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Builds Browser by day and OS by night 

https://smnx.sh

ABOUT ME 

Clem



General purpose 

Microkernel 

Rich C++ Framework 

POSIX 🤮 

WHAT IS SKIFT OS? 



GOALS 

Fun 

Learning 

Research 



PROJECT STATUS 

Early stage 

Most components are POCs 

~110k LoC 

Full desktop 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CUTEKIT 

Cargo inspired 

C++ 20 modules 

Battery included  
(lint, fmt, fuzz, profile, test, build) 



{
   "id": "karm-sys.skift",
   "type": "lib",
   "enableIf": {
       "sys": [
           "skift"
       ]
   },
   "requires": [
       "crts",
       "..."
   ],
   "provides": [
       "karm-sys.impl",
       "..."
   ]
}

crts

karm-sys.imp

karm-sys.skift

CUTEKIT COMPONENTS 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KARM 

Freestanding core shared  

between all components of the OS 

Inspired by rust, go, and C#’s std 



KARM-FLAVORED C++ 

C with lambda, modules, and coroutines 

No exceptions 

Res<> and try$(...) 

strict Clang safety checks 

[[clang::lifetimebound]] 

-Wunsafe-buffer-usage … 

 



import Karm.Core; 
import Karm.Sys; 
import Karm.Ui; 
 
using namespace Karm; 
 
Async::Task<> entryPointAsync(Sys::Context& ctx, Async::CancellationToken ct) { 

co_return co_await Ui::runAsync( 
ctx, Ui::labelMedium("Hello, world"), ct); 

} 

HELLO, WORLD! 



// Definition
export struct WindowCreate {
   using Response = Tuple<WindowId, WindowProps>;
   WindowProps want; };

// Usage
auto client = co_try$(
    co_await Sys::IpcClient::connectAsync("ipc:strata-shell"));

auto [windowId, windowProps] = co_try$(
    co_await client.callAsync<IShell::WindowCreate>(
        {{800, 600}, App::FormFactor::NORMAL}), 
cancellationToken);

No exception! 

RPC 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OPSTART 

EFI bootloader 

Boot protocol called handover 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HJERT 

“Pragmatic” microkernel design 

~4k lines of code, written for clarity 

Core kernel responsibilities 

IPC, Preemption, Memory management, IRQ dispatch 

Minimal object model 

Task, Space, Vmo, Channel, Irq, Iop, Listener, … 

~25 syscalls total 



Res<> doSend(Task& self, Hj::Cap cap, UserSlice<Bytes> buf, UserSlice<Slice<Hj::Cap>> 
caps) {
   return with(
       self.space(),
       [&](Bytes buf, Slice<Hj::Cap> caps) -> Res<> {
           auto obj = try$(self.domain().get<Channel>(cap));
           try$(obj->send(self.domain(), buf, caps));
           return Ok();
       },
       buf, caps
   );
}

HJERT SYSCALL 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STARTING STRATA 

hjert  strata-cm  strata-init 

dev, fs, shell, etc 



strata-cm 

strata-device 

strata-inputs  strata-shell 

strata-fs 

Applications 

STRATA 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Hideo Desktop



HIDEO 

Custom display protocol 

Adaptive UI 

Vector Based 

Subpixel antialiasing 

TrueType 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Browser

ARCHITECTURE 



BROWSER 

HTML/CSS only 

No JS (for now) 

Pretty fast 

 



DEMO TIME! 



BEYOND 

Full virtio support 

Networking 

On disk file system 

Sound Server 

Namespacing 

HTML/CSS in the bootloader :^) 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 Dev 

RPC CANCELATION 



PACKAGING 

All code and assets live in /bundles/<package> 

Bundle contents are private by default 

Only /bundles/<package>/public is exposed for consumption 

Bundles are packaged into a single BootFS volume 

BootFS is page-aligned and intentionally simple 

Design inspired by Fuchsia 


