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Catalyze sustainable 
security improvements 
within the most critical 
open source projects and 
ecosystems.

Alpha-Omega Mission
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𝛂 →Leverage

𝛀 → Scale

Alpha-Omega Explained
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520% Increase Since 2016

Vulnerability Trends



Cascade Effect: Single CVE Fix Cumulative Work Required

A Geometric Cascade



The Cascade Effect



What is a VEX?
VEX (Vulnerability Exploitability eXchange) is:

● Machine-readable statement about exploitability
● Answers: “Is this vulnerability actually exploitable here?“

In use by:

● Microsoft, Red Hat, OpenSUSE, Cisco, ServiceNow, …

Why it matters:

● Supports CRA requirement:
“without known exploitable vulnerabilities“
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Day in the life of a security engineer

100+ new CVEs every day.
For each one:

1. Check if the component is present (SBOM)
2. Understand the CVE
3. Trace the dependency path (SBOM?)
4. Assess exploitability at each step

5. Repeat for every application and version
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Should OSS Projects Produce VEXes?

Benefits:

● Builds trust in the project
● Saves time for downstream users
● Many downstream users are OSS 

too

Challenges:

● Not required by regulations
● Consumes scarce volunteer time

At FOSDEM 2025, Munawar and Piotr brought this challenge to Michael:

Can we make VEX generation scalable and realistic for OSS?
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The Cost Of Producing VEXes: Organizations

700,000 upgrade decisions per year

7M hours (10 hours for each VEX)

3,365 Person Year (2080 work hour/year)

$400M Per Year
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The Cost Of Producing VEXes: Maintainers

Cost Of 
Generating VEX 

Documents

460 Dependencies

300 CVEs (approx. 1 per artifact)

3000 Hours Of Effort (10 hours per VEX)

1.5 Person Years (2080 work hour/year) 

Really Low Adoption Of VEX Documents

97% Noise in SCA Reports

It Takes Months To Fix Vulnerabilities

Consequences



How Do We Generate VEX?
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Root Cause Service

● AI agent
● Vulnrichment
● Finds vulnerable method

Call Graph Service

● Per component call graphs
● Capslock-compatible format
● Source-based

(shading-resistant)

CVEs

SBOMs Metadata
GitHub

Repository

Project-specific
VEX workflows

● Determines maximum 
reachable path

● Generates enriched 
VEX statement
(VEXplanation)

Maintainers

High Level Architecture

Repo Org in 
GitHub

https://github.com/vex-generation-toolset/root-cause-service
https://github.com/vex-generation-toolset/java-callgraph
https://github.com/vex-generation-toolset/callgraph-metadata
https://github.com/vex-generation-toolset/callgraph-metadata
https://github.com/vex-generation-toolset/callgraph-metadata
https://github.com/vex-generation-toolset/vex-generation-service
https://github.com/vex-generation-toolset/vex-generation-service


How Does VEX Helps Maintainers?

CVE-2025-30065

Published on Apr 1, 2025

CVSS Score: 10

April 15, 2025

Slide 13 of 17



VEX Document Generation For Apache Hadoop

CVE-2025-30065

Published on Apr 1, 2025

Apache Hadoop discussion on Apr 15, 2025

We started working on April 16, 2025

VEX evidence generated on April 18, 2025 

Not Reachable
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What Did The Maintainers Do?

April 21, 2025
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Generating VEX As A Part Of CI/CD Pipeline

Integrate VEX :

● Create a PR per CVE
● Work across multiple versions
● Objective data for exploitability vs upgrade risk
● Better answers to user security questions

In parallel:

● Human-friendly HTML security pages from VEX data

Demo Video 
On YouTube



What Changes With VEX Automation?

The VEX Generation Toolset has shown a need to:

● Improve VEX structure and standards with more structured data
● Easier VEX exchange (Transparency Exchange API)
● Automate interpretation of exploitability from reachability, by sharing 

statements with upstream and downstream
● Reduce the pain of evaluating transitive dependency upgrades

SBOMs took years to mature: VEX will too.

Link To This 
Slide Deck



Capslock analyzes your code to show/control privileged operations your 
dependencies can access: file I/O, network calls, code execution, etc. 

Example

Package: org.apache.commons:commons-compress:1.24.0
Capabilities:
  File System:
    • CAPABILITY_FILES - File system operations
      └─ ZipFile.<init> → FileInputStream.<init>
  Reflection:
    • CAPABILITY_REFLECT - Reflection and dynamic code loading
      └─ ZstdUtils → Class.forName

Malicious code from a 2022 supply chain attack

CAPABILITY_EXEC: 1 calls
CAPABILITY_FILES: 1 calls
CAPABILITY_MODIFY_SYSTEM_STATE: 2 calls
CAPABILITY_NETWORK: 1 calls
CAPABILITY_OPERATING_SYSTEM: 1 calls
CAPABILITY_READ_SYSTEM_STATE: 1 calls

https://capslock-project.github.io/

Shoutout: What Else Do You Know Using Call Graphs?

https://capslock-project.github.io/

