Java
memory

Jonathan Dowland

manag ement jon@dow.land

jmtd.net

1n
Containers

It's an honour to be the warm-up act :)

Poll: first FOSDEM?
(approx half of audience!)

Overview

Context JVM tuning versus Summary
Which Java? app profiling take-aways, Q&A

RedHat

Three-parter:

1. Background, scene-setting. Which Java?
2. Java memory; JVM tuning; GC selection
3. Application profiling

4. Wrap-up

i A

EnterpriseFactoryFactory?

[—

properties:
spec:
properties:
data:
properties:
mapping:
properties:
components:
type: array
items:
properties:
pushSourceContainer:
enum:
- true

-JV

Assume you aren’t “Java people”
Confession: | wasn’t a Java person
Java is a Unique OSS success story

Let’s get this out of the way right at the
beginning

We've all heard the jokes about the quality of
Enterprise Java code, FactoryFactories and
what-not. I'm lucky to have never experienced
such horrors personally

Let’'s not throw stones in glass houses: here’s
some actual YAML from an actual container
pipeline system (witholding the names of the
guilty) that | have to work with

Besides verbose, enterprise, let’s not forget:
Java is a unique open source success story. It
was not a greenfield open source development
like Linux. It was a proprietary source until
~2010 (fin), when it was open sourced despite
it underpinning billion dollar business,
completed _after Oracle acquired them.
Today it's developed in cooperation between
Oracle, Amazon, Red Hat, SAP, etc —
astonishing

Which Java vendor?

OpendDK is a source distribution
Independent vendors provide builds of

OpendDK - features may be turned on or off;
extra patches etc., so vendor matters

If in doubt/no idea, try Temurin

other JVMs (not OpenJDK/hotspot) out of
scope today

https://adoptium.net/en-GB/temurin

https://adoptium.net/en-GB/temurin

Which Java version?

2023 - 2031 2025 -2033

New feature release every 6 months
New LTS every 2 years
New patch release every quarter

Support is a separate question

https://access.redhat.com/articles/1299013
https://mreinhold.org/blog/forward-faster

(clipart: openclipart.org/217613)

https://access.redhat.com/articles/1299013
https://mreinhold.org/blog/forward-faster
http://openclipart.org/217613

Going native

L

QUARKUS

One way to manage memory: compile to native
GraalVM, Oracle Labs

Quarkus (Java batteries included framework)
makes it easier

This is all | will say about it today

https://archive.fosdem.org/2024/schedule/ev
ent/fosdem-2024-1876-exploring-quarkus-nativ
e-choices-and-implementation/

https://quarkus.io/

Contalner awareness

On by default (JDK8+)

-XX:+UseContainerSupport

Reads memory limit from cgroups v2 or v1
(cgroups: so good we did it twice)

Old docs may have this flag, no longer needed

Backported to JDK8 and newer.

Java Memory

Metaspace

JVM stack(s)

Native stack(s)

[
1
[
1
1
[
1
1
|
1
1
[
1
1
|

7’

Native heap(s)

Approximation (some stuff omitted)

Heap - GC operates on this. Likely the
majority

Metaspace: class metadata; static
variables; not GC'd.

JVM stack(s): one per JVM thread
Program counters for JVM

Native stack(s): one per OS thread
Native heap! Netty uses a lot of this

public Process exec(
String[] cmdarray,
String[] envp,

File dir)

livenessProbe

Metaspace
readinessProbe

JVM stack(s)

startupProbe

Native stack(s)
kubectl exec

[
[
[
[
[
[
[
|
[
|
|
[
[
|
|

""""""""""‘“““““““““““‘\ \

Native heap(s)

In-container memory the JVM is not aware of

Sub-processes spawned by the JVM
Various probes from kubernetes
Shell processes from sysops
Perhaps more

Tuning Maximum Heap Size

Default 25% of memory limit (or Memory)

Red Hat containers default 80%

-XX:MaxRAMPercentage=80.0

So the JVM cannot be aware or in control of all
memory in the container.

Need headroom for non-Heap RAM.

Are we in a container? What is a container?
(leaky abstraction)

Can also define MaxMetaspaceSize (absolute
values)

GCs

Throughput-oriented Balanced Latency-oriented
(pauses bad)

-XX:+UseSerialGC -XX:+UseShenandoahGC

<2CPUs or <2G heap JDK12+, Red Hat JDK8+

not Oracle
+UseG1GC

default* since JDK9

-XX:+UseParallelGC -XX:+UseZGC
JDK17+

Lots of GCs!

Throughput: minimize time spent in GC (versus
application time)

Latency: application response

G1 will be default all the time soon (JEP-523)

Epsilon

The “do nothing” GC
JDK11 (2018)

-XX:+UseEpsilonGC

FOSDEM ‘19 talk

Pic: https://unsplash.com/@radiomouse

No GC pauses at all

EOM = kill (let external scheduler handle it)

FaaS?

https://shipilev.net/jvm/diy-gc/

https://openjdk.org/ieps/318

https://archive.fosdem.ora/2019/schedule/even
t/build gc minutes/

https://shipilev.net/jvm/diy-gc/
https://openjdk.org/jeps/318
https://archive.fosdem.org/2019/schedule/event/build_gc_minutes/
https://archive.fosdem.org/2019/schedule/event/build_gc_minutes/

Some memory-related improvements

Use a recent JVM! Here's why

Elastic Metaspace

JDK16 (2021)

-XX:MetaspaceReclaimPolicy=(balanced|aggressive|none)

More frugal, more elastic

FOSDEM ‘20 Talk

In more recent JDKs (>=21) option went away
(balanced is the default)

https://community.sap.com/t5/technology-blo
g-posts-by-sap/jep-387-quot-elastic-metaspac
e-quot-a-new-classroom-for-the-java-virtual/ba-
p/13497081

https://stuefe.de/posts/fosdem2020-metaspa
ce-talk/fosdem?2020-metaspace-talk/

https://archive.fosdem.org/2020/schedule/ev
ent/metaspace/

https://community.sap.com/t5/technology-blog-posts-by-sap/jep-387-quot-elastic-metaspace-quot-a-new-classroom-for-the-java-virtual/ba-p/13497081
https://community.sap.com/t5/technology-blog-posts-by-sap/jep-387-quot-elastic-metaspace-quot-a-new-classroom-for-the-java-virtual/ba-p/13497081
https://community.sap.com/t5/technology-blog-posts-by-sap/jep-387-quot-elastic-metaspace-quot-a-new-classroom-for-the-java-virtual/ba-p/13497081
https://community.sap.com/t5/technology-blog-posts-by-sap/jep-387-quot-elastic-metaspace-quot-a-new-classroom-for-the-java-virtual/ba-p/13497081
https://stuefe.de/posts/fosdem2020-metaspace-talk/fosdem2020-metaspace-talk/
https://stuefe.de/posts/fosdem2020-metaspace-talk/fosdem2020-metaspace-talk/
https://archive.fosdem.org/2020/schedule/event/metaspace/
https://archive.fosdem.org/2020/schedule/event/metaspace/

Ahead-of-Time class load
JDK24 (2025)

1. Record class usage data [0
-XX:AOTMode=record -XX:AOTConfiguration=aotconf

2. Create AOT cache

-XX:AOTMode=create -XX:AOTConfiguration=aotconf -XX:AOTCache=aotcache

3. Use AOT cache
-XX:AOTCache=aotcache

Some class initialisation (etc) can be cached to
speed up future executions
Steps 1 & 2 may coalesce in the future

FOSDEM 25 talk

https://openjdk.org/projects/leyden/

https://archive.fosdem.orq/2025/schedule/even
t/fosdem-2025-5469-project-levden-past-and-t
he-future/

https://www.morling.dev/blog/jep-483-aot-class
-loading-linking/

https://openjdk.org/projects/leyden/
https://archive.fosdem.org/2025/schedule/event/fosdem-2025-5469-project-leyden-past-and-the-future/
https://archive.fosdem.org/2025/schedule/event/fosdem-2025-5469-project-leyden-past-and-the-future/
https://archive.fosdem.org/2025/schedule/event/fosdem-2025-5469-project-leyden-past-and-the-future/
https://www.morling.dev/blog/jep-483-aot-class-loading-linking/
https://www.morling.dev/blog/jep-483-aot-class-loading-linking/

Compact Object Headers

JDK24 (2025)

Can reduce live heap 10-20%
FOSDEM 24 talk

Typical workloads have lots of small objects.
Reducing the per-object footprint has large
memory gains

https://archive.fosdem.org/2024/schedule/ev
ent/fosdem-2024-3015-project-lilliput-compact
-object-headers/

JEP 450 “Project Lilliput”

https://archive.fosdem.org/2024/schedule/event/fosdem-2024-3015-project-lilliput-compact-object-headers/
https://archive.fosdem.org/2024/schedule/event/fosdem-2024-3015-project-lilliput-compact-object-headers/
https://archive.fosdem.org/2024/schedule/event/fosdem-2024-3015-project-lilliput-compact-object-headers/

Application profiling

File Edit Navigate Window Help

Java
Flight
Recorder

B4)VM Browser &= Outline o: </ ! =18
B Automated Analysis Results

 {7)ava Application

>“Memory

& Lock Instances
BFile /O

BSocket 1/0
®@Method Profiling
% Exceptions
$Thread Dumps
&)VM Internals

@ Garbage Collections
TGC Configuration
@ GC Summary

(& Java
Mission
Control)

> @ Compilations
©Class Loading
#VM Operations
ZTLAB Allocations
v ¢! Environment

(8 Processes

Environment Variables

]
o

[Properties X o Results 7
Field Value
= Event Type

(©start Time

[Object Allocation Sample, Hez
28/01/2026,09:27:44.000 - 0¢
937 events

e flightjfr e flightfr X

« Memory

Focus: <No Selection>

~| Aspect:| <No Selection> v

JDK Mission Control v oA X

Show concurren: Time Range: Set | Clear

Class
© byte[]

© java.lang.String
Qint(]

@ java.util.stream.ReferencePipelines3s1

© java.lang.Object(]

© double[]

© java.lang.StringBuilder
O char(]

©iava.util.Vector

Allocation

Memory Usage

N AllocTotal v
1.53GiB

488 MiB
230 MiB
186 MiB
147 MiB
104 MiB
87.4MiB

76.9 MiB
34 MiB
~ H Garbage Collection
W Alloc Total
mRsS
RSS (Peak)
MUsed Heap

M Heap Space : Comm
M Heap Space : Reserye
WUsed Size

28/01/2026 09:27:45

09:28:00 09:28:15 09:28:30 M Total Siz

tack Trace & Flame Graph

Stack Trace

* String org.redmars.wadc.Id.show()
String org.redmars.wadc.Id.show()
 String org.redmars.wadc.Id.show()
String org.redmars.wadc.Id.show()

 String org.redmars.wadc.Id.show()

=g

RdR = &@® samples v £
Samples

205

152

113

lllustration of Java Mission Control (jmc)
Browsing data collected by Java Flight

Recorder (jfr)

In JDK8 onwards

Cryostat

= & cryostat

FOSDEM ‘24 Talk

Manage JFR (and more) securely in container
deployments

https://archive.fosdem.org/2024/schedule/ev
ent/fosdem-2024-2336-cryostat-jfr-in-the-cloud

/

https://cryostat.io/

Take-aways

Keep up-to-date with OpenJDK!

JVM autotuning is improving...
..but can only go so far

App profiling is still important

Thank you! jon@dow.land / jmtd.net

MY question for the audience: other managed
languages / GC languages, interesting
strategies?

mailto:jon@dow.land
http://jmtd.net

