
Java
memory

management
in

Containers

Jonathan Dowland
jon@dow.land

jmtd.net

It’s an honour to be the warm-up act :)

Poll: first FOSDEM?
(approx half of audience!)

2

Overview

JVM tuning versus
app profiling

Context
Which Java?

Summary
take-aways, Q&A

Three-parter:
1. Background, scene-setting. Which Java?
2. Java memory; JVM tuning; GC selection
3. Application profiling
4. Wrap-up

properties:
 spec:
 properties:
 data:
 properties:
 mapping:
 properties:
 components:
 type: array
 items:
 properties:
 pushSourceContainer:
 enum:
 - true

EnterpriseFactoryFactory?

Assume you aren’t “Java people”
Confession: I wasn’t a Java person
Java is a Unique OSS success story

—

Let’s get this out of the way right at the
beginning

We’ve all heard the jokes about the quality of
Enterprise Java code, FactoryFactories and
what-not. I’m lucky to have never experienced
such horrors personally

Let’s not throw stones in glass houses: here’s
some actual YAML from an actual container
pipeline system (witholding the names of the
guilty) that I have to work with

Besides verbose, enterprise, let’s not forget:
Java is a unique open source success story. It
was not a greenfield open source development
like Linux. It was a proprietary source until
~2010 (fin), when it was open sourced despite
it underpinning billion dollar business,
completed _after_ Oracle acquired them.
Today it’s developed in cooperation between
Oracle, Amazon, Red Hat, SAP, etc –
astonishing

Which Java vendor?

Oracle

OpenJDK is a source distribution

Independent vendors provide builds of
OpenJDK – features may be turned on or off;
extra patches etc., so vendor matters

If in doubt/no idea, try Temurin

other JVMs (not OpenJDK/hotspot) out of
scope today

—

https://adoptium.net/en-GB/temurin

https://adoptium.net/en-GB/temurin

Which Java version?

JDK8

2014 - _____

JDK11

2018 - _____2030 2026

JDK21

2023 - 2031

JDK25

2025 - 2033

New feature release every 6 months
New LTS every 2 years
New patch release every quarter

Support is a separate question

—
https://access.redhat.com/articles/1299013
https://mreinhold.org/blog/forward-faster

(clipart: openclipart.org/217613)

https://access.redhat.com/articles/1299013
https://mreinhold.org/blog/forward-faster
http://openclipart.org/217613

6

Going native

https://quarkus.io

One way to manage memory: compile to native
GraalVM, Oracle Labs
Quarkus (Java batteries included framework)
makes it easier
This is all I will say about it today
—
https://archive.fosdem.org/2024/schedule/ev
ent/fosdem-2024-1876-exploring-quarkus-nativ
e-choices-and-implementation/

https://quarkus.io/

Container awareness

On by default (JDK8+)

-XX:+UseContainerSupport

Reads memory limit from cgroups v2 or v1
(cgroups: so good we did it twice)

Old docs may have this flag, no longer needed

Backported to JDK8 and newer.

Java Memory

Metaspace

Heap

JVM stack(s)

PC Registers

Native stack(s)

Native heap(s)

Approximation (some stuff omitted)
● Heap - GC operates on this. Likely the

majority
● Metaspace: class metadata; static

variables; not GC’d.
● JVM stack(s): one per JVM thread
● Program counters for JVM
● Native stack(s): one per OS thread
● Native heap! Netty uses a lot of this

More Memory

Metaspace

Heap

JVM stack(s)

PC Registers

Native stack(s)

public Process exec(
String[] cmdarray,
String[] envp,
File dir)

kubectl exec

livenessProbe

readinessProbe

startupProbe

Native heap(s)

In-container memory the JVM is not aware of
● Sub-processes spawned by the JVM
● Various probes from kubernetes
● Shell processes from sysops
● Perhaps more

Tuning Maximum Heap Size

Default 25% of memory limit (or Memory)

Red Hat containers default 80%

-XX:MaxRAMPercentage=80.0

So the JVM cannot be aware or in control of all
memory in the container.

Need headroom for non-Heap RAM.

Are we in a container? What is a container?
(leaky abstraction)

Can also define MaxMetaspaceSize (absolute
values)

GCs

-XX:+UseShenandoahGC

-XX:+UseZGC

-XX:+UseSerialGC

-XX:+UseParallelGC

+UseG1GC

<2CPUs or <2G heap

default* since JDK9

JDK17+

JDK12+, Red Hat JDK8+
not Oracle

Throughput-oriented Balanced Latency-oriented
(pauses bad)

Lots of GCs!
Throughput: minimize time spent in GC (versus
application time)
Latency: application response

G1 will be default all the time soon (JEP-523)

Epsilon

The “do nothing” GC

JDK11 (2018)

-XX:+UseEpsilonGC

FOSDEM ‘19 talk

Pic: https://unsplash.com/@radiomouse

No GC pauses at all

EOM = kill (let external scheduler handle it)

FaaS?

—
https://shipilev.net/jvm/diy-gc/

https://openjdk.org/jeps/318

https://archive.fosdem.org/2019/schedule/even
t/build_gc_minutes/

https://shipilev.net/jvm/diy-gc/
https://openjdk.org/jeps/318
https://archive.fosdem.org/2019/schedule/event/build_gc_minutes/
https://archive.fosdem.org/2019/schedule/event/build_gc_minutes/

Some memory-related improvements

Use a recent JVM! Here’s why

Elastic Metaspace

JDK16 (2021)

More frugal, more elastic

FOSDEM ‘20 Talk

-XX:MetaspaceReclaimPolicy=(balanced|aggressive|none)

In more recent JDKs (>=21) option went away
(balanced is the default)

—
https://community.sap.com/t5/technology-blo
g-posts-by-sap/jep-387-quot-elastic-metaspac
e-quot-a-new-classroom-for-the-java-virtual/ba-
p/13497081

https://stuefe.de/posts/fosdem2020-metaspa
ce-talk/fosdem2020-metaspace-talk/

https://archive.fosdem.org/2020/schedule/ev
ent/metaspace/

https://community.sap.com/t5/technology-blog-posts-by-sap/jep-387-quot-elastic-metaspace-quot-a-new-classroom-for-the-java-virtual/ba-p/13497081
https://community.sap.com/t5/technology-blog-posts-by-sap/jep-387-quot-elastic-metaspace-quot-a-new-classroom-for-the-java-virtual/ba-p/13497081
https://community.sap.com/t5/technology-blog-posts-by-sap/jep-387-quot-elastic-metaspace-quot-a-new-classroom-for-the-java-virtual/ba-p/13497081
https://community.sap.com/t5/technology-blog-posts-by-sap/jep-387-quot-elastic-metaspace-quot-a-new-classroom-for-the-java-virtual/ba-p/13497081
https://stuefe.de/posts/fosdem2020-metaspace-talk/fosdem2020-metaspace-talk/
https://stuefe.de/posts/fosdem2020-metaspace-talk/fosdem2020-metaspace-talk/
https://archive.fosdem.org/2020/schedule/event/metaspace/
https://archive.fosdem.org/2020/schedule/event/metaspace/

Ahead-of-Time class loading

1. Record class usage data
-XX:AOTMode=record -XX:AOTConfiguration=aotconf

FOSDEM ‘25 talk

-XX:AOTMode=create -XX:AOTConfiguration=aotconf -XX:AOTCache=aotcache

-XX:AOTCache=aotcache

2. Create AOT cache

3. Use AOT cache

JDK24 (2025)

Some class initialisation (etc) can be cached to
speed up future executions
Steps 1 & 2 may coalesce in the future

FOSDEM ‘25 talk
—
https://openjdk.org/projects/leyden/

https://archive.fosdem.org/2025/schedule/even
t/fosdem-2025-5469-project-leyden-past-and-t
he-future/

https://www.morling.dev/blog/jep-483-aot-class
-loading-linking/

https://openjdk.org/projects/leyden/
https://archive.fosdem.org/2025/schedule/event/fosdem-2025-5469-project-leyden-past-and-the-future/
https://archive.fosdem.org/2025/schedule/event/fosdem-2025-5469-project-leyden-past-and-the-future/
https://archive.fosdem.org/2025/schedule/event/fosdem-2025-5469-project-leyden-past-and-the-future/
https://www.morling.dev/blog/jep-483-aot-class-loading-linking/
https://www.morling.dev/blog/jep-483-aot-class-loading-linking/

Compact Object Headers

JDK24 (2025)

-XX:+UseCompactObjectHeaders

Can reduce live heap 10-20%

FOSDEM ‘24 talk

Typical workloads have lots of small objects.
Reducing the per-object footprint has large
memory gains

—
https://archive.fosdem.org/2024/schedule/ev
ent/fosdem-2024-3015-project-lilliput-compact
-object-headers/

JEP 450 “Project Lilliput”

https://archive.fosdem.org/2024/schedule/event/fosdem-2024-3015-project-lilliput-compact-object-headers/
https://archive.fosdem.org/2024/schedule/event/fosdem-2024-3015-project-lilliput-compact-object-headers/
https://archive.fosdem.org/2024/schedule/event/fosdem-2024-3015-project-lilliput-compact-object-headers/

Application profiling

Java
Flight
Recorder

(& Java
Mission
Control)

Illustration of Java Mission Control (jmc)
Browsing data collected by Java Flight
Recorder (jfr)
In JDK8 onwards

Cryostat

FOSDEM ‘24 Talk

Manage JFR (and more) securely in container
deployments

—
https://archive.fosdem.org/2024/schedule/ev
ent/fosdem-2024-2336-cryostat-jfr-in-the-cloud
/

https://cryostat.io/

https://cryostat.io/

Thank you! jon@dow.land / jmtd.net

Take-aways

Keep up-to-date with OpenJDK!

JVM autotuning is improving…
…but can only go so far

App profiling is still important

MY question for the audience: other managed
languages / GC languages, interesting
strategies?

mailto:jon@dow.land
http://jmtd.net

