
A Unified I/O Monitoring Framework
Using eBPF

Mahendra Paipuri
Head of Digital Projects, CDSP, SciencesPo Paris, CNRS

FOSDEM 2026 - eBPF Devroom
31th January 2026

Context

Traditional HPC tools are focused on MPI workloads and cannot be used “out-of-the-box” with AI workloads

AI is transforming HPC

AI workloads are often limited by I/O
It is very important to understand application’s I/O pattern to optimize workflows

Non standardised telemetry of Parallel File Systems
Sometimes metrics are available only at the node level

Standard tools like Darshan are strongly coupled with MPI
Limited support for non MPI workloads and still require compile time modifications

Ideally what we need?

Improves portability of the tool and helps in standardisation of telemetry systems

I/O monitoring agnostic of app and file system

Minimal to no changes to apps either at compile time or runtime
Allows plug and play approach across different platforms

Minimally intrusive and negligible overhead
A bonus if this can be done on production workflows without losing performance

Ability to capture I/O events at any level in the stack
Tracing events both in kernel and user spaces.

eBPF - extended Berkeley Packet Filter

Classical BPF only dealt with network packet processing

Successor to Berkeley Packet Filter (BPF)

Extend capabilities of the kernel at RUNTIME
No need of kernel modules, no need to recompile kernel and no reboots required

Programs are triggered by kernel events
eBPF programs receives pointers to kernel and user space memory

Maps allow sharing data between kernel and user space
Very efficient way to read data from and into kernel space from user space programs

Heavily adopted in cloud-native landscape
Became an indispensable technology in Observability and Telemetry

Tracing VFS using eBPF

Process

File Descriptor

VFS

Local FS Remote FSRemote FS

Syscall

Network

Kernel

vfs_read()
vfs_write()

read()write()

Function Description

vfs_read Read a file

vfs_write Write a file

vfs_open Open a file

vfs_create Create a file

vfs_mkdir Make a directory

vfs_unlink Remove a file

vfs_rmdir Remove a directory

include <linux/bpf.h>
include <bpf/bpf_helpers.h>
include <bpf/bpf_tracing.h>

struct vfs_event_key {
__u32 cid; /* cgroup ID */
__u8 mnt[64]; /* Mount point */

};

struct vfs_rw_event {
__u64 bytes; /* Bytes counter */
__u64 calls; /* Call counter */
__u64 errors; /* Error counter */

};

struct {
__uint(type, BPF_MAP_TYPE_LRU_HASH);
__uint(max_entries, 16834);
__type(key, struct vfs_event_key);
__type(value, struct vfs_rw_event);

} write_accumulator SEC(".maps");

char LICENSE[] SEC("license") = "GPL";

Sample eBPF code to trace VFS
Headers and type definitions

Struct definition for VFS event

BPF map definition

eBPF programs must be GPL compatible

SEC("kprobe/vfs_write")
__u64 kprobe_vfs_write(struct pt_regs *ctx)
{

struct file *file = (struct file *)PT_REGS_PARM1(ctx);
__u64 bytes = (__u64)PT_REGS_PARM3(ctx);

struct vfs_event_key key = { 0 };
key.cid = (__u32)ceems_get_current_cgroup_id();
get_mnt_path(&key, file);

 event = bpf_map_lookup_elem(&write_accumulator, &key);
 if (!event) {

 struct vfs_rw_event new_event = { .bytes = bytes, .calls = 1, .errors = 0 };
 bpf_map_update_elem(&write_accumulator, &key, &new_event, BPF_NOEXIST);

 return 0;
}

__sync_fetch_and_add(&event->calls, 1);
__sync_fetch_and_add(&event->bytes, (__u64)bytes);

}

Sample eBPF code to trace VFS

Read args

Get cgroup ID and mount path of file

Look up and increment
counters

Tests

NFS server has been mounted on the same machine on loopback to eliminate noise with network

A NFS server has been created for tests

IOR benchmark has been chosen for evaluating current approach
Tested on one NFS client using transfer sizes of 1,2,4,8 and 16 MiB. Tests have been repeated for 8 times for POSIX and MPIIO.

CEEMS Exporter has been used for monitoring I/O using eBPF
Prometheus has been configured to scrape metrics from exporter for every 2 sec.

Relative overhead. Higher means more overhead.
Ratio of observed bandwidth reported by IOR without exporter to observed bandwidth reported by IOR with exporter enabled.

Relative error. Closer to 1 means less error.
Ratio of observed bandwidth reported by IOR to mean of the instantaneous bandwidth reported by the exporter

https://mahendrapaipuri.github.io/ceems/docs/components/ceems-exporter#ebpf-sub-collector

Tests

Tests

4 nodes with 16 MPI processes with transfer size of 1 MiB on LUSTRE file system for POSIX and
MPIIO

Multi node IOR test on Jean Zay HPC platform

Darshan has been used to compare results from current approach
Darshan reported aggregate metrics with a bin interval of ~52 sec.

CEEMS Exporter has been used for monitoring I/O using eBPF
Prometheus has been configured to scrape metrics from exporter for every 10 sec.

Instantaneous bandwidths between current approach and Darshan
have been compared
Number of bytes written/read within a bin interval (~52 sec for Darshan and 10 sec for CEEMS exporter)

http://www.idris.fr/eng/jean-zay/jean-zay-presentation-eng.html
https://mahendrapaipuri.github.io/ceems/docs/components/ceems-exporter#ebpf-sub-collector

Tests

eBPF based I/O monitoring on Jean Zay

eBPF based I/O monitoring on Jean Zay

What more can we do with eBPF?

Almost all the MPI functions (OpenMPI and/or Intel MPI) can be traced to build profiles

Trace user space MPI libraries

eBPF ring buffer is used to send events
A circular multiple producer single consumer buffer that can preserve the event order coming from multiple CPUs

OpenTelemetry SDKs can be used to generate profile traces
These traces can be stored in any OpenTelemetry compatible backend like Prometheus, Jaeger, etc.

A rudimentary PoC using Jaeger and OpenTelemetry SDK for MPI-IO
MPI-IO functions have been traced to generate spans using OpenTelemetry Go SDK and sent them to Jaeger for visualization

https://www.kernel.org/doc/html/next/bpf/ringbuf.html
https://opentelemetry.io/docs/

MPI-IO Tracing Tests

PMPI_File_open, PMPI_File_set_view

PMPI_File_write

PMPI_File_open,
PMPI_File_set_view

PMPI_File_read

PMPI_File_close

Closing Remarks

Agnostic of application and filesystem and capable of performing system wide monitoring

A zero instrumentation I/O monitoring framework

Leverage existing cloud-native tools
Storage and visualization of monitoring data can be done using existing tools like Grafana, Prometheus, Jaeger for better UI/UX

Ability to trace any function or library
Both user and kernel space functions can be traced to generate spans

Can be combined with eBPF based continuous profiling
This gives a complete monitoring and profiling solution that is portable and agnostic across HPC platforms

https://www.deep-kondah.com/ebpf-library-profiling/

Thank you
mahendra.paipuri@cnrs.fr

CEEMS Exporter:
GitHub Repository
Docs

https://github.com/mahendrapaipuri/ceems
https://mahendrapaipuri.github.io/ceems/

