
Beyond SBOM: Integrating VEX into Open Source Workflows

Michael Winser Munawar Hafiz Piotr P. Karwasz

Catalyze sustainable
security improvements
within the most critical
open source projects and
ecosystems.

Alpha-Omega Mission

Slide 1 of 17

𝛂 →Leverage

𝛀 → Scale

Alpha-Omega Explained

Slide 2 of 17

520% Increase Since 2016

Vulnerability Trends

Cascade Effect: Single CVE Fix Cumulative Work Required

A Geometric Cascade

The Cascade Effect

What is a VEX?
VEX (Vulnerability Exploitability eXchange) is:

● Machine-readable statement about exploitability
● Answers: “Is this vulnerability actually exploitable here?“

In use by:

● Microsoft, Red Hat, OpenSUSE, Cisco, ServiceNow, …

Why it matters:

● Supports CRA requirement:
“without known exploitable vulnerabilities“

Slide 6 of 17

Day in the life of a security engineer

100+ new CVEs every day.
For each one:

1. Check if the component is present (SBOM)
2. Understand the CVE
3. Trace the dependency path (SBOM?)
4. Assess exploitability at each step

5. Repeat for every application and version

Slide 7 of 17

Should OSS Projects Produce VEXes?

Benefits:

● Builds trust in the project
● Saves time for downstream users
● Many downstream users are OSS

too

Challenges:

● Not required by regulations
● Consumes scarce volunteer time

At FOSDEM 2025, Munawar and Piotr brought this challenge to Michael:

Can we make VEX generation scalable and realistic for OSS?

Slide 8 of 17

The Cost Of Producing VEXes: Organizations

700,000 upgrade decisions per year

7M hours (10 hours for each VEX)

3,365 Person Year (2080 work hour/year)

$400M Per Year

Slide 9 of 17

The Cost Of Producing VEXes: Maintainers

Cost Of
Generating VEX

Documents

460 Dependencies

300 CVEs (approx. 1 per artifact)

3000 Hours Of Effort (10 hours per VEX)

1.5 Person Years (2080 work hour/year)

Really Low Adoption Of VEX Documents

97% Noise in SCA Reports

It Takes Months To Fix Vulnerabilities

Consequences

How Do We Generate VEX?

Slide 11 of 17

Root Cause Service

● AI agent
● Vulnrichment
● Finds vulnerable method

Call Graph Service

● Per component call graphs
● Capslock-compatible format
● Source-based

(shading-resistant)

CVEs

SBOMs Metadata
GitHub

Repository

Project-specific
VEX workflows

● Determines maximum
reachable path

● Generates enriched
VEX statement
(VEXplanation)

Maintainers

High Level Architecture

Repo Org in
GitHub

https://github.com/vex-generation-toolset/root-cause-service
https://github.com/vex-generation-toolset/java-callgraph
https://github.com/vex-generation-toolset/callgraph-metadata
https://github.com/vex-generation-toolset/callgraph-metadata
https://github.com/vex-generation-toolset/callgraph-metadata
https://github.com/vex-generation-toolset/vex-generation-service
https://github.com/vex-generation-toolset/vex-generation-service

How Does VEX Helps Maintainers?

CVE-2025-30065

Published on Apr 1, 2025

CVSS Score: 10

April 15, 2025

Slide 13 of 17

VEX Document Generation For Apache Hadoop

CVE-2025-30065

Published on Apr 1, 2025

Apache Hadoop discussion on Apr 15, 2025

We started working on April 16, 2025

VEX evidence generated on April 18, 2025

Not Reachable

Slide 14 of 17

What Did The Maintainers Do?

April 21, 2025

Slide 15 of 17

Generating VEX As A Part Of CI/CD Pipeline

Integrate VEX :

● Create a PR per CVE
● Work across multiple versions
● Objective data for exploitability vs upgrade risk
● Better answers to user security questions

In parallel:

● Human-friendly HTML security pages from VEX data

Demo Video
On YouTube

What Changes With VEX Automation?

The VEX Generation Toolset has shown a need to:

● Improve VEX structure and standards with more structured data
● Easier VEX exchange (Transparency Exchange API)
● Automate interpretation of exploitability from reachability, by sharing

statements with upstream and downstream
● Reduce the pain of evaluating transitive dependency upgrades

SBOMs took years to mature: VEX will too.

Link To This
Slide Deck

Capslock analyzes your code to show/control privileged operations your
dependencies can access: file I/O, network calls, code execution, etc.

Example

Package: org.apache.commons:commons-compress:1.24.0
Capabilities:
 File System:
 • CAPABILITY_FILES - File system operations
 └─ ZipFile.<init> → FileInputStream.<init>
 Reflection:
 • CAPABILITY_REFLECT - Reflection and dynamic code loading
 └─ ZstdUtils → Class.forName

Malicious code from a 2022 supply chain attack

CAPABILITY_EXEC: 1 calls
CAPABILITY_FILES: 1 calls
CAPABILITY_MODIFY_SYSTEM_STATE: 2 calls
CAPABILITY_NETWORK: 1 calls
CAPABILITY_OPERATING_SYSTEM: 1 calls
CAPABILITY_READ_SYSTEM_STATE: 1 calls

https://capslock-project.github.io/

Shoutout: What Else Do You Know Using Call Graphs?

https://capslock-project.github.io/

