Zero-Touch HPC Nodes

NetBox, OpenTofu and Packer for a Self-Configuring
SLURM Cluster

Umit Seren (GH: @timeu) & Leon Schwarzédugl (GH: @swarsel)

Vienna BioCenter - Scientific Computing

FOSDEM 2026 - Feb 01, 2026 - Brussels

The Old Way: Manual HPC Deployment

Our previous HPC cluster: OpenStack-based with Ansible automation for the payload (SLURM cluster)... but
the underlying infrastructure was still managed entirely by hand (See our FOSDEM 2020 talk “HPC on

OpenStack...”)

Technology Stack

The Pain Points

v Automated (Payload): I, Long ansible runtime

e OpenStack for compute resources
e Ansible for SLURM cluster config

!

!

!
X Manual (Infrastructure):]
SDN Network configuration !
BMC IP/DHCP management

Excel-based inventory

Storage configuration

Manual BMC reconfiguration (200+ nodes)
Configuration drift between environments
No reproducible rebuild process

\ Tribal knowledge and technical debt

Risky upgrades with no rollback

https://archive.fosdem.org/2020/schedule/event/hpc_openstack/
https://archive.fosdem.org/2020/schedule/event/hpc_openstack/
https://archive.fosdem.org/2020/schedule/event/hpc_openstack/

Architecture Overview: The Zero-Touch Pipeline

From

S|

N/

i

‘just racked" to "running SLURM jobs" with zero manual intervention

1. Source of Truth
NetBox DCIM: IPAM, device inventory, rack locations

\Z

2. Immutable Images
Packer + Ansible: Pre-built OS with HPC stack baked in

\Z

3. Infrastructure Code
OpenTofu + Terragrunt: Declare bare metal nodes, network config

%

4. Bare Metal Provisioning
OpenStack Ironic: Power on, inspect, deploy OS image

v

5. Node Bootstrap

ansible-init service: Self-configuration on first boot
\Z

6. Secrets & Config

Vault (short-lived creds): Dynamic secrets, no static passwords
\Z

7. Cluster Ready
SLURM nodes join cluster: Nodes auto-register, ready for jobs

Architecture Overview: The Zero-Touch Pipeline

From "just racked" to "running SLURM jobs" with zero manual intervention

S|

1. Source of Truth
NetBox DCIM: IPAM, device inventory, rack locations

N/

9

)
o)

>

o

¢

\Z

2. Immutable Images
Packer + Ansible: Pre-built OS with HPC stack baked in

\Z

3. Infrastructure Code
OpenTofu + Terragrunt: Declare bare metal nodes, network config

%

4. Bare Metal Provisioning
OpenStack Ironic: Power on, inspect, deploy OS image

v

5. Node Bootstrap

ansible-init service: Self-configuration on first boot
\Z

6. Secrets & Config

Vault (short-lived creds): Dynamic secrets, no static passwords
\Z

7. Cluster Ready
SLURM nodes join cluster: Nodes auto-register, ready for jobs

NetBox: DCIM and Source of Truth

NetBox serves as our single source of truth, feeding all automation workflows with accurate,

version-controlled infrastructure data.
What NetBox Provides: Netbox Feature Overview
? IPAM: Complete IP address management and DHCP reservations oraanizaon

M Device Inventory: Servers, switches and storage devices with network connections
4, Physical Layer: Rack locations, cabling, patch panels, port assignments Racks

Metadata: Custom fields for network provisioning .
Devices

£=] Drift Detection: Continuous validation against external systems and appliances
%/ API-First: REST APl & custom export templates for OpenTofu, and custom automation Connections

Scale: 100 racks, 150+ switches, 300+ nodes— all fracked in NetBox Wireless

IPAM

Organization o

Aggregates

VPN
IP Ad
Virtualization

IP Ranges

Circuits

Circuits
Power

Networks

Provisioning

Provider Ac nts

Customization

Operations

NetBox: DCIM and Source of Tru

From Excel to Netbox

Before After

/ 0 Conditional Format Cell
Formatting as Table Styles

%

2108 /50530

2127/ $D5%0

2125 / SDs30
2121/ 050
2117/ S50

2113/ 0530
2111/ 50530

2107/ sDs30
2105 /spsn

100 Gbit Cisco Leafl16
100 Gbit Cisco Leafl 18
100 Gbit Cisco Leafi 10

2146/ 50530
2144 /50530
2142/ 50530
2140/ 50530

2136 / 50530

2130/ 50530
12/ 5050

2149 /SD530
2147 /50530

2143/ 50530

2139 /50530
2137/ SD530

2129/ $p50

Jez75/soss0

10/ 50330

60/ 50330

255 /50530

100 Gbit Cisco Leaf109
100 Gbit Cisco Leaf109
100 Gbit Cisco Leaf109
700 Gbit Cisco Leari 11
100 Gbit Cisco Lea113
1 Gbit Cisco Leafl14
T Gbit Cisco Leaf11>
1 Ghit Cisco Leaf117

T Gbit Cisco Leaf110

uc/sre30 0 /5r630 il /w630 2 /5r630
T s s o]
L al] <t]

[cz.108 /50530

cti-2prod,
ati-2:staging
dev-cti-2

€2-100_c2-103 (44)

2-96.c2-89 (4/0)

©2-92_02-95 (4fa)

288 c2.91 (4/2)

c2.84 c2.87 [6f8)

2-80_c2.83 [¢18)

ctiiprod
cii1staging
dev-cti-1

<276.c2.79 (@j8)

€272.c2.75 (a78)

e2-68.c2.71 (4f0)

€263 c2-67 (414)

©2-60.62.63 (414)

©2-66.c2-69 (414)

2128 c2-127 (412)

©2-120.62-123 (418)

216 c2-19 (4j2)

€2-12_62-116 (4ja)

©2:108_c2-111 (414)

<2-10_2-107 ()

922

©1-37 ¢1-40 (4)a)

cii-oprod
ctl-0;staging
devt-0

©2-148_c2-161 (4j2)

2144 <2147 (410)

2100 c2-143 (418)

©2-136.c2-139 (410)

©2:182.c2-135 (4/0)

2128 c2-131 (4ja)

Bl ©1-25_c1-28 (4/4) ©1-21_c1-24 (8/4) -29_c1-32 (4/4) ©1-33_¢1-36 (4/4)
m10/5R950
B o7 500 Jeu /5o o o e o
EEETTI TV TEEE TR
11-9/5R650 11-10/5R650 11-11/5R650 116/5R650 11.7/5R650 118/5R650 na 2 fa
3/5R650 114/5R650 5 /5R650 11.0/5R650 1-1/5R650 2/5R650 c255.c2.55 2fe) <2s1c250 0l m20 m22
uos EEYEED CRE
m2-0/5R850 m2-1/5R850 m2:2/SRE50 i e Y T i c2-35.c2-38 (4/8) 231 c2-34 410 c2-27.02-30 (6] €2.39.62.42 (4Ja) c2-47.02-50 @)
o oo o, [Eermm o |,... |[Eesem Jeamems | 006 [z 052020050 | EEVEET e NN I YR
23050530 __|aso/sos0 4375053 |caas /5050 4775050 24875053 005 fez27 /50530 _Jcas /50530 Joa1/s0s30 a2 /s0s30 fo3s 7sos0__Jaae /sosa0 Site2Is) 222 £26 () 162218 (44 £2-23 c2:28 ()
TR ey N EEIVETTI YR NN STy R 04[5 sosm0 ey sosa [/som0 oo /o SRV PR
f2-15 /50530 |2:16 /50530 219 / 50530 |2:20 /50530 223/ 50530 |c2:24 /50530 U03 Je23 /50530 _|c2-4 /50530 27/ sps30__|c2.8/50530. f2-11 /50530 |2:12 /50530 ©1-4.01-7 (4j4) ©1-0.¢1-3 (4/a} ©1:12.01-15 (4/4) ©1-20.62-2 (4/4)
STV T i rsovJevie om0 VT PO U02 [er2 om0 Jevasomm0 e rsom0—Jerr /om0 STV T
32 /5050 ovsa/somm s fsos20 oz sos 20505300/ sos o1 fesa/soss0 _ais /sosan e 50520 Jas somo o fsos0 _cio/sosm
From View Front View Tromt View Fromt View From View Trom View
Rack G9 Rack G10 Rack G11 Rack C11 Rack C10 Rack C9

NetBox Integration: External Systems

NetBox serves as the central source of truth, integrating with existing vendor appliances and IPAM systems through custom drift check scripts

and custom sync scripts that ensure data consistency.

Our External Systems
o)
o)

[PAM System
& Infoblox

Network Infrastructure
U

Cisco ACI & LLDP Topology Discovery

Import Automation

Vendor Management:
° MAC addresses
° Serial Numbers

IPAM system:
° IP Addresses
° IP Ranges/Networks

Network SDN:
° Serial numbers
° MAC addresses
° LLDP neighbours

Vendor Management Appliances
Lenovo XClarity, Dell OpenManage Enterprise

Drift checks

S Custom Drift Check Scripts
Automatically compare NetBox data against vendor appliances

® Verify hardware inventory (serial numbers, models) are correct
® Validate IP address assignments against Infoblox
® Check network topology via LLDP data against SDN

© Internal checks (duplicate IP/MAC, orphaned cables, etc)

Export Automation

IPAM system (OpenTofu):
° DHCP reservations
° Host entry
Network SDN (Tofu):
° Fabric side switch port configuration
OpenStack (Export Templates) :
° Hypervisor & Controller
° Baremetal machines
Storage system (OpenTofu):
° Network Configuration for SVMs

NetBox: Complete Infrastructure Visibility

Once all infrastructure data is populated, NetBox provides comprehensive insights and end-to-end traceability across the entire datacenter
stack.

Cabling tracing
IP Address Traceability | IP fo physical port |

aci-dmz-gw-1(301)
Cisco Nexus 9336C-FX2
1 2 3 4 5 'VBC / Low Density / N-14.
IP:10.0.5.42 compute-node-025 ethO =» Cable #A025 PP-A-12 Port 24 tor-a12 Gil/0/24
Compute node interface Rack A-12, U20-U22 Physical cable path Patch panel Physical switchport

Cable #2760
Connected

NetBox Interface

Port 8 (SM)

PP41_N14_1_6_Univie_7_12_UBB
Generic LC-24-port Fiber Patch Panel Rear Splice Half Depth
VBC / Low Density / N-14

17216.43.0/22 & Bookmark | | @ Clone | [JZEGi] @ Detete

IP Address

Rear Splice UBB (Singlemode)

1P Address Parent Prefixes
Family Cable #2778

VRF d Sery (7 (Container Data Center Connected

Tenant Container 5 ACI

< Re Splice IMP (Single d
tus Active BC OOB Subnet for OOB interfaces (CLIP, etc) BaEp CRIMEIGR)

Role PPxx_UBE_NetworkRack-PP41_N14
Generic LC-6-port Fiber Patch Panel Rear Splice Half Depth

VBC / UBB DC / NetworkRack

Services
DNS Name bicoptics-gpu-1.bme.vbe.ac.at

NAME

Description Port 2 (SM)

Assignment
NAT (inside)

Cable #2782
NAT (outside) Connected
Primary IP

00B IP MP/ETH/INX/AR/94722-UBB1: Termination Z

Tags

(Bicoptics) ([(imported

NetBox: Floorplan plugin

Netbox as a comprehensive documentation tool of physical space

Before After
hd-inrow-1 hd-inrow-8 Door
Rack C-3 Rack G-3
Rack|Rack | Rack|Rack | Rack|Rack|Rack
Rack C-4 Rack G-4 N5 | P5| Q5| RS | TS5 | US| V5
hd-inrow-3 hd-inrow-2
. s
Q
Rack C-6 Rack G-6 K 8 S,
Q COLD ISLE
Rack C-8 Rack G-8
—
- o (0]
hd-inrow-7 hd-inrow-4 =
Rack|Rack |Rack|Rack | Rack|Rack|Rack o
Rack C-9 Rack G-9 N9 [P9 | Q9 | RO [T9 | U9 | VO
Rack C-10 Rack G-10
Rack C-11 Rack G-11
hd-inrow-5 hd-inrow-6
Door
5 Rack |Rack|Rack |Rack|Rack|Rack [Rack|Rack|Rack |Rack
8 N14| P14 | Q14 | R14 | T14 | U14 | V14 | X14 | Y14 | 714
5 5 COLD ISLE
<] <]
a] o

NetBox: Topology plugin

Netbox as a comprehensive live documentation tool of logical network connections

Before

UNI Wien
(NIG) Neues
Institusgebaude

hoc /106 {06\ 106

UNI Wien
Hauglgebaude

UNI Wien
8x CWDM

UNI Wien
int

ark fiber

von UNI 106 Link von
1590 und nexdlayer
1510nm

dynamic routing via BGP
N fvien
DrBohrfpasse 9

static Routing via ECMP
Dr ol Gasse 7

UNI Wien
8x CWDM

s
o oo s\ o DO —
| _wes
Vo =
O o3 N =)
= \"
e
7S
106 106G 106 106 106 o

3
‘Campus-Vienna-Blacenter 1

“~

0800vm 10120358 s ey

After

..

IMPETHINARNAT22

e (ul) oo oo oo
oo e —=00

oo/~———\00

PP17_4.47-N-B_VBCE

PPO7_447-N-B_PP42_R14 PRAZR14-PP32 44RN-B

IMBA/IP/AR/95368

Tl

MPIETHINXARBA722-Untid ™.

oo §
\oo

i 5280-img
‘aci-dmz- b P
PPxx_Uniie_RackRechis RPA1/42_N14

oo
oo
PP41_N14_1_6fUnvi 7.12 UBB
P,
IMBA,
vce,
e {1 W—
. /i oo
oo
MPIETHINXAR9472-UBB2

PPyxcGBB NetworkRack-PP41_N14

3o (s

aci-dmz-gw-2

pas220-imba

crqw2

10

NetBox: Topology plugin

Netbox as a comprehensive live documentation tool of logical network connections

Architecture Overview: The Zero-Touch Pipeline

From "just racked" to "running SLURM jobs" with zero manual intervention

S|

1. Source of Truth
NetBox DCIM: IPAM, device inventory, rack locations

2

N

2. Immutable Images
Packer + Ansible: Pre-built OS with HPC stack baked in

9

)
o)

>

o

¢

\Z

3. Infrastructure Code
OpenTofu + Terragrunt: Declare bare metal nodes, network config

%

4. Bare Metal Provisioning
OpenStack Ironic: Power on, inspect, deploy OS image

v

5. Node Bootstrap

ansible-init service: Self-configuration on first boot
\Z

6. Secrets & Config

Vault (short-lived creds): Dynamic secrets, no static passwords
\Z

7. Cluster Ready
SLURM nodes join cluster: Nodes auto-register, ready for jobs

12

Immutable Images

Why Images?

v Identical nodes from the same image
v’ Fast provisioning

v Reproducible

v Versioned image artifacts

v Safe rollbacks to previous versions

Idea

e Take an upstream base OS to customise
e The build system should be agnostic of the image distro/version
e The system should automatically push the image to all endpoints

Immutable Images using Packer

Packer

v’ Support for many platforms

v/ Similar syntax to OpenTofu

v’ Support for a wide range of image customization tools

packer {
required_plugins {
docker = {
version = ">= 1.0.8"
source = "github.com/hashicorp/docker"
}
ansible = { <...> }
}
}

source "docker" "ubuntu" {
image = "ubuntu:questing"
commit = true
}
build {
name "packer-example"
sources = ["source.docker.ubuntu"]
provisioner "ansible" {
playbook file = "${path.root}/playbook.yml"
}
post-processor "shell-local" {
only = ["docker.ubuntu"]
inline = ["echo 'Done!"'"]
}
}

14

Immutable Images - Our Implementation

1. Call GitHub workflow either from base repo or remotely
2. This sets up packer with the respective vars for the
distribution/version
3. Packer boots temporary VM from the base OS image using QEMU
4. Ansible configures the image

4.1. Additional customizations run if called from a remote repository
5. Cleanup scripts run
6. Output versioned image
7. Upload to various endpoints

Use workflow from

Branch: main ~

Distro version to build an image for

10.1
Which distro to build an image for
RedHat

Which architecture to build an image

for

@ push linux collection version

Ansible Roles: Install vs Configure

The situation

Not all customizations can be performed at image build time

We manage most reusable tasks using Ansible roles

Most of these roles perform steps that will be used on all roles
unconditionally

Many of these will then perform steps that should not be put in the
image

Our solution

Split roles into distinct “install” and “configure™ tasks

D

Install Roles (Baked into Image)

When: Run during Packer build (once)

Purpose: Install system-wide software and configs during image build.

What Goes in Install Roles:

Package installations
Setup of directories & propagation of files
Configuration common to all nodes

- ansible.builtin.include_role:
name: sssd
tasks_from: install.yml

%3

Configure Roles (Run at Boot)
When: Run by a local service on first boot.
Purpose: Perform tasks that are not common to all hosts.

What Coes in Configure Roles:

° Node-specific configuration
° Enabling of services
° Fetch secrets from Vault

Architecture Overview: The Zero-Touch Pipeline

From "just racked" to "running SLURM jobs" with zero manual intervention

S|

N/

1. Source of Truth
NetBox DCIM: IPAM, device inventory, rack locations

\Z

2. Immutable Images
Packer + Ansible: Pre-built OS with HPC stack baked in

2

[

3. Infrastructure Code
OpenTofu + Terragrunt: Declare bare metal nodes, network config

)
o)

>

o

¢

%

4. Bare Metal Provisioning
OpenStack Ironic: Power on, inspect, deploy OS image

v

5. Node Bootstrap

ansible-init service: Self-configuration on first boot
\Z

6. Secrets & Config

Vault (short-lived creds): Dynamic secrets, no static passwords
\Z

7. Cluster Ready
SLURM nodes join cluster: Nodes auto-register, ready for jobs

17

OpenTofu: Reusable Infrastructure Modules

Building blocks for HPC infrastructure as code modules/network/main.tf
resource "openstack_networking network_v2" "network" {
© What is OpenTofu? iy e R
Open-source Terraform fork that enables infrastructure engineers to zsg;g;;:;ityﬁnablw _ ;z:?z;s_domain

declaratively define reusable modules that encapsulate infrastructure }
components as version-controlled, parameterized building blocks.

resource "openstack_networking_subnet_v2" "subnet_v" {

ge Modular Design name = var.subnet_name
Encapsulate infrastructure patterns into discrete, reusable declarative modules network_id = openstack_networking_network_v2.network.id
cidr = var.nodes_net_cidr
i Component Library ip_version -4
Build libraries of network, cluster, storage, and compute modules dns_nameservers = var.dns_servers
}
¢ Parameterization
Configure modules with variables for flexible, context-specific deployment resource "openstack_networking_subnet_v2" "subnet_v6" {
count = var.enable_ipv6 ? 1 : @
12 Version Control name = var.ipv6_subnet_name
Track and manage infrastructure code changes with standard VCS workflows network_id = openstack_networking_network_v2.network.id
ip_version = (5
dns_nameservers = var.dns_ipv6_servers
Infrastructure modules catalog g T g
ipv6_address_mode = var.ipv6_address_mode
modules/ cidr = var.ipv6_net_cidr
L— cluster/ L— network/ L— server/ }
main.tf main.tf main.tf
variables.tf variables.tf variables.tf resource "openstack_networking router_v2" "router" {
count = var.router_name != null ?» 1 : @
outputs.tf outputs.tf outputs.tf TEE = var.router_name
terragrunt.hc terragrunt.hcl admin_state_up = true
terragrunt.hcl external_network_id =

data.openstack_networking_network_v2.public_net[@].id

} 18

http://main.tf
http://variables.tf
http://variables.tf
http://outputs.tf
http://outputs.tf

Terragrunt: Composing OpenTofu Modules

DRY orchestration across environments

< What is Terragrunt?

Terragrunt wraps OpenTofu to compose infrastructure
modules into reusable, environment-agnostic configurations. It
eliminates code duplication by enabling a single module
definition to be deployed across multiple environments.

%, Module Composition

Orchestrate multiple OpenTofu modules as cohesive units

[Configuration Management
Centralize shared configuration, minimize duplication

2 Multi-Environment
Deploy consistent infrastructure across dev, staging, and production

19 Version Control

Track and manage infrastructure code changes with standard VCS
workflows

HPC terragrunt cluster repo

C

root.hcl

dev/

I: env.hcl
hpc_virtual/

— terragrunt.stack.hcl

L staging/

I: env.hcl
hpc_virtual/

L terragrunt.stack.hcl
— hpc_bm/

L terragrunt.stack.hcl

C

terragrunt.stack.hcl

env_vars =
read_terragrunt_config(find_in_parent_folders("env.hcl"))

stack "cluster" {
source = "git::git@github.com:catalog.git//stacks/cluster"
path = "cluster"

values {
network_name =
router_name =
subnet_name =

"hpc_network"
"hpc_router"
"hpc_subnet-ipv4"

enable_ipv6
cluster_name
cluster_image_id
node_flavor

Terragrunt node_coun‘t
Orchestration .
> 2 & key_pair
.E;‘:} Envionment [l evvioment (il envionment os_cloud

ipv6_subnet_name =

"hpc_-subnet-ipv6"
true
"hpc-vm"
"62d9542d-85eb-4d85-b4cl-3ebd909d2935"
local.env_vars.flavor
local.env_vars.srv_count
“ssh_key”
local.env_vars.os_cloud

L— production/

env.hcl
hpc_bm/
[terragrunt.stack.hcl

env.hcl

dev:

locals {
srv_count = 2
flavor = “small”
os_cloud = “dev”

}

staging

locals {
srv_count = 10
flavor = “medium”
os_cloud = “stg”

¥

prod

locals {
srv_count = 100
flavor = “large”
os_cloud = “prod”

¥

Architecture Overview: The Zero-Touch Pipeline

From "just racked" to "running SLURM jobs" with zero manual intervention

S|

N/

9

1. Source of Truth
NetBox DCIM: IPAM, device inventory, rack locations

\Z

2. Immutable Images
Packer + Ansible: Pre-built OS with HPC stack baked in

\Z

3. Infrastructure Code
OpenTofu + Terragrunt: Declare bare metal nodes, network config

N

(=]
(=]

4. Bare Metal Provisioning
OpenStack Ironic: Power on, inspect, deploy OS image

>

o

¢

v

5. Node Bootstrap

ansible-init service: Self-configuration on first boot
\Z

6. Secrets & Config

Vault (short-lived creds): Dynamic secrets, no static passwords
\Z

7. Cluster Ready
SLURM nodes join cluster: Nodes auto-register, ready for jobs

20

Baremetal Provisioning: OpenStack Ironic

From Netbox via OpenStack Cloud to HPC cluster

<>

9 Terragrunt
/OpenTofu

g 2> Export > OpenStack
Netbox Template Ironic

Baremetal Provisioning: OpenStack Ironic

Onboarding hardware to the On-Prem OpenStack Cloud

Netbox custom export template

chassis:
- description: c2-47_c2-50
uuid: e4656520-4344-4e5a-9035-9819e5597cd8
extra:
nodes:
- c2-47
- c2-48
- c2-49
- c2-50
nodes:
- name: c2-47
chassis_uuid: e4656520-4344-4e5a-9035-9819e5597cd8
driver: redfish
driver_info:
redfish_address: c2-47.bmc.clip.vbc.ac.at
redfish_username: USERNAME
redfish_password: XXXXXX
boot_interface: redfish-virtual-media
resource_class: baremetal-C2
properties:
capabilities: "boot_mode:uefi,boot_option:local™
cpu_arch: "x86_64"
vendor: ACME Computer Corp.
ports:
- address: 98:03:9B:64:5A:9E
pxe_enabled: True
local_link_connection:
switch_id: 70:6D:15:41:73:30
switch_info:
apic_dn:topology/pod-1/paths-114/pathep-[ethl/8],physical_network:physnetl
port_id: eth1/8

)
-

Chassis information
Track blade systems and node to chassis assignments

[

Node information & BMC configuration
BMC address, credentials, type of driver and node
configuration

A2

Network information

Network configuration via Openstack-SDN integration
22

Architecture Overview: The Zero-Touch Pipeline
From "just racked" to "running SLURM jobs" with zero manual intervention

@ 1. Source of Truth
NetBox DCIM: IPAM, device inventory, rack locations
2

® 2. Immutable Images
Packer + Ansible: Pre-built OS with HPC stack baked in

\Z

@ 3. Infrastructure Code
OpenTofu + Terragrunt: Declare bare metal nodes, network config

%

4. Bare Metal Provisioning

i

OpenStack Ironic: Power on, inspect, deploy OS image

v

D 5. Node Bootstrap
ansible-init service: Self-configuration on first boot

2

06 6. Secrets & Config
Vault (short-lived creds): Dynamic secrets, no static passwords

\Z

@ 7. Cluster Ready

SLURM nodes join cluster: Nodes auto-register, ready for jobs

Self-Sufficient Nodes: ansible-init Service

The Problem The Solution

How do nodes configure themselves on first boot without ®
manual intervention?

Our Implementation

e This service specifically runs “configure” tasks
e Which playbooks should run is either controlled through
o apassed ansible inventory
o metadata (from curl or config drive)
e The configuration playbooks themselves are baked into the image

Props for this idea go to StackHPC

A systemd service runs ansible playbooks on first boot
This service configures the node using ansible locally
If the run is successful, we write a sentinel file that will
prevent another run on next boot

Q)
1. Power On
v

2. Network Up
2

3. ansible-init triggers
v

4. Playbooks run
\Z
&
5. Node ready
24

Architecture Overview: The Zero-Touch Pipeline

From "just racked" to "running SLURM jobs" with zero manual intervention

S|

N/

9

)
o)

>

1. Source of Truth
NetBox DCIM: IPAM, device inventory, rack locations

\Z

2. Immutable Images
Packer + Ansible: Pre-built OS with HPC stack baked in

\Z

3. Infrastructure Code
OpenTofu + Terragrunt: Declare bare metal nodes, network config

%

4. Bare Metal Provisioning
OpenStack Ironic: Power on, inspect, deploy OS image

v

5. Node Bootstrap
ansible-init service: Self-configuration on first boot

2

o

6. Secrets & Config
Vault (short-lived creds): Dynamic secrets, no static passwords

¢

2

7. Cluster Ready
SLURM nodes join cluster: Nodes auto-register, ready for jobs

25

Secret Management: Short-Lived Credentials

The Problem

Long-lived credentials to vault applications pose
security risks

If leaked, attackers have persistent access
Difficult to audit who accessed what

Our implementation:

The vault that nodes access is generated by OpenTofu

This vault itself fetches secrets from another vault

The Solution

Credentials to vault generated on-demand with short
TTL

Each node gets unique credentials

Automatic expiration minimizes blast radius

(&) Terraform

1. Create nodes and related credentials to vault

N2

O OpenStack

2. Node boots; secrets access token provided in metadata
2
[> ansible-init
3. Secret access in ansible code is scoped to correct vault

\Z

&Y, Node queries Vault

4. Node uses token to fetch secrets

26

Architecture Overview: The Zero-Touch Pipeline

From "just racked" to "running SLURM jobs" with zero manual intervention

S|

N/

9

)
o)

>

o

1. Source of Truth
NetBox DCIM: IPAM, device inventory, rack locations

\Z

2. Immutable Images
Packer + Ansible: Pre-built OS with HPC stack baked in

\Z

3. Infrastructure Code
OpenTofu + Terragrunt: Declare bare metal nodes, network config

%

4. Bare Metal Provisioning
OpenStack Ironic: Power on, inspect, deploy OS image

v

5. Node Bootstrap
ansible-init service: Self-configuration on first boot
\Z
6. Secrets & Config
Vault (short-lived creds): Dynamic secrets, no static passwords

2

O

7. Cluster Ready
SLURM nodes join cluster: Nodes auto-register, ready for jobs

27

Acknowledgements

HPC Team

Erich Birngruber
Leon Schwarzaugl
Umit Seren

Felix Schmitt
Alexander Bindeus

Questions?
We'd love to discuss your HPC automation challenges

Contact Us Resources

Umit Seren £ github.com/clip-hpc

uemit.seren@vbc.ac.at . .
@ clip.science

Leon Schwarzaugl|
leon.schwarzaeugl@imba.oeaw.ac.at

Thank you!

28

