Kernel

vfs_read()
vfs _write()

[Local FS } [Remote FS J [Remote FS }

Network

Function
vfs_read
vfs_write
vfs_open
vfs_create
vfs_mkdir
vfs_unlink

vfs_rmdir

Description
Read a file
Write a file

Open afile
Create a file
Make a directory
Remove a file

Remove a directory

Sample eBPF code to trace VFS

include <linux/bpf.h>

include <bpf/bpf_tracing.h>

struct vfs_event_key {
__u32 cid; /* cgroup ID */
__u8 mnt[64]; /* Mount point */
}s5

struct vfs_rw_event {
__u6b4 bytes; /* Bytes counter */
__u6b4d calls; /* Call counter */
__u6b4 errors; /* Error counter */

}s

struct {
__uint(type, BPF_MAP_TYPE_LRU_HASH);
__uint(max_entries, 16834);
__type(key, struct vfs_event_key);
__type(value, struct vfs_rw_event);
} write_accumulator SEC(".maps");

char LICENSE[] SEC("license") = "GPL";

include <bpf/bpf_helpers.h> Headers and type definitions

Struct definition for VFS event

BPF map definition

eBPF programs must be GPL compatible

Sample eBPF code to trace VFS

SEC("kprobe/vfs_write")

{

u64 kprobe_vfs_write(struct pt_regs *ctx)

event = bpf_map_lookup_elem(&write_accumulator, &key);
if (levent) {

bpf_map_update_elem(&write_accumulator, &key, &new_event, BPF_NOEXIST);
return 0;

}

__sync_fetch_and_add(&event->calls, 1);
__sync_fetch_and_add(&event->bytes, (__u64)bytes);

struct vfs_rw_event new_event = { .bytes = bytes, .calls = 1, .errors = 0 };

struct file *file = (struct file *)PT_REGS_PARM1(ctx); Read

__u64 bytes = (__u64)PT_REGS_PARM3(ctx); ead drgs

struct vfs_event_key key = { 0 };

key.cid = (__u32)ceems_get_current_cgroup_id(); Get cgroup ID and mount path of file
get_mnt_path(&key, file);

Look up and increment
counters

Tests

[] A NFS server has been created for tests

NFS server has been mounted on the same machine on loopback to eliminate noise with network

[] I0R benchmark has been chosen for evaluating current approach

Tested on one NFS client using transfer sizes of 1,2,4,8 and 16 MiB. Tests have been repeated for 8 times for POSIX and MPIIO.

[] CEEMS Exporter has been used for monitoring 1/0 using eBPF

Prometheus has been configured to scrape metrics from exporter for every 2 sec.

[] Relative overhead. Higher means more overhead.

Ratio of observed bandwidth reported by IOR without exporter to observed bandwidth reported by IOR with exporter enabled.

[] Relative error. Closer to 1 means less error.

Ratio of observed bandwidth reported by IOR to mean of the instantaneous bandwidth reported by the exporter

https://mahendrapaipuri.github.io/ceems/docs/components/ceems-exporter#ebpf-sub-collector

Tests

Relative overhead

Relative error

1.04

1.02

POSIX MPIIO
T T T T T 1.06 T T T T T
B read B read
[write write
= 4 1.04 b
(@)
r 4 1.02 b
(@) [e) (¢}
e ; 2 =g ={ 100 9 ? .
4 é o8 E[] & *
r 4 0.98 b
1 1 L 1 L 0‘96 1 1 1 1 1 -
1024 2048 4096 8192 16384 1024 2048 4096 8192 16384
POSIX MPIIO
T T T T T 1.06 T T T T T
EE read EE read
3 write 3 write
F 4 1.04 r 0
(6]
= 4 1.02 b
: ;
5 o 5 o
L] ; @ g8 Hel 1ol @ |§| 1
(0]
r 4 0.98 - b

1024 2048 4096

8192 16384

Transfer size (KiB)

6 1 1
1024 2048

4096 8192 16384

Transfer size (KiB)

Tests

[] Multi node IOR test on Jean Zay HPC platform

4 nodes with 16 MPI processes with transfer size of 1 MiB on LUSTRE file system for POSIX and
MPIIO

[] Darshan has been used to compare results from current approach

Darshan reported aggregate metrics with a bin interval of ~52 sec.

[] CEEMS Exporter has been used for monitoring 1/0 using eBPF

Prometheus has been configured to scrape metrics from exporter for every 10 sec.

Instantaneous bandwidths between current approach and Darshan
[] have been compared

Number of bytes written/read within a bin interval (~52 sec for Darshan and 10 sec for CEEMS exporter)

http://www.idris.fr/eng/jean-zay/jean-zay-presentation-eng.html
https://mahendrapaipuri.github.io/ceems/docs/components/ceems-exporter#ebpf-sub-collector

Tests

POSIX MPIIO
000 —m—m—————————— 1500
[— n(l) Eegggg : n(l) ggarsﬁang F— n(l) Eegggg : n(; Egarsﬁang 1
 —— nl (e n arshan - —— nl (e n arshan) -
4000 F —— n2 (eBPF) A 12 (Darshan) 1250 | —— po (eBPF) A 12 (Darshan)]
) I — n3 (eBPF) A n3 (Darshan) [— n3 (eBPF) A n3 Darshan)
=) [_write_ | read . 1000 [——Yrite - rea
% 3000 .
= _ 750 |
= 2000 r . i
'S - 500 ¢
A |
1000 : . 9250
0t 0t

0 200 400 600

eBPF based I/0 monitoring on Jean Zay

Total I/O Write Bandwidth Usage ©

24 GiB/s
22 GiB/s
20 GiB/s
18 GiB/s
16 GiB/s
14 GiB/s

12 GiB/s

10 GiB/s

8 GiB/s

6 GiB/s

4GiB/s

2GiB/s i

08/s =

13:30

Name Min Max Mean
== [fsn1from ceems-a100-8g 560 MiB/s 2.68 GiB/s 1.23 GiB/s
== [fswork from ceems-al00-8g 6.89 MiB/s 430 MiB/s 40.2 MiB/s
== [fsn1from ceems-cpu 116 GiB/s 20.3 GiB/s 3.5 GiB/s
== [fswork from ceems-cpu 15.2MiB/s 1.4 GiB/s 973 MiB/s
== /fsn1from ceems-h100-4g 312MiB/s 137 GiB/s 190 MiB/s
== [fswork from ceems-h100-4g 29.3KiB/s 273GiB/s 240 MiB/s
== [fsn1from ceems-v100-4g 24.3MiB/s 660 MiB/s 232 MiB/s
= [fswork from ceems-v100-4g 148 MiB/s 11.9GiB/s 173 GiB/s
== [fsn1from ceems-v100-8g 0B/s 246MiB/s 9.67 MiB/s

Ifswork from ceems-v100-8g 156 KiB/s 43.6 MiB/s 318 MiB/s
= Total /fsn1 2.07GiB/s 21.6GiB/s 4.80 GiB/s

= Total /fswork 175 MiR/s 136 GiRls 2.96 GIR/s

eBPF based I/0

Job 10 Read/Write Bandwidth ©®

7 GiB/s
6 GiB/s
5 GiB/s
4 GiB/s
3 GiB/s
2 GiB/s
1GiB/s
0 B/s LIl LR -
00:00 02:00 04:00 06:00 08:00 10:00
Name

== Read Bandwith on SCRATCH from r2iin34

== Read Bandwith on WORK from r2iin34
== \Write Randwith on SCRATCH from r2i1n34

monitoring on Jean Zay

12:0

0

14:00
Min
0 B/s
0 B/s
0OR/s

JULLUUN i1

16:00
Max

6.38 GiB/s
0B/s
940 MiR/s

|
JULH LGOS LR

18:00
Mean

896 MiB/s
0 B/s
12.8 MiR/s

Job 10 Read/Write Requests ©

350K req/s
300K req/s
250K req/s
200K req/s
150K reqg/s
100K reg/s
50K reg/s
0 reqg/s il LR
00:00 02:00 04:00 06:00 08:00
Name

== Read Requests on SCRATCH from r2iin34

== Read Requests on WORK from r2iin34
== \Write Reauests on SCRATCH from r2iin34

10:00 12:00

Min
Oreq/s
Oreq/s

0 reals

14:00 16:00
Max
175K reg/s
0 reqg/s
344K reals

18:00
Mean
16.8K req/s
0 reqg/s
5.03K reals

What more can we do with eBPF?

[] Trace user space MPI libraries

Almost all the MPI functions (OpenMPI and/or Intel MPI) can be traced to build profiles

[| eBPF ring buffer is used to send events

A circular multiple producer single consumer buffer that can preserve the event order coming from multiple CPUs

[] OpenTelemetry SDKs can be used to generate profile traces

These traces can be stored in any OpenTelemetry compatible backend like Prometheus, Jaeger, etc.

] A rudimentary PoC using Jaeger and OpenTelemetry SDK for MPI-10

MPI-IO functions have been traced to generate spans using OpenTelemetry Go SDK and sent them to Jaeger for visualization

https://www.kernel.org/doc/html/next/bpf/ringbuf.html
https://opentelemetry.io/docs/

MPI-1O Tracing Tests

< v mpiio-tracing: MPI-IO: Job 2481642

May 23 2025, 15:59:15

Service & Operation

Vv mpiio-tracing MFI-0: Job 2481642

29.24s

1

mpiio-tracing Rank: 1
mpiio-tracing =
mpiio-tracing =
mpiio-tracing

mpiio-tracing =

7.31s 14.62s ‘

PMPI _File open, PMPI_File set view

8

21.93s

Trace Timeline v

[MpIO-ACIG T
mpiio-tracing Rank
mpiio-tracing
mpiio-tracing Rank: 1
mpiio-tracing
mpiio-tracing Rank: 1
mpiio-tracing

mpiio-tracing =

mpiio-tracing

mpiio-tracing =

mpiio-tracing =
mpiio-tracing Rank
mpiio-tracing =
mpiio-tracing
mpiio-tracing
mpiio-tracing Rank: 1
mpiio-tracing

mpiio-tracing Rank

mpiio-tracing =
mpiio-tracing =
mpiio-tracing =

mpiio-tracing Rank: 1

&3 Archive Trace

29.24s]

PMPI_F

PMPI_F

1le_write

ile close

PMPI_F1

ile_open,

PMPI_File_set view

PMPI_File_read

Closing Remarks

[] A zeroinstrumentation I/0 monitoring framework

Agnostic of application and filesystem and capable of performing system wide monitoring

[] Leverage existing cloud-native tools

Storage and visualization of monitoring data can be done using existing tools like Grafana, Prometheus, Joeger for better UI/UX

[] Ability to trace any function or library

Both user and kernel space functions can be traced to generate spans

] can be combined with eBPF based continuous profiling

This gives a complete monitoring and profiling solution that is portable and agnostic across HPC platforms

https://www.deep-kondah.com/ebpf-library-profiling/

SciencesPo @

CENTRE DE DONNEES SOCIO-POLITIQUES

Thank you

mahendra.paipuri@cnrs.fr

[=]

CEEMS Exporter:
GitHub Repository

Docs

https://github.com/mahendrapaipuri/ceems
https://mahendrapaipuri.github.io/ceems/

