The limits of ABI stability in the
kernel

Amelia Crate



| INTRO

> Details about object re-use
> What parts of the ABI start breaking when you do this

> How those parts of the ABI could be more stable



| DEFINITIONS

What is Object Re-use? Build Variations

Re-use of a pre-compiled ELF object file in Subsequent builds might differ in kernel config,

subsequent kernel builds. kernel version, additional patches, or more.



| WHY RE-USE OBJECTS?

> For Chainguard, FIPS: Certification can only be assigned to a binary.

> We do not want to certify the kernel binary, because then we cannot update it.



| HOW TO RE-USE OBJECTS

> Enable CONFIG_WERROR and CONFIG_OBJTOOL_WERROR.
> Compile and link-fime warnings are indicative of deeper issues.

> The naive approach: Mangle your Makefiles to skip compilation,



| ABI STABILITY

> 6.6.1106.6.2:
Success

> 6.6.1106.7.1
Failure

> Expect breakages about once per kernel release.



| WHAT 1S BREAKING?

Source vs Binary Function Interfaces

Often recompiling the same source code works What is actually breaking is mostly function call
with no issues. Internal APIs* are actually quite interfaces.

stable.

*the function signature, at least



| BUILD OUTCOMES

WARN 1d: vmlinux.o: in function "get_current': undefined reference to

Undefined Symbols *const_pcpu_hot'

WARN vmlinux.o: warning: objtool: crypto_sha3_update+0x198: unreachable

Unreachable Instructions . 5
instruction

BTF ID Mismatches WARN: multiple IDs found for 'task_struct': 113, 27133 - using 113




| RUNTIME OUTCOMES

> Boot or Page Fault

> At runtime, this either works or it doesn't. You know right away.



| RESOLVABLE BARRIERS

Toolchains Compiled Modules
Pick a major version of your compiler and move Split info code and modinfo. Solves BTF
on. mismatch issues.

WARN: multiple IDs found for 'task_struct':
113, 27133 - using 113



| MANAGING FUNCTION CALLS

The Problem The Fix: Shims
Function signature type changes break ABI while Call indirect with shims. Control the signature to
APl remains compatible. Affects function keep the ABI of helper functions stable regardless

prologues and stack setup. of internal changes.



| HIDDEN FUNCTION CALLS

> Instrumentation: KASAN, UBSAN, KCOV.
> Work via compiler instrumentation; subject to change within a major version.
> Caninject function calls intfo code with the same ABI problems.

> Solution: Disable these for pre-built objects.



| THE BUILD-SYSTEM ABI

> Stack protectors: 80d47def: x86/stackprotector/64: Convert o normal per-CPU variable

> ELF section names: 8d9cc7f15: Rename .data.once to .data.once fo fix resetting WARN*_ONCE

Low level changes inlined in every function prologue, epilogue, and object layout.



| Could we have a stable API

> Not without significant changes to kernel development... but we could have a stable-ish base

> We could have an ABI which is stable enough for distros to build kernel packages with a stable ABI



| Changes to support a stable-ish ABI

> Change to patch acceptance policies to LTS kernels

> Enforce restrictions on signature changes to EXPORT _SYMBOL()'d functions

> Refuse changes in low-level build system primitives



| FIPS SECURITY BENEFITS

> Official pathway helps get a FIPS kernel without forgoing updates.
> Prevents pinning a single kernel forever and accumulating CVEs.
> Avoids making kernels a static target for attackers.

> Smaller, incremental updates are superior to big jumps.



Questions?



