Beyond SBOM: Integrating VEX into Open Source Workflows

Michael Winser Munawar Hafiz Piotr P. Karwasz

<t Open|Refactory

{¥ FOSDEM

Alpha-Omega Mission

{¥ FOSDEM

Catalyze sustainable
security improvements
within the most critical
open source projects and
ecosystems.

Slide 1 of 17

Alpha-Omega Explained

0 —Leverage

QO — Scale

{¥ FOSDEM

Vulnerability Trends

520% Increase Since 2016

60K~
45K~
30K+

15K_/

OK T I I T [I I 1
2016 2017 2018 2019 2020 2021 2022 2023 2024

A Geometric Cascade

Cascade Effect: Single CVE Fix

LO: CVE
Published

L1: Direct
Deps

1:2;
Transitive

L3:
Downstream

L4: End
Users

0

2500 5,000

10,000

Cumulative Work Required

12.0K]

9.0KH

6.0K

3.0KH

0.0K@

Original Fix Direct Dependents 2nd Level

T |
3rd Level Leaf Projects

The Cascade Effect

Before vs After Reachability

Critical CVEs High CVEs Medium CVEs Low CVEs

m All Reported ma Actually Reachable

Log scale to show dramatic reduction

Ecosystem Toil Reduction

False Positives

Remediation
Time

Alert Volume

Dev
Interruptions

0% 25% 50% 75% 100%
m Without Reachability m With Reachability

What is a VEX?

VEX (Vulnerability Exploitability eXchange) is:

e Machine-readable statement about exploitability
e Answers: “Is this vulnerability actually exploitable here?”

In use by:
e Microsoft, Red Hat, OpenSUSE, Cisco, ServiceNow, ...
Why it matters:

e Supports CRA requirement:
“without known exploitable vulnerabilities”

{¥ FOSDEM

Slide 6 of 17

Day in the life of a security engineer

100+ new CVEs every day.
For each one:

Check if the component is present (SBOM)
Understand the CVE

Trace the dependency path (SBOM?)
Assess exploitability at each step

Hwn =

§:2 kafka = % 2 = Jackson = snakevami

5. Repeat for every application and version

{¥ FOSDEM

Slide 7 of 17

Should OSS Projects Produce VEXes?
Benefits: Challenges:

Builds trust in the project
e Saves time for downstream users
Many downstream users are 0SS

too

e Not required by regulations
e Consumes scarce volunteer time

At FOSDEM 2025, Munawar and Piotr brought this challenge to Michael:

Can we make VEX generation scalable and realistic for 0SS?

Slide 8 of 17

{¥ FOSDEM

The Cost Of Producing VEXes: Organizations

700,000 upgrade decisions per year
7M hours (10 hours for each VEX)
3,365 Person Year (2080 work hour/year)

S400M Per Year

{¥ FOSDEM

The Cost Of Producing VEXes: Maintainers

%

Solr-

{¥ FOSDEM

460 Dependencies
300 CVEs (approx. 1 per artifact)
3000 Hours Of Effort (10 hours per VEX)

1.5 Person Years (2080 work hour/year)

Really Low Adoption Of VEX Documents
97% Noise in SCA Reports

It Takes Months To Fix Vulnerabilities

How Do We Generate VEX?

)) &) =)
85 85 85 B

A@1.5 —>» B@2.0 —>» C@1.0 —>»> D@2.0 |

\
1. CVE To Root 2*.iCR Call
Cause STG? Graph
Location Agent $ é Generator
LT ES LS L CGagis —> CGsazo = CGcato —> CGoezo

Method bam@Class Ban@A1.5

<§') 3. Reachability
Analysis Script
CGaais = CGsazo ¥

CGag1s = CGsgzo = CGcato X
CGhais —¥ CGsazo —» CGceto —F CGoazo X

4. VEX Document
Generation Script

J7 Slide 11 of 17

VEXs@2.0 VEXce10 VEXo@20

High Level Architecture (" erolct-specit
workflows

)/ /F Root Cause Service N\ . .
f@\ - e Determines maximum

reachable path

e Generates enriched
VEX statement
(VEXplanation)

Metadata i

e Al agent

CVEs = > e Vulnrichment

e Finds vulnerable method

- /

ﬁ:all Graph Service \

=

e Per component call graphs
e Capslock-compatible format

SBOMs e Source-based GitHub EOQOE®
(shading-resistant) Repository ERE) - 1|
Ok A0
K / Maintainers 4
[=]:

{¥ FOSDEM g0

https://github.com/vex-generation-toolset/root-cause-service
https://github.com/vex-generation-toolset/java-callgraph
https://github.com/vex-generation-toolset/callgraph-metadata
https://github.com/vex-generation-toolset/callgraph-metadata
https://github.com/vex-generation-toolset/callgraph-metadata
https://github.com/vex-generation-toolset/vex-generation-service
https://github.com/vex-generation-toolset/vex-generation-service

How Does VEX Helps Maintainers?

%

/,/,//

Parquet April 15, 2025
CVE-2025-30065 I spent last week dealing with that Parquet CVE and I now know how trivial

it is to instantiate any class with a string constructor from Parquet <
15.1 and from Avro < 1.11.4. You just declare it as the class to generate

. when iterating through an avro file/schema and then have the target app
Published on Apr 1’ 2025 iterate through the code

CVSS Score: 10

We've fixed trunk by moving to shaded avro 1.11.4, but the forthcoming
3.4.x release is on avro 1.9.2. Which is exposed. We use it internally, and
expose some classes which others may use.

We have not upgraded branch-3.4 because it appears to violate our
compatibility rules.

{¥ FOSDEM

VEX Document Generation For Apache Hadoop

//o/ Published on Apr 1, 2025
Y
Parquet
CVE-2025-30065

Apache Hadoop discussion on Apr 15, 2025

We started working on April 16, 2025

VEX evidence generated on April 18, 2025

Parquet

¥ FOSDEM

What Did The Maintainers Do?

April 21, 2025

Even if we aren't vulnerable there, by requiring avro 1.9 in some services, =)) sosche / hadoc

we may be forcing it on others, or at least getting into the hadoop common SoGode RNl iRyl irecxect= RN) ctisn =B Rrole s UR Secar i S siotis

classpath, so making it hard for applications to upgrade -they may use the
P 9 PP P9 y y Commit c239f61

methOd' @ steveloughran authored 9 hours ago
I've upgraded branch-3.4; tagged in the release notes as incompatible. SRRl Mpgrade dgecie Buns To LIL-4 Gaienl [SgRis)

* All field access is now via setter/getter methods
* To use Avro to marshal Serializable objects,
the packages they are in must be declared in the system property
H H H H H H H "org.apache.avro.SERIALIZABLE_PACKAGES"
Regarding the cve analysis, is it possible to run it against all the asf hadoop
This is required to address

repos? or a set of private ones? - CVE-2024-47561

— CVE-2023-39410
This change is not backwards compatible.

Contributed by Dominik Diedrich

{¥ FOSDEM

Generating VEX As A Part Of CI/CD Pipeline

Integrate VEX:

Create a PR per CVE

Work across multiple versions

Objective data for exploitability vs upgrade risk
Better answers to user security questions

In parallel:

e Human-friendly HTML security pages from VEX data

{¥ FOSDEM e

What Changes With VEX Automation?

The VEX Generation Toolset has shown a need to:

SBOMs took years to mature: VEX will too.

¥ FOSDEM

Improve VEX structure and standards with more structured data
Easier VEX exchange (Transparency Exchange API)

Automate interpretation of exploitability from reachability, by sharing
statements with upstream and downstream

Reduce the pain of evaluating transitive dependency upgrades

Shoutout: What Else Do You Know Using Call Graphs?

Capslock analyzes your code to show/control privileged operations your
dependencies can access: file 1/0, network calls, code execution, etc.

Madicious code from a 2022 supply chain attack

CAPABILITY_EXEC: 1 callsons:commons—-compress:1.24.0
CAPABILITY_FILES: 1 calls
CAPABILITY_MODIFY_SYSTEM_STATE: 2 calls
CAPABILITY_NETWORK: 1 callsle system operations
CAPABILITY_OPERATING_SYSTEM: 1 callstream.<init>
CAPABILITY_READ_SYSTEM_STATE: 1 calls

e CAPABILITY_REFLECT - Reflection and dynamic code loading

L Zstdutils > Class.forName

ﬁ FOS D E M https://capslock-project.qithub.io/

https://capslock-project.github.io/

