A Unified 1/0 Monitoring Framework
Using eBPF

Mahendra Paipuri
Head of Digital Projects, CDSP, SciencesPo Paris, CNRS

FOSDEM 2026 - eBPF Devroom
31th January 2026

SciencesPo @

CENTRE DE DONNEES SOCIO-POLITIQUES



Context

[]

[]

Al is transforming HPC

Traditional HPC tools are focused on MPI workloads and cannot be used “out-of-the-box” with AI workloads

Al workloads are often limited by 1/0

It is very important to understand application’s I/0 pattern to optimize workflows

Non standardised telemetry of Parallel File Systems

Sometimes metrics are available only at the node level

Standard tools like Darshan are strongly coupled with MPI

Limited support for non MPI workloads and still require compile time modifications



Ideally what we need?

[ ] 170 monitoring agnostic of app and file system

Improves portability of the tool and helps in standardisation of telemetry systems

[ ] Minimal to no changes to apps either at compile time or runtime

Allows plug and play approach across different platforms

[ ] Minimally intrusive and negligible overhead

A bonus if this can be done on production workflows without losing performance

[] Ability to capture I/0 events at any level in the stack

Tracing events both in kernel and user spaces.



eBPF - extended Berkeley Packet Filter

[ ] Extend capabilities of the kernel at RUNTIME

No need of kernel modules, no need to recompile kernel and no reboots required

[ ] Successor to Berkeley Packet Filter (BPF)

Classical BPF only dealt with network packet processing

[ 1 Programs are triggered by kernel events

eBPF programs receives pointers to kernel and user space memory

[ ] Maps allow sharing data between kernel and user space

Very efficient way to read data from and into kernel space from user space programs

[ ] Heavily adopted in cloud-native landscape

Became an indispensable technology in Observability and Telemetry



Tracing VFS using eBPF
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Sample eBPF code to trace VFS

# include <linux/bpf.h>

# include <bpf/bpf_tracing.h>

struct vfs_event_key {
__u32 cid; /* cgroup ID */
__u8 mnt[64]; /* Mount point */
}s5

struct vfs_rw_event {
__u6b4 bytes; /* Bytes counter */
__u6b4d calls; /* Call counter */
__u6b4 errors; /* Error counter */

}s

struct {
__uint(type, BPF_MAP_TYPE_LRU_HASH);
__uint(max_entries, 16834);
__type(key, struct vfs_event_key);
__type(value, struct vfs_rw_event);
} write_accumulator SEC(".maps");

char LICENSE[] SEC("license") = "GPL";

# include <bpf/bpf_helpers.h> Headers and type definitions

Struct definition for VFS event

BPF map definition

eBPF programs must be GPL compatible



Sample eBPF code to trace VFS

SEC("kprobe/vfs_write")

{

u64 kprobe_vfs_write(struct pt_regs *ctx)

event = bpf_map_lookup_elem(&write_accumulator, &key);
if (levent) {

bpf_map_update_elem(&write_accumulator, &key, &new_event, BPF_NOEXIST);
return 0;

}

__sync_fetch_and_add(&event->calls, 1);
__sync_fetch_and_add(&event->bytes, (__u64)bytes);

struct vfs_rw_event new_event = { .bytes = bytes, .calls = 1, .errors = 0 };

struct file *file = (struct file *)PT_REGS_PARM1(ctx); Read

__u64 bytes = (__u64)PT_REGS_PARM3(ctx); ead drgs

struct vfs_event_key key = { 0 };

key.cid = (__u32)ceems_get_current_cgroup_id(); Get cgroup ID and mount path of file
get_mnt_path(&key, file);

Look up and increment
counters



Tests

[] A NFS server has been created for tests

NFS server has been mounted on the same machine on loopback to eliminate noise with network

[ ] I0R benchmark has been chosen for evaluating current approach

Tested on one NFS client using transfer sizes of 1,2,4,8 and 16 MiB. Tests have been repeated for 8 times for POSIX and MPIIO.

[ ] CEEMS Exporter has been used for monitoring 1/0 using eBPF

Prometheus has been configured to scrape metrics from exporter for every 2 sec.

[ ] Relative overhead. Higher means more overhead.

Ratio of observed bandwidth reported by IOR without exporter to observed bandwidth reported by IOR with exporter enabled.

[] Relative error. Closer to 1 means less error.

Ratio of observed bandwidth reported by IOR to mean of the instantaneous bandwidth reported by the exporter


https://mahendrapaipuri.github.io/ceems/docs/components/ceems-exporter#ebpf-sub-collector
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Tests

[ ] Multi node IOR test on Jean Zay HPC platform

4 nodes with 16 MPI processes with transfer size of 1 MiB on LUSTRE file system for POSIX and
MPIIO

[ ] Darshan has been used to compare results from current approach

Darshan reported aggregate metrics with a bin interval of ~52 sec.

[ ] CEEMS Exporter has been used for monitoring 1/0 using eBPF

Prometheus has been configured to scrape metrics from exporter for every 10 sec.

Instantaneous bandwidths between current approach and Darshan
[] have been compared

Number of bytes written/read within a bin interval (~52 sec for Darshan and 10 sec for CEEMS exporter)


http://www.idris.fr/eng/jean-zay/jean-zay-presentation-eng.html
https://mahendrapaipuri.github.io/ceems/docs/components/ceems-exporter#ebpf-sub-collector
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eBPF based I/0 monitoring on Jean Zay

Total I/O Write Bandwidth Usage ©
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Name Min Max Mean
== [fsn1from ceems-a100-8g 560 MiB/s 2.68 GiB/s 1.23 GiB/s
== [fswork from ceems-al00-8g 6.89 MiB/s 430 MiB/s 40.2 MiB/s
== [fsn1from ceems-cpu 116 GiB/s  20.3 GiB/s 3.5 GiB/s
== [fswork from ceems-cpu 15.2MiB/s 1.4 GiB/s 973 MiB/s
== /fsn1from ceems-h100-4g 312MiB/s 137 GiB/s 190 MiB/s
== [fswork from ceems-h100-4g 29.3KiB/s 273GiB/s 240 MiB/s
== [fsn1from ceems-v100-4g 24.3MiB/s 660 MiB/s 232 MiB/s
= [fswork from ceems-v100-4g 148 MiB/s  11.9GiB/s 173 GiB/s
== [fsn1from ceems-v100-8g 0B/s 246MiB/s 9.67 MiB/s

Ifswork from ceems-v100-8g 156 KiB/s 43.6 MiB/s 318 MiB/s
= Total /fsn1 2.07GiB/s 21.6GiB/s 4.80 GiB/s

= Total /fswork 175 MiR/s 136 GiRls  2.96 GIR/s



eBPF based I/0
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What more can we do with eBPF?

[ ] Trace user space MPI libraries

Almost all the MPI functions (OpenMPI and/or Intel MPI) can be traced to build profiles

[ | eBPF ring buffer is used to send events

A circular multiple producer single consumer buffer that can preserve the event order coming from multiple CPUs

[ ] OpenTelemetry SDKs can be used to generate profile traces

These traces can be stored in any OpenTelemetry compatible backend like Prometheus, Jaeger, etc.

] A rudimentary PoC using Jaeger and OpenTelemetry SDK for MPI-10

MPI-IO functions have been traced to generate spans using OpenTelemetry Go SDK and sent them to Jaeger for visualization


https://www.kernel.org/doc/html/next/bpf/ringbuf.html
https://opentelemetry.io/docs/
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Closing Remarks

[ ] A zeroinstrumentation I/0 monitoring framework

Agnostic of application and filesystem and capable of performing system wide monitoring

[ ] Leverage existing cloud-native tools

Storage and visualization of monitoring data can be done using existing tools like Grafana, Prometheus, Joeger for better UI/UX

[ ] Ability to trace any function or library

Both user and kernel space functions can be traced to generate spans

] can be combined with eBPF based continuous profiling

This gives a complete monitoring and profiling solution that is portable and agnostic across HPC platforms


https://www.deep-kondah.com/ebpf-library-profiling/
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CEEMS Exporter:
GitHub Repository

Docs


https://github.com/mahendrapaipuri/ceems
https://mahendrapaipuri.github.io/ceems/

