
1

Experimenting with the
AArch64 Pointer
Authentication (Pauth) ABI
on bare-metal

31/01/2026

Peter Smith

2

Arm v8.3-A Pointer Authentication in a nutshell

signed_pointer = sign(raw_pointer, key, discriminator);

PAC<key> <Xd>, <Xn>

raw_pointer = auth(signed_pointer, key, discriminator);

AUT<key> <Xd>, <Xn>

• The key is a shared secret; the discriminator is local to the pointer.

• Which pointers are signed, and how they are signed (key, discriminator) is called a
signing schema.

• -mbranch-protection=standard (including pac-ret) is an example signing schema
that protects the return address.

3

Armv8.3-A Pointer Authentication Implementation

Tag/reserved H/L Reserved VA

Pointer in AArch64

Signed Pointer in AArch64

Optional PAC H/L PAC VA

Instruction A Key

Instruction B Key

Data A Key

Data B Key

General A Key
64-bit modifier

PAC IA XD , XN

4

Why am I talking about PAuthABI?

• Pointer Authentication on ELF platforms is currently restricted to protecting the return address
• Can be deployed on all AArch64 machines and operating systems.

• PAuthABI has existed as a specification for about 5 years
• ELF implementation of Apple’s Arm64E ABI.

• PAuthABI protects all code-pointers but requires Arm v8.3-A hardware and an ABI break.

• Upstream LLVM has now got an implementation for testing but there’s no public target deploying it.

• Bare-metal has fewer ABI and hardware constraints than a Linux Distribution.

• Would like to see PAuthABI have a production ready target.

5

PAuthABI extends pointer authentication to code-pointers

use_vtable:

 PACIBSP

 STP x29,x30,[sp,#-0x10]!

 MOV x29,sp

 LDR x8,[x0,#0] // x8 = vtable ptr

 MOV x9,x0 // x9 = vtable ptr address

 MOVK x9,#0x7125,LSL #48 // discriminator

 AUTDA x8,x9

 LDR x9,[x8,#0]

 MOV x17,x8 // Address of vtable entry

 MOVK x17,#0x2a8e,LSL #48 // discriminator

 BLRAA x9,x17 // Combined branch and aut

 ADD w0,w0,#0xa

 LDP x29,x30,[sp],#0x10

 RETAB // Combined return and aut

struct B final {

 virtual int f();

};

int use_vtable(B* b) {

 // load vtable for B from b

 // load address of B::f from

 // vtable for B

 // indirectly call B::f

 return b->f() + 10;

}

// clang++ –target=aarch64-Linux-
pauthtest -mcpu=cortex-a510

6

PAuthABI in upstream LLVM

• Experimental test target environment PAuthTest with Linux OS
• --target=aarch64-linux-pauthtest
• Synonymous with --target=aarch64-linux-gnu -mabi=pauthtest

• Target is experimental as any change to the signing schema is an ABI break
• No public ELF platform has committed to an ABI yet.

• Header file ptrauth.h provided for manual control of signing schema
• Recommended for C-Style pointer to functions as default signing schema accounts for anything permitted

by the C-standard.

• Using it requires compatible runtime libraries and dynamic linker support.

7

Dynamic linker support for static initialization of code pointers

extern int foo(void);

typedef int fptr(void);

// global_fp initialized to foo

// prior to entering main

fptr* global_fp = &foo;

int main() {

 // expects global_fp to be signed

 return global_fp();

}

Signing

schema for int

fptr(void)

global_fp

R_AARCH64_AUTH_RELATIVE foo

• AUTH variant dynamic relocations
sign result after traditional relocation
operation.

• Signing schema for pointer in the
place being relocated.

8

Trying out PAuthABI in Linux Userspace

• Access Softek have provided a statically linked musl based Linux toolchain.

• Uses a fork of llvm-project and a fork of musl with dynamic linker support.

• Executables produced can be run on an armv8.3-a system or via QEMU user-mode emulation.

• Link in references slide to toolchain build-scripts
• Script uses an Ubuntu 24.04 LTS container, may need to alter if your distro is older or newer.

• Produces a squashfs that can be mounted, examples use /opt/llvm-pauth

/opt/llvm-pauth/bin/clang++ -target aarch64-linux-pauthtest -march=armv8.3-a \

 -Wl,--dynamic-linker=/opt/llvm-pauth/aarch64-linuxpauthtest/usr/lib/libc.so \

 -Wl,--rpath=/opt/llvm-pauth/aarch64-linux-pauthtest/usr/lib \

 hello-world.cpp -o hello-world

qemu-aarch64 hello-world

Hello World!

9

Experimenting with PAuthABI on bare-metal

• Hardware and ABI requirements are challenges for PAuthABI adoption on existing platforms.

• Bare-metal systems, or firmware for a larger system may be an easier target for deployment.

• Can we build an embedded toolchain that supports PAuthABI on qemu-system-aarch64 ?
• Make life easier with -fno-exceptions –fno-rtti and no position independence.

• Shopping list:
• PAuthtest support in the bare-metal driver aarch64-none-pauthtest.

• Compiler-rt, llvm-libc and libc++ runtime with aarch64-none-pauthtest support.

• Support code to initialize pointer authentication keys.

• Linker script to add linker defined symbols to .rela.dyn bounds

• A relocation resolver to resolve R_AARCH64_AUTH_RELATIVE relocations.

• Multilib selection of runtime from aarch64-none-pauthtest.

• Link to fork of llvm-project with build-scripts in references.

10

Experience

• Baremetal driver aarch64-none-elf does not support PAuthTest or -mabi=pauthtest
• Add and adapt the existing Linux driver code.

• LLVM libc has some inline assembly that needed altering for PAuthABI
• asm volatile("bl %0" : : “X"(LIBC_NAMESPACE::do_start));

• In PAuthABI do_start must be accessed indirectly, replace bl with blr, “X” with “r”.

• asm("B %0" : : “X"(GenericException_Handler));
• Replace B with BR, “X” with “r”.

• Multilib can be set up to use the aarch64-none-pauthtest target.

• Can use the AUTH variant relocations, using linker defined symbols to find the relocations.

.rela.dyn : {

 PROVIDE(__rela_dyn_start = .);

 (.rela.dyn .rela.dyn.)

 PROVIDE(__rela_dyn_end = .);

 } >flash AT>flash :text

11

Processing dynamic relocations at startup

63 62 61:60 59:48 47:32 31:0

Address

diversity

reserved Key

00 IA

01 IB

10 DA

11 DB

reserved discriminator Reserved for

addend (when

doing RELR

compression)

• R_AARCH64_AUTH_RELATIVE with operation

• SIGN(DELTA(S) + A, SCHEMA(*P))

• Signing schema stored in the place of the relocation *P

• Modifier calculated from address diversity, discriminator and place P.

• Store result of PAC<key> xd, xn into contents of place *P

• xd = DELTA(S) + A

• xn = modifier

12

Next Steps for PAuthABI

• PAuthABI support in a chicken-and-egg situation
• Projects can’t use it if there’s no toolchain.

• Toolchain providers won’t do the work to support PAuthABI unless real projects want to use it.

• Likely that the signing schemas coalesce into a small number of supportable variants
• With an official ELF target bare-metal, upstream support for bare-metal PAuthABI is feasible.

13

References

• Clang documentation on Pointer Authentication
• https://clang.llvm.org/docs/PointerAuthentication.html

• Required reading for anyone building a production system!

• Access Softek’s Linux musl PAuth Toolchain
• https://github.com/access-softek/pauth-toolchain-build-scripts

• LLVM fork for a proof-of-concept embedded toolchain
• https://github.com/smithp35/llvm-project/tree/pauthabi

• LLVM Dev Meeting 2024 presentation
• Adding Pointer Authentication ABI support for your ELF platform

• https://www.youtube.com/watch?v=bytWm7BzJVE

• PAuth ABI Extension to ELF for the Arm 64-bit Architecture (AArch64)
• https://github.com/ARM-software/abi-aa/blob/main/pauthabielf64/pauthabielf64.rst

• Arm Toolchain LLVM libc support code
• https://github.com/arm/arm-toolchain/tree/arm-software/arm-software/embedded/llvmlibc-support

https://clang.llvm.org/docs/PointerAuthentication.html
https://clang.llvm.org/docs/PointerAuthentication.html
https://github.com/access-softek/pauth-toolchain-build-scripts
https://github.com/access-softek/pauth-toolchain-build-scripts
https://github.com/access-softek/pauth-toolchain-build-scripts
https://github.com/access-softek/pauth-toolchain-build-scripts
https://github.com/access-softek/pauth-toolchain-build-scripts
https://github.com/access-softek/pauth-toolchain-build-scripts
https://github.com/access-softek/pauth-toolchain-build-scripts
https://github.com/access-softek/pauth-toolchain-build-scripts
https://github.com/access-softek/pauth-toolchain-build-scripts
https://github.com/access-softek/pauth-toolchain-build-scripts
https://github.com/smithp35/llvm-project/tree/pauthabi
https://github.com/smithp35/llvm-project/tree/pauthabi
https://github.com/smithp35/llvm-project/tree/pauthabi
https://github.com/smithp35/llvm-project/tree/pauthabi
https://www.youtube.com/watch?v=bytWm7BzJVE
https://www.youtube.com/watch?v=bytWm7BzJVE
https://github.com/ARM-software/abi-aa/blob/main/pauthabielf64/pauthabielf64.rst
https://github.com/ARM-software/abi-aa/blob/main/pauthabielf64/pauthabielf64.rst
https://github.com/ARM-software/abi-aa/blob/main/pauthabielf64/pauthabielf64.rst
https://github.com/ARM-software/abi-aa/blob/main/pauthabielf64/pauthabielf64.rst
https://github.com/ARM-software/abi-aa/blob/main/pauthabielf64/pauthabielf64.rst
https://github.com/ARM-software/abi-aa/blob/main/pauthabielf64/pauthabielf64.rst
https://github.com/arm/arm-toolchain/tree/arm-software/arm-software/embedded/llvmlibc-support
https://github.com/arm/arm-toolchain/tree/arm-software/arm-software/embedded/llvmlibc-support
https://github.com/arm/arm-toolchain/tree/arm-software/arm-software/embedded/llvmlibc-support
https://github.com/arm/arm-toolchain/tree/arm-software/arm-software/embedded/llvmlibc-support
https://github.com/arm/arm-toolchain/tree/arm-software/arm-software/embedded/llvmlibc-support
https://github.com/arm/arm-toolchain/tree/arm-software/arm-software/embedded/llvmlibc-support
https://github.com/arm/arm-toolchain/tree/arm-software/arm-software/embedded/llvmlibc-support
https://github.com/arm/arm-toolchain/tree/arm-software/arm-software/embedded/llvmlibc-support
https://github.com/arm/arm-toolchain/tree/arm-software/arm-software/embedded/llvmlibc-support
https://github.com/arm/arm-toolchain/tree/arm-software/arm-software/embedded/llvmlibc-support

14

Backup: Limitations of proof of concept

• Runs on QEMU virt machine
• qemu-system-aarch64 -machine virt -cpu max -semihosting -kernel hello.elf -nographic
-machine virtualization=on

• Tested on some simple C and C++ programs that dereference global code-pointers and vtables.

• PAC keys hardwired to test values
• Would need to have a source of randomness to have different keys each boot.

• No support for relocation read-only for .data.rel.ro
• If GOT used it would need to be signed.

• LLVM libc setjmp and longjmp may need additional hardening.

• Exceptions and RTTI support

15

Backup: Pointer Authentication using PAC RET

// return address in x30 on function entry

f:

 PACIASP // hint space encoding of PACIA x30, sp

 STP x29,x30,[sp,#-0x20]!

 …

 LDP x29,x30,[sp],#0x20

 AUTIASP // hint space encoding of AUTIA x30, sp

 RET

• Designed for minimal ABI
impact.

• Enabled with -mbranch-
protection=[standard|pac-ret]

• Hint space encoding means
code can run on all AArch64
machines.

• Enabled by default in some
Linux distributions.

Thank You

	Slide 1: Experimenting with the AArch64 Pointer Authentication (Pauth) ABI on bare-metal
	Slide 2: Arm v8.3-A Pointer Authentication in a nutshell
	Slide 3: Armv8.3-A Pointer Authentication Implementation
	Slide 4: Why am I talking about PAuthABI?
	Slide 5: PAuthABI extends pointer authentication to code-pointers
	Slide 6: PAuthABI in upstream LLVM
	Slide 7: Dynamic linker support for static initialization of code pointers
	Slide 8: Trying out PAuthABI in Linux Userspace
	Slide 9: Experimenting with PAuthABI on bare-metal
	Slide 10: Experience
	Slide 11: Processing dynamic relocations at startup
	Slide 12: Next Steps for PAuthABI
	Slide 13: References
	Slide 14: Backup: Limitations of proof of concept
	Slide 15: Backup: Pointer Authentication using PAC RET
	Slide 16

