
The limits of ABI stability in the 
kernel
Amelia Crate



Details about object re-use 

What parts of the ABI start breaking when you do this

How those parts of the ABI could be more stable

INTRO



What is Object Re-use?

Re-use of a pre-compiled ELF object file in 

subsequent kernel builds.

Build Variations

Subsequent builds might differ in kernel config, 

kernel version, additional patches, or more.

DEFINITIONS



For Chainguard, FIPS: Certification can only be assigned to a binary.

We do not want to certify the kernel binary, because then we cannot update it.

WHY RE-USE OBJECTS?



Enable CONFIG_WERROR and CONFIG_OBJTOOL_WERROR.

Compile and link-time warnings are indicative of deeper issues.

The naive approach: Mangle your Makefiles to skip compilation.

HOW TO RE-USE OBJECTS



Expect breakages about once per kernel release.

6.6.1 to 6.6.2: 
Success

6.6.1 to 6.7.1: 
Failure

ABI STABILITY



Source vs Binary

Often recompiling the same source code works 

with no issues. Internal APIs* are actually quite 

stable.

*the function signature, at least

Function Interfaces

What is actually breaking is mostly function call 

interfaces.

WHAT IS BREAKING?



Scenario Typical Warnings / Errors

Undefined Symbols WARN ld: vmlinux.o: in function `get_current': undefined reference to 
`const_pcpu_hot'

Unreachable Instructions WARN vmlinux.o: warning: objtool: crypto_sha3_update+0x198: unreachable 
instruction

BTF ID Mismatches WARN: multiple IDs found for 'task_struct': 113, 27133 - using 113

BUILD OUTCOMES



Boot or Page Fault

RUNTIME OUTCOMES

At runtime, this either works or it doesn’t. You know right away.



Toolchains

Pick a major version of your compiler and move 

on.

Compiled Modules

Split into code and modinfo. Solves BTF 

mismatch issues.

RESOLVABLE BARRIERS



The Problem
Function signature type changes break ABI while 

API remains compatible. Affects function 

prologues and stack setup.

The Fix: Shims
Call indirect with shims. Control the signature to 

keep the ABI of helper functions stable regardless 

of internal changes.

MANAGING FUNCTION CALLS



Instrumentation: KASAN, UBSAN, KCOV.

Work via compiler instrumentation; subject to change within a major version.

Can inject function calls into code with the same ABI problems.

Solution: Disable these for pre-built objects.

HIDDEN FUNCTION CALLS



Low level changes inlined in every function prologue, epilogue, and object layout.

Stack protectors: 80d47def: x86/stackprotector/64: Convert to normal per-CPU variable

ELF section names: 8d9cc7f15: Rename .data.once to .data..once to fix resetting WARN*_ONCE

THE BUILD-SYSTEM ABI



Could we have a stable API

Not without significant changes to kernel development… but we could have a stable-ish base

We could have an ABI which is stable enough for distros to build kernel packages with a stable ABI



Changes to support a stable-ish ABI

Change to patch acceptance policies to LTS kernels

Enforce restrictions on signature changes to EXPORT_SYMBOL()’d functions

Refuse changes in low-level build system primitives



Official pathway helps get a FIPS kernel without forgoing updates.

Prevents pinning a single kernel forever and accumulating CVEs.

Avoids making kernels a static target for attackers.

Smaller, incremental updates are superior to big jumps.

FIPS SECURITY BENEFITS



Questions?
Amelia Crate


