
Bridging the Gap from WordPress to Weblate
Niklas Korz

February 1, 2026 FOSDEM 2026 1

About Me

• Technical lead at alugha.com

• Rustacean 🦀 and Nix enthusiast ❄

• Likes:

‣ computer graphics, interactive media

‣ pen & paper roleplaying games

• Website: https://korz.dev

• Mastodon: @niklaskorz@rheinneckar.social

February 1, 2026 Bridging the Gap from WordPress to Weblate – Niklas Korz 2

https://alugha.com
https://korz.dev
https://rheinneckar.social/@niklaskorz

What to expect from this talk

• Not a mature project you can use directly

• Mostly about sharing a fun little story

• Kindle that hacker spirit 🧙

• Involves FOSS projects (WordPress, Elementor, Weblate)

February 1, 2026 Bridging the Gap from WordPress to Weblate – Niklas Korz 3

1. Motivation

2. From Idea to Solution

3. Implementation

4. Conclusion

February 1, 2026 Bridging the Gap from WordPress to Weblate – Niklas Korz 4

Why WordPress?

• Familiarity for our marketing team

• Familiarity for our designers

• Can be edited without developers’ involvement

• FOSS (unlike, e.g., Framer)

• Decision made before WordPress vs. WP Engine

February 1, 2026 Bridging the Gap from WordPress to Weblate – Niklas Korz 5

Why Weblate?

• Existing WordPress plugins: WPML, Polylang, GTranslate

‣ Unfamiliar workflow for our translators

‣ Translated pages stuck on old page versions

• Weblate: everything in one place

‣ Already used for all our own UI translations

‣ Ability to rollout translations as they come

‣ Translation memory, Glossary, …

February 1, 2026 Bridging the Gap from WordPress to Weblate – Niklas Korz 6

1. Motivation

2. From Idea to Solution

3. Implementation

4. Conclusion

February 1, 2026 Bridging the Gap from WordPress to Weblate – Niklas Korz 7

Idea

• Generate JSON message file for Weblate to consume

‣ One content block = one message

‣ Granularity depending on block type (e.g., list items)

• Render localized pages with Weblate’s translated messages

• External processing, basically a static page builder

February 1, 2026 Bridging the Gap from WordPress to Weblate – Niklas Korz 8

Uniquely identifying block instances

• Gutenberg block instances do not have a stable ID

‣ https://github.com/WordPress/gutenberg/issues/10157

‣ https://github.com/WordPress/gutenberg/issues/25195

‣ “the clientId isn’t persistent between editor sessions, it’s regenerated for

each block when the editor loads”

February 1, 2026 Bridging the Gap from WordPress to Weblate – Niklas Korz 9

https://github.com/WordPress/gutenberg/issues/10157
https://github.com/WordPress/gutenberg/issues/25195

Uniquely identifying block instances

• Custom blocks:

‣ store randomly generated ID as block attribute

‣ problematic when copying pages / templates

‣ not applicable to builtin or plugin block types

• Everything else: hash the text message

February 1, 2026 Bridging the Gap from WordPress to Weblate – Niklas Korz 10

Elementor Website Builder

• https://github.com/elementor/elementor (GPLv3)

• More powerful drag & drop editor than Gutenberg

• Block instances (“widgets”) have stable IDs 🎉

• Widgets can have custom data (through data- attributes)

February 1, 2026 Bridging the Gap from WordPress to Weblate – Niklas Korz 11

https://github.com/elementor/elementor

<div
 class="elementor-element elementor-element-2a75..."
 data-element_type="widget"
 data-id="2a75c28"
 data-widget_type="heading.default"
>
 <div class="elementor-widget-container">
 <h3 class="elementor-heading-title">Blog</h3>
 </div>
</div>

February 1, 2026 Bridging the Gap from WordPress to Weblate – Niklas Korz 12

<div
 class="elementor-element elementor-element-c996..."
 data-element_type="widget"
 data-id="c996cc7"
 data-widget_type="text-editor.default"
>
 <div class="elementor-widget-container">
 <p>Get up to date with our latest articles on a wide
range of topics.</p>
 </div>
</div>

February 1, 2026 Bridging the Gap from WordPress to Weblate – Niklas Korz 13

1. Motivation

2. From Idea to Solution

3. Implementation

4. Conclusion

February 1, 2026 Bridging the Gap from WordPress to Weblate – Niklas Korz 14

Implementation

• Originally on-the-fly processing in Rust 🦀

• Static processing in deployment pipeline a better fit

‣ implemented with Deno and TypeScript 🦕

‣ still heavily reliant on Rust ecosystem

• Fixed list of translatable widget types

February 1, 2026 Bridging the Gap from WordPress to Weblate – Niklas Korz 15

The Full Pipeline

1. Preprocessing (URL rewriting, download assets, nest and minify CSS)

2. Message extraction (export of default locale)

3. Translate (in Weblate)

5. Message replacement (apply translated messages for all locales)

6. Deploy

February 1, 2026 Bridging the Gap from WordPress to Weblate – Niklas Korz 16

Preprocessing

• Extract select head elements

• Extract and clean up actual content (#content element)

• Remove any JavaScript

• Download images

• Wrap CSS in a class wrapper (through lightningcss)

• Append content hash to all filenames for cache busting

February 1, 2026 Bridging the Gap from WordPress to Weblate – Niklas Korz 17

Message Extraction

• HTML parser: Servo’s html5ever (through deno-dom)

• Search DOM tree for Elementor widgets with translatable type

• Some recursion required depending on widget type

• Fallback: dataset attribute with custom message id

February 1, 2026 Bridging the Gap from WordPress to Weblate – Niklas Korz 18

Message Replacement

• Uses same algorithm as message detection for content list

• Retrieve translation and insert as sanitized HTML

• Sanitization mainly allows formatting and links (<a>)

February 1, 2026 Bridging the Gap from WordPress to Weblate – Niklas Korz 19

1. Motivation

2. From Idea to Solution

3. Implementation

4. Conclusion

February 1, 2026 Bridging the Gap from WordPress to Weblate – Niklas Korz 20

Conclusion

• If it’s HTML, you can translate it 🧙

• If it generates and consumes a map of messages, you can use Weblate

‣ ideal scenario: text only nodes with a stable, unique id attribute

‣ next best: you know how to reliably find and replace the text

‣ lack of a stable id: hash the original message

February 1, 2026 Bridging the Gap from WordPress to Weblate – Niklas Korz 21

Source code pls?

• Still needs some untangling before release

• Probably next week 🤞

• https://codeberg.org/alugha/wp-elementor-translation-example

• (repository currently empty)

February 1, 2026 Bridging the Gap from WordPress to Weblate – Niklas Korz 22

https://codeberg.org/alugha/wp-elementor-translation-example

Questions?

• Q&A now

• Talk to me during the conference

• Contact me:

‣ Email: contact@korz.dev

‣ Mastodon: @niklaskorz@rheinneckar.social

February 1, 2026 Bridging the Gap from WordPress to Weblate – Niklas Korz 23

mailto:contact@korz.dev
https://rheinneckar.social/@niklaskorz

	Motivation
	From Idea to Solution
	Implementation
	Conclusion

