
Building a microkernel-based  
operating system from the ground up 

FOSDEM 2026 

Presented by Clem 

Slides and links 

WHAT HAPPENS WHEN YOU DESIGN THE ENTIRE STACK? 
QUESTION 

2014 

2021 

2026 

Builds Browser by day and OS by night 

https://smnx.sh

ABOUT ME 

Clem

General purpose 

Microkernel 

Rich C++ Framework 

POSIX 🤮 

WHAT IS SKIFT OS? 

GOALS 

Fun 

Learning 

Research 

PROJECT STATUS 

Early stage 

Most components are POCs 

~110k LoC 

Full desktop 

 

 

CuteKit

HANDOFF  INIT  RUNTIME BUILD 

Hideo Desktop

Strata Services

Opstart Bootloader Hjert Microkernel

Karm FrameworkCuteKit

ARCHITECTURE 

CUTEKIT 

Cargo inspired 

C++ 20 modules 

Battery included  
(lint, fmt, fuzz, profile, test, build) 

{
 "id": "karm-sys.skift",
 "type": "lib",
 "enableIf": {
 "sys": [
 "skift"
]
 },
 "requires": [
 "crts",
 "..."
],
 "provides": [
 "karm-sys.impl",
 "..."
]
}

crts

karm-sys.imp

karm-sys.skift

CUTEKIT COMPONENTS 

CuteKit

BOOT  INIT  RUNTIME BUILD 

Hideo Desktop

Strata Services

Opstart Bootloader Hjert Microkernel

Karm Framework

ARCHITECTURE 

KARM 

Freestanding core shared  

between all components of the OS 

Inspired by rust, go, and C#’s std 

KARM-FLAVORED C++ 

C with lambda, modules, and coroutines 

No exceptions 

Res<> and try$(...) 

strict Clang safety checks

[[clang::lifetimebound]]

-Wunsafe-buffer-usage … 

 

import Karm.Core; 
import Karm.Sys; 
import Karm.Ui; 
 
using namespace Karm; 
 
Async::Task<> entryPointAsync(Sys::Context& ctx, Async::CancellationToken ct) { 

co_return co_await Ui::runAsync( 
ctx, Ui::labelMedium("Hello, world"), ct); 

} 

HELLO, WORLD! 

// Definition
export struct WindowCreate {
 using Response = Tuple<WindowId, WindowProps>;
 WindowProps want; };

// Usage
auto client = co_try$(
 co_await Sys::IpcClient::connectAsync("ipc:strata-shell"));

auto [windowId, windowProps] = co_try$(
 co_await client.callAsync<IShell::WindowCreate>(
 {{800, 600}, App::FormFactor::NORMAL}),
cancellationToken);

No exception! 

RPC 

CuteKit

BOOT  INIT  RUNTIME BUILD 

Hideo Desktop

Strata Services

Opstart Bootloader Hjert Microkernel

Karm Framework

ARCHITECTURE 

OPSTART 

EFI bootloader 

Boot protocol called handover 

 

CuteKit

BOOT  INIT  RUNTIME BUILD 

Hideo Desktop

Strata Services

Opstart Bootloader Hjert Microkernel

Karm Framework

ARCHITECTURE 

HJERT 

“Pragmatic” microkernel design 

~4k lines of code, written for clarity 

Core kernel responsibilities 

IPC, Preemption, Memory management, IRQ dispatch 

Minimal object model 

Task, Space, Vmo, Channel, Irq, Iop, Listener, … 

~25 syscalls total 

Res<> doSend(Task& self, Hj::Cap cap, UserSlice<Bytes> buf, UserSlice<Slice<Hj::Cap>>
caps) {
 return with(
 self.space(),
 [&](Bytes buf, Slice<Hj::Cap> caps) -> Res<> {
 auto obj = try$(self.domain().get<Channel>(cap));
 try$(obj->send(self.domain(), buf, caps));
 return Ok();
 },
 buf, caps
);
}

HJERT SYSCALL 

CuteKit

BOOT  INIT  RUNTIME BUILD 

Hideo Desktop

Strata Services

Opstart Bootloader Hjert Microkernel

Karm Framework

ARCHITECTURE 

STARTING STRATA 

hjert  strata-cm  strata-init 

dev, fs, shell, etc 

strata-cm 

strata-device 

strata-inputs  strata-shell 

strata-fs 

Applications 

STRATA 

CuteKit

BOOT  INIT  RUNTIME BUILD 

Hideo Desktop

Strata Services

Opstart Bootloader Hjert Microkernel

Karm Framework

ARCHITECTURE 

Hideo Desktop

HIDEO 

Custom display protocol 

Adaptive UI 

Vector Based 

Subpixel antialiasing 

TrueType 

 

CuteKit

BOOT  INIT  RUNTIME BUILD 

Hideo Desktop

Strata Services

Opstart Bootloader Hjert Microkernel

Karm Framework

ARCHITECTURE 

Browser

ARCHITECTURE 

BROWSER 

HTML/CSS only 

No JS (for now) 

Pretty fast 

 

DEMO TIME! 

BEYOND 

Full virtio support 

Networking 

On disk file system 

Sound Server 

Namespacing 

HTML/CSS in the bootloader :^) 

ACKNOWLEDGEMENTS 

Slides and links 

Mathilde 

Lou, Jordan, and All of DEVSE, and OSDEV 

 

All of you 

App  Fs  Dev 

RPC CANCELATION 

PACKAGING 

All code and assets live in /bundles/<package> 

Bundle contents are private by default 

Only /bundles/<package>/public is exposed for consumption 

Bundles are packaged into a single BootFS volume 

BootFS is page-aligned and intentionally simple 

Design inspired by Fuchsia 

