arm

Experimenting with the
AArch64 Pointer
Authentication (Pauth) ABI
on bare-metal

Arm v8.3-A Pointer Authentication in a nutshell

signed_pointer = sign(, key, discriminator);

PAC<key> <Xd>, <Xn>

= auth(signed_pointer, key, discriminator);

AUT<key> <Xd>, <Xn>

arm

The key is a shared secret; the discriminator is local to the pointer.

Which pointers are signed, and how they are signed (key, discriminator) is called a
signing schema.

-mbranch-protection=standard (including pac-ret) is an example signing schema
that protects the return address.

Public © 2025 Arm 2

Armv8.3-A Pointer Authentication Implementation

Pointer in AArch64

Signed Pointer in AArch64

Tag/reserved | H/L Reserved VA

Instruction A Key

Instruction B Key

Data A Key

Data B Key

General A Key

arm

PAC | IA XD | ,XN

A

Optional PAC | H/L PAC VA

64-bit modifier

Public © 2025 Arm 3

Why am | talking about PAuthABI?

Pointer Authentication on ELF platforms is currently restricted to protecting the return address
- Can be deployed on all AArch64 machines and operating systems.

PAuthABI has existed as a specification for about 5 years
- ELF implementation of Apple’s Arm64E ABI.
- PAuthABI protects all code-pointers but requires Arm v8.3-A hardware and an ABI break.

Upstream LLVM has now got an implementation for testing but there’s no public target deploying it.
Bare-metal has fewer ABI and hardware constraints than a Linux Distribution.
Would like to see PAuthABI have a production ready target.

G rm Public © 2025 Arm 4

PAuthABI extends pointer authentication to code-pointers

struct B final {
virtual int f();

s

int use_vtable(B* b) {
// load vtable for B from b
// load address of B::f from
// vtable for B
// indirectly call B::f
return b->f() + 10;

// clang++ -target=aarch64-Linux-
pauthtest -mcpu=cortex-a510

arm

use_vtable:
PACIBSP
STP
MOV
LDR
MOV
MOVK
AUTDA
LDR
MOV
MOVK
BLRAA
ADD
LDP
RETAB

x29,x30,[sp,#-0x10]!

X29,sp

x8,[x0,#0] // x8 = vtable ptr

X9,x0 // x9 = vtable ptr address
X9, #0x7125,LSL #48 // discriminator
X8, X9

X9, [x8,#0]

x17,x8 // Address of vtable entry
x17,#0x2a8e,LSL #48 // discriminator
x9,x17 // Combined branch and aut
wo, w0, #0xa

x29,x30, [sp],#0x10

// Combined return and aut

Public © 2025 Arm 5

PAuUthABI in upstream LLVM

Experimental test target environment PAuthTest with Linux OS
- --target=aarch64-linux-pauthtest
- Synonymous with --target=aarch64-1linux-gnu -mabi=pauthtest

Target is experimental as any change to the signing schema is an ABI break
- No public ELF platform has committed to an ABI yet.

Header file ptrauth.h provided for manual control of signing schema

- Recommended for C-Style pointer to functions as default signing schema accounts for anything permitted
by the C-standard.

Using it requires compatible runtime libraries and dynamic linker support.

G rm Public © 2025 Arm 6

Dynamic linker support for static initialization of code pointers

extern int foo(void); obal | Signing
. T global 1p | schema forint [¢
typedef int fptr(void); fotr(void)

fptr* global fp = &foo; R_AARCH64 AUTH_RELATIVE foo

int main() { « AUTH variant dynamic relocations

sign result after traditional relocation
return global_fp(); operation.

} « Signing schema for pointer in the
place being relocated.

arm

Public © 2025 Arm 7

Trying out PAuthABI in Linux Userspace

Access Softek have provided a statically linked musl based Linux toolchain.
Uses a fork of llvm-project and a fork of musl with dynamic linker support.

Executables produced can be run on an armv8.3-a system or via QEMU user-mode emulation.
Link in references slide to toolchain build-scripts

- Script uses an Ubuntu 24.04 LTS container, may need to alter if your distro is older or newer.
- Produces a squashfs that can be mounted, examples use /opt/1llvm-pauth

/opt/llvm-pauth/bin/clang++ -target aarch64-linux-pauthtest -march=armv8.3-a \

-W1, --dynamic-1linker=/opt/llvm-pauth/aarch64-1linuxpauthtest/usr/lib/libc.so \
-W1, --rpath=/opt/llvm-pauth/aarch64-1linux-pauthtest/usr/lib \
hello-world.cpp -o hello-world

gemu-aarch64 hello-world
Hello World!

arm

Public © 2025 Arm 8

Experimenting with PAuthABI on bare-metal

Hardware and ABI requirements are challenges for PAuthABI adoption on existing platforms.
Bare-metal systems, or firmware for a larger system may be an easier target for deployment.

Can we build an embedded toolchain that supports PAuthABI on gemu-system-aarché64 ?
- Make life easier with -fno-exceptions -fno-rtti and no position independence.

Shopping list:
- PAuthtest support in the bare-metal driver aarch64-none-pauthtest.
- Compiler-rt, llvm-libc and libc++ runtime with aarch64-none-pauthtest support.
- Support code to initialize pointer authentication keys.
- Linker script to add linker defined symbols to .rela.dyn bounds
- Arelocation resolver to resolve R_AARCH64 AUTH_RELATIVE relocations.
- Multilib selection of runtime from aarch64-none-pauthtest.

Link to fork of llvm-project with build-scripts in references.

G rm Public © 2025 Arm 9

EXxperience

Baremetal driver aarch64-none-elf does not support PAuthTest or -mabi=pauthtest
- Add and adapt the existing Linux driver code.

LLVM libc has some inline assembly that needed altering for PAuthABI
- asm volatile("bl %0" : : “X"(LIBC_NAMESPACE::do_start));
- In PAuthABI do_start must be accessed indirectly, replace bl with blr, “X” with “r”.
- asm("B %0" : : “X"(GenericException_ Handler));
- Replace B with BR, “X” with “r”.

Multilib can be set up to use the aarch64-none-pauthtest target.
Can use the AUTH variant relocations, using linker defined symbols to find the relocations.

.rela.dyn : {
PROVIDE(__rela dyn start = .);
(.rela.dyn .rela.dyn.)
PROVIDE(__rela dyn end = .);
} >flash AT>flash :text

G rm Public © 2025 Arm 10

Processing dynamic relocations at startup

« R_AARCH64 AUTH_RELATIVE with operation

e SIGN(DELTA(S) + A, SCHEMA(*P))
« Signing schema stored in the place of the relocation *P

 Modifier calculated from address diversity, discriminator and place P.
« Store result of PAC<key> xd, xn into contents of place *P

« xd = DELTA(S) + A

e Xn = modifier

31:0

Reserved for
addend (when
doing RELR
compression)

59:48
reserved

62
reserved

q rm Public © 2025 Arm 11

Next Steps for PAuthABI

PAuthABI support in a chicken-and-egg situation
- Projects can’t use it if there’s no toolchain.
- Toolchain providers won’t do the work to support PAuthABI unless real projects want to use it.

Likely that the signing schemas coalesce into a small number of supportable variants
- With an official ELF target bare-metal, upstream support for bare-metal PAuthABI is feasible.

G rm Public © 2025 Arm 12

References

Clang documentation on Pointer Authentication
- https://clang.llvm.org/docs/PointerAuthentication.html
- Required reading for anyone building a production system!

Access Softek’s Linux musl PAuth Toolchain
« https://github.com/access-softek/pauth-toolchain-build-scripts

LLVM fork for a proof-of-concept embedded toolchain
« https://github.com/smithp35/llvm-project/tree/pauthabi

LLVM Dev Meeting 2024 presentation

- Adding Pointer Authentication ABI support for your ELF platform
- https://www.youtube.com/watch?v=bytWm7BzJVE

- PAuth ABI Extension to ELF for the Arm 64-bit Architecture (AArch64)
- https://qgithub.com/ARM-software/abi-aa/blob/main/pauthabielf64/pauthabielf64.rst

- Arm Toolchain LLVM libc support code
« https://github.com/arm/arm-toolchain/tree/arm-software/arm-software/embedded/llvmlibc-support

arm

Public © 2025 Arm 13

https://clang.llvm.org/docs/PointerAuthentication.html
https://clang.llvm.org/docs/PointerAuthentication.html
https://github.com/access-softek/pauth-toolchain-build-scripts
https://github.com/access-softek/pauth-toolchain-build-scripts
https://github.com/access-softek/pauth-toolchain-build-scripts
https://github.com/access-softek/pauth-toolchain-build-scripts
https://github.com/access-softek/pauth-toolchain-build-scripts
https://github.com/access-softek/pauth-toolchain-build-scripts
https://github.com/access-softek/pauth-toolchain-build-scripts
https://github.com/access-softek/pauth-toolchain-build-scripts
https://github.com/access-softek/pauth-toolchain-build-scripts
https://github.com/access-softek/pauth-toolchain-build-scripts
https://github.com/smithp35/llvm-project/tree/pauthabi
https://github.com/smithp35/llvm-project/tree/pauthabi
https://github.com/smithp35/llvm-project/tree/pauthabi
https://github.com/smithp35/llvm-project/tree/pauthabi
https://www.youtube.com/watch?v=bytWm7BzJVE
https://www.youtube.com/watch?v=bytWm7BzJVE
https://github.com/ARM-software/abi-aa/blob/main/pauthabielf64/pauthabielf64.rst
https://github.com/ARM-software/abi-aa/blob/main/pauthabielf64/pauthabielf64.rst
https://github.com/ARM-software/abi-aa/blob/main/pauthabielf64/pauthabielf64.rst
https://github.com/ARM-software/abi-aa/blob/main/pauthabielf64/pauthabielf64.rst
https://github.com/ARM-software/abi-aa/blob/main/pauthabielf64/pauthabielf64.rst
https://github.com/ARM-software/abi-aa/blob/main/pauthabielf64/pauthabielf64.rst
https://github.com/arm/arm-toolchain/tree/arm-software/arm-software/embedded/llvmlibc-support
https://github.com/arm/arm-toolchain/tree/arm-software/arm-software/embedded/llvmlibc-support
https://github.com/arm/arm-toolchain/tree/arm-software/arm-software/embedded/llvmlibc-support
https://github.com/arm/arm-toolchain/tree/arm-software/arm-software/embedded/llvmlibc-support
https://github.com/arm/arm-toolchain/tree/arm-software/arm-software/embedded/llvmlibc-support
https://github.com/arm/arm-toolchain/tree/arm-software/arm-software/embedded/llvmlibc-support
https://github.com/arm/arm-toolchain/tree/arm-software/arm-software/embedded/llvmlibc-support
https://github.com/arm/arm-toolchain/tree/arm-software/arm-software/embedded/llvmlibc-support
https://github.com/arm/arm-toolchain/tree/arm-software/arm-software/embedded/llvmlibc-support
https://github.com/arm/arm-toolchain/tree/arm-software/arm-software/embedded/llvmlibc-support

Backup: Limitations of proof of concept

Runs on QEMU virt machine

- gemu-system-aarch64 -machine virt -cpu max -semihosting -kernel hello.elf -nographic
-machine virtualization=on

Tested on some simple C and C++ programs that dereference global code-pointers and vtables.

PAC keys hardwired to test values
- Would need to have a source of randomness to have different keys each boot.

No support for relocation read-only for .data.rel.ro
- If GOT used it would need to be signed.

LLVM libc setjimp and longimp may need additional hardening.
Exceptions and RTTI support

arm

Public © 2025 Arm 14

Backup: Pointer Authentication using PAC RET

// return address in x30 on function entry

f: * Designed for minimal ABI
PACIASP // hint space encoding of PACIA , Sp impact.
STP x29,%30, [sp, #-0x20] ! - Enabled with -mbranch-

protection=[standard|pac-ret]

LDP x29,x30, [sp], #0x20 Hint space encoding means

. . code can run on all AArch64
AUTIASP // hint space encoding of AUTIA x30, sp machines.
RET « Enabled by default in some

Linux distributions.

G rm Public © 2025 Arm 15

arm

Merci
Danke
Gracias
Grazie

15 15
HYHED
Asante
Thank You
ALt
YYdiq
Kiitos

B

SBIGIG

NTIN
cﬁézga‘csanw

Koszonom

	Slide 1: Experimenting with the AArch64 Pointer Authentication (Pauth) ABI on bare-metal
	Slide 2: Arm v8.3-A Pointer Authentication in a nutshell
	Slide 3: Armv8.3-A Pointer Authentication Implementation
	Slide 4: Why am I talking about PAuthABI?
	Slide 5: PAuthABI extends pointer authentication to code-pointers
	Slide 6: PAuthABI in upstream LLVM
	Slide 7: Dynamic linker support for static initialization of code pointers
	Slide 8: Trying out PAuthABI in Linux Userspace
	Slide 9: Experimenting with PAuthABI on bare-metal
	Slide 10: Experience
	Slide 11: Processing dynamic relocations at startup
	Slide 12: Next Steps for PAuthABI
	Slide 13: References
	Slide 14: Backup: Limitations of proof of concept
	Slide 15: Backup: Pointer Authentication using PAC RET
	Slide 16

