
Zero-Touch HPC Nodes
NetBox, OpenTofu and Packer for a Self-Configuring

SLURM Cluster

Ümit Seren (GH: @timeu) & Leon Schwarzäugl (GH: @swarsel)

Vienna BioCenter - Scientific Computing

FOSDEM 2026 - Feb 01, 2026 - Brussels

The Old Way: Manual HPC Deployment
Our previous HPC cluster: OpenStack-based with Ansible automation for the payload (SLURM cluster)... but
the underlying infrastructure was still managed entirely by hand (See our FOSDEM 2020 talk “HPC on
OpenStack…”)

Technology Stack

✓ Automated (Payload):

● OpenStack for compute resources

● Ansible for SLURM cluster config

✗ Manual (Infrastructure):

● SDN Network configuration

● BMC IP/DHCP management

● Excel-based inventory

● Storage configuration

The Pain Points

⚠ Long ansible runtime

⚠ Manual BMC reconfiguration (200+ nodes)

⚠ Configuration drift between environments

⚠ No reproducible rebuild process

⚠ Tribal knowledge and technical debt

⚠ Risky upgrades with no rollback

2

https://archive.fosdem.org/2020/schedule/event/hpc_openstack/
https://archive.fosdem.org/2020/schedule/event/hpc_openstack/
https://archive.fosdem.org/2020/schedule/event/hpc_openstack/

Architecture Overview: The Zero-Touch Pipeline
From "just racked" to "running SLURM jobs" with zero manual intervention

1. Source of Truth
NetBox DCIM: IPAM, device inventory, rack locations

3. Infrastructure Code
OpenTofu + Terragrunt: Declare bare metal nodes, network config

4. Bare Metal Provisioning
OpenStack Ironic: Power on, inspect, deploy OS image

5. Node Bootstrap
ansible-init service: Self-configuration on first boot

6. Secrets & Config
Vault (short-lived creds): Dynamic secrets, no static passwords

7. Cluster Ready
SLURM nodes join cluster: Nodes auto-register, ready for jobs

2. Immutable Images
Packer + Ansible: Pre-built OS with HPC stack baked in

3

Architecture Overview: The Zero-Touch Pipeline
From "just racked" to "running SLURM jobs" with zero manual intervention

1. Source of Truth
NetBox DCIM: IPAM, device inventory, rack locations

3. Infrastructure Code
OpenTofu + Terragrunt: Declare bare metal nodes, network config

4. Bare Metal Provisioning
OpenStack Ironic: Power on, inspect, deploy OS image

5. Node Bootstrap
ansible-init service: Self-configuration on first boot

6. Secrets & Config
Vault (short-lived creds): Dynamic secrets, no static passwords

7. Cluster Ready
SLURM nodes join cluster: Nodes auto-register, ready for jobs

2. Immutable Images
Packer + Ansible: Pre-built OS with HPC stack baked in

4

NetBox: DCIM and Source of Truth
NetBox serves as our single source of truth, feeding all automation workflows with accurate,
version-controlled infrastructure data.

What NetBox Provides:

📍 IPAM: Complete IP address management and DHCP reservations

🖥 Device Inventory: Servers, switches and storage devices with network connections

🔌 Physical Layer: Rack locations, cabling, patch panels, port assignments

🏷 Metadata: Custom fields for network provisioning

🔄 Drift Detection: Continuous validation against external systems and appliances

🔗 API-First: REST API & custom export templates for OpenTofu, and custom automation

Scale: 100 racks, 150+ switches, 300+ nodes— all tracked in NetBox

Netbox Feature Overview

5

NetBox: DCIM and Source of Truth
From Excel to Netbox

Before After

6

NetBox Integration: External Systems
NetBox serves as the central source of truth, integrating with existing vendor appliances and IPAM systems through custom drift check scripts
and custom sync scripts that ensure data consistency.

Our External Systems

Vendor Management Appliances

Lenovo XClarity, Dell OpenManage Enterprise

IPAM System
Infoblox

Network Infrastructure
Cisco ACI & LLDP Topology Discovery

Drift checks

Custom Drift Check Scripts
Automatically compare NetBox data against vendor appliances

Verify hardware inventory (serial numbers, models) are correct
Validate IP address assignments against Infoblox
Check network topology via LLDP data against SDN

Internal checks (duplicate IP/MAC, orphaned cables, etc)

Import Automation

Vendor Management:
● MAC addresses
● Serial Numbers

IPAM system:
● IP Addresses
● IP Ranges/Networks

Network SDN:
● Serial numbers
● MAC addresses
● LLDP neighbours

Export Automation

IPAM system (OpenTofu):
● DHCP reservations
● Host entry

Network SDN (Tofu):
● Fabric side switch port configuration

OpenStack (Export Templates) :
● Hypervisor & Controller
● Baremetal machines

Storage system (OpenTofu):
● Network Configuration for SVMs

7

NetBox: Complete Infrastructure Visibility
Once all infrastructure data is populated, NetBox provides comprehensive insights and end-to-end traceability across the entire datacenter
stack.

IP Address Traceability

1

IP: 10.0.5.42
Compute node interface

2

compute-node-025
Rack A-12, U20-U22

3

eth0 ➜ Cable #A025
Physical cable path

4

PP-A-12 Port 24
Patch panel

5

tor-a12 Gi1/0/24
Physical switchport

IP to physical port

NetBox Interface

Cabling tracing

8

NetBox: Floorplan plugin
Netbox as a comprehensive documentation tool of physical space

Before After

9

NetBox: Topology plugin
Netbox as a comprehensive live documentation tool of logical network connections

Before After

10

NetBox: Topology plugin
Netbox as a comprehensive live documentation tool of logical network connections

11

Architecture Overview: The Zero-Touch Pipeline
From "just racked" to "running SLURM jobs" with zero manual intervention

1. Source of Truth
NetBox DCIM: IPAM, device inventory, rack locations

3. Infrastructure Code
OpenTofu + Terragrunt: Declare bare metal nodes, network config

4. Bare Metal Provisioning
OpenStack Ironic: Power on, inspect, deploy OS image

5. Node Bootstrap
ansible-init service: Self-configuration on first boot

6. Secrets & Config
Vault (short-lived creds): Dynamic secrets, no static passwords

7. Cluster Ready
SLURM nodes join cluster: Nodes auto-register, ready for jobs

2. Immutable Images
Packer + Ansible: Pre-built OS with HPC stack baked in

12

Immutable Images

Why Images?
✓ Identical nodes from the same image

✓ Fast provisioning

✓ Reproducible

✓ Versioned image artifacts

✓ Safe rollbacks to previous versions

Idea

● Take an upstream base OS to customise
● The build system should be agnostic of the image distro/version
● The system should automatically push the image to all endpoints

13

Immutable Images using Packer

Packer
✓ Support for many platforms
✓ Similar syntax to OpenTofu
✓ Support for a wide range of image customization tools

packer {
 required_plugins {
 docker = {
 version = ">= 1.0.8"
 source = "github.com/hashicorp/docker"
 }
 ansible = { <…> }
 }
}

source "docker" "ubuntu" {
 image = "ubuntu:questing"
 commit = true
}
build {
 name = "packer-example"
 sources = ["source.docker.ubuntu"]
 provisioner "ansible" {
 playbook_file = "${path.root}/playbook.yml"
 }
 post-processor "shell-local" {
 only = ["docker.ubuntu"]
 inline = ["echo 'Done!'"]
 }
}

14

Immutable Images - Our Implementation

1. Call GitHub workflow either from base repo or remotely

2. This sets up packer with the respective vars for the

distribution/version

3. Packer boots temporary VM from the base OS image using QEMU

4. Ansible configures the image

 4.1. Additional customizations run if called from a remote repository

5. Cleanup scripts run

6. Output versioned image

7. Upload to various endpoints

Ansible Roles: Install vs Configure

Install Roles (Baked into Image)

When: Run during Packer build (once)
Purpose: Install system-wide software and configs during image build.

What Goes in Install Roles:

● Package installations
● Setup of directories & propagation of files
● Configuration common to all nodes

Configure Roles (Run at Boot)
When: Run by a local service on first boot.
Purpose: Perform tasks that are not common to all hosts.

What Goes in Configure Roles:

● Node-specific configuration
● Enabling of services
● Fetch secrets from Vault

 The situation

● Not all customizations can be performed at image build time
● We manage most reusable tasks using Ansible roles
● Most of these roles perform steps that will be used on all roles

unconditionally
● Many of these will then perform steps that should not be put in the

image

Our solution

● Split roles into distinct `install` and `configure` tasks

 - ansible.builtin.include_role:
 name: sssd
 tasks_from: install.yml

16

Architecture Overview: The Zero-Touch Pipeline
From "just racked" to "running SLURM jobs" with zero manual intervention

1. Source of Truth
NetBox DCIM: IPAM, device inventory, rack locations

3. Infrastructure Code
OpenTofu + Terragrunt: Declare bare metal nodes, network config

4. Bare Metal Provisioning
OpenStack Ironic: Power on, inspect, deploy OS image

5. Node Bootstrap
ansible-init service: Self-configuration on first boot

6. Secrets & Config
Vault (short-lived creds): Dynamic secrets, no static passwords

7. Cluster Ready
SLURM nodes join cluster: Nodes auto-register, ready for jobs

2. Immutable Images
Packer + Ansible: Pre-built OS with HPC stack baked in

17

OpenTofu: Reusable Infrastructure Modules
Building blocks for HPC infrastructure as code

What is OpenTofu?

Open-source Terraform fork that enables infrastructure engineers to
declaratively define reusable modules that encapsulate infrastructure
components as version-controlled, parameterized building blocks.

Modular Design
Encapsulate infrastructure patterns into discrete, reusable declarative modules

Component Library
Build libraries of network, cluster, storage, and compute modules

Parameterization
Configure modules with variables for flexible, context-specific deployment

Version Control
Track and manage infrastructure code changes with standard VCS workflows

Infrastructure modules catalog

modules/
└─ cluster/ └─ network/ └─ server/
 ├─ main.tf ├─ main.tf ├─ main.tf
 ├─ variables.tf ├─ variables.tf ├─ variables.tf
 ├─ outputs.tf ├─ outputs.tf ├─ outputs.tf
 └─ terragrunt.hc └─ terragrunt.hcl └─
terragrunt.hcl

modules/network/main.tf

resource "openstack_networking_network_v2" "network" {
 name = var.network_name
 admin_state_up = "true"
 port_security_enabled = "true"
 dns_domain = var.dns_domain
}

resource "openstack_networking_subnet_v2" "subnet_v" {
 name = var.subnet_name
 network_id = openstack_networking_network_v2.network.id
 cidr = var.nodes_net_cidr
 ip_version = 4
 dns_nameservers = var.dns_servers
}

resource "openstack_networking_subnet_v2" "subnet_v6" {
 count = var.enable_ipv6 ? 1 : 0
 name = var.ipv6_subnet_name
 network_id = openstack_networking_network_v2.network.id
 ip_version = 6
 dns_nameservers = var.dns_ipv6_servers
 ipv6_ra_mode = var.ipv6_ra_mode
 ipv6_address_mode = var.ipv6_address_mode
 cidr = var.ipv6_net_cidr
}

resource "openstack_networking_router_v2" "router" {
 count = var.router_name != null ? 1 : 0
 name = var.router_name
 admin_state_up = true
 external_network_id =
data.openstack_networking_network_v2.public_net[0].id
} 18

http://main.tf
http://variables.tf
http://variables.tf
http://outputs.tf
http://outputs.tf

Terragrunt: Composing OpenTofu Modules
DRY orchestration across environments

What is Terragrunt?

Terragrunt wraps OpenTofu to compose infrastructure
modules into reusable, environment-agnostic configurations. It
eliminates code duplication by enabling a single module
definition to be deployed across multiple environments.

Module Composition
Orchestrate multiple OpenTofu modules as cohesive units

Configuration Management
Centralize shared configuration, minimize duplication

Multi-Environment
Deploy consistent infrastructure across dev, staging, and production

Version Control
Track and manage infrastructure code changes with standard VCS
workflows

HPC terragrunt cluster repo

├─ root.hcl
└─ dev/ └─ staging/ └─ production/
 ├─ env.hcl ├─ env.hcl ├─ env.hcl
 └─ hpc_virtual/ └─ hpc_virtual/ └─ hpc_bm/
 └─ terragrunt.stack.hcl └─ terragrunt.stack.hcl └─ terragrunt.stack.hcl
 └─ hpc_bm/
 └─ terragrunt.stack.hcl

env.hcl

dev:
locals {
 srv_count = 2
 flavor = “small”
 os_cloud = “dev”
}

staging
locals {
 srv_count = 10
 flavor = “medium”
 os_cloud = “stg”
}

prod
locals {
 srv_count = 100
 flavor = “large”
 os_cloud = “prod”
}

env_vars =
read_terragrunt_config(find_in_parent_folders("env.hcl"))

stack "cluster" {
 source = "git::git@github.com:catalog.git//stacks/cluster"
 path = "cluster"

 values {
 network_name = "hpc_network"
 router_name = "hpc_router"
 subnet_name = "hpc_subnet-ipv4"
 ipv6_subnet_name = "hpc_-subnet-ipv6"
 enable_ipv6 = true
 cluster_name = "hpc-vm"
 cluster_image_id = "62d9542d-85eb-4d85-b4c1-3ebd909d2935"
 node_flavor = local.env_vars.flavor
 node_count = local.env_vars.srv_count
 key_pair = “ssh_key”
 os_cloud = local.env_vars.os_cloud
 }

terragrunt.stack.hcl

19

Architecture Overview: The Zero-Touch Pipeline
From "just racked" to "running SLURM jobs" with zero manual intervention

1. Source of Truth
NetBox DCIM: IPAM, device inventory, rack locations

3. Infrastructure Code
OpenTofu + Terragrunt: Declare bare metal nodes, network config

4. Bare Metal Provisioning
OpenStack Ironic: Power on, inspect, deploy OS image

5. Node Bootstrap
ansible-init service: Self-configuration on first boot

6. Secrets & Config
Vault (short-lived creds): Dynamic secrets, no static passwords

7. Cluster Ready
SLURM nodes join cluster: Nodes auto-register, ready for jobs

2. Immutable Images
Packer + Ansible: Pre-built OS with HPC stack baked in

20

Baremetal Provisioning: OpenStack Ironic

Netbox
Export

Template
OpenStack

Ironic
Terragrunt
/OpenTofu

HPC
Cluster

From Netbox via OpenStack Cloud to HPC cluster

21

Baremetal Provisioning: OpenStack Ironic

chassis:
 - description: c2-47_c2-50
 uuid: e4656520-4344-4e5a-9035-9819e5597cd8
 extra:
 nodes:
 - c2-47
 - c2-48
 - c2-49
 - c2-50
nodes:
 - name: c2-47
 chassis_uuid: e4656520-4344-4e5a-9035-9819e5597cd8
 driver: redfish
 driver_info:
 redfish_address: c2-47.bmc.clip.vbc.ac.at
 redfish_username: USERNAME
 redfish_password: XXXXXX
 boot_interface: redfish-virtual-media
 resource_class: baremetal-C2
 properties:
 capabilities: "boot_mode:uefi,boot_option:local"
 cpu_arch: "x86_64"
 vendor: ACME Computer Corp.
 ports:
 - address: 98:03:9B:64:5A:9E
 pxe_enabled: True
 local_link_connection:
 switch_id: 70:6D:15:41:73:30
 switch_info:
apic_dn:topology/pod-1/paths-114/pathep-[eth1/8],physical_network:physnet1
 port_id: eth1/8

Netbox custom export template

Chassis information
Track blade systems and node to chassis assignments

Node information & BMC configuration
BMC address, credentials, type of driver and node

configuration

Network information
Network configuration via Openstack-SDN integration

Onboarding hardware to the On-Prem OpenStack Cloud

22

Architecture Overview: The Zero-Touch Pipeline
From "just racked" to "running SLURM jobs" with zero manual intervention

1. Source of Truth

NetBox DCIM: IPAM, device inventory, rack locations

3. Infrastructure Code

OpenTofu + Terragrunt: Declare bare metal nodes, network config

4. Bare Metal Provisioning

OpenStack Ironic: Power on, inspect, deploy OS image

5. Node Bootstrap

ansible-init service: Self-configuration on first boot

6. Secrets & Config

Vault (short-lived creds): Dynamic secrets, no static passwords

7. Cluster Ready

SLURM nodes join cluster: Nodes auto-register, ready for jobs

2. Immutable Images

Packer + Ansible: Pre-built OS with HPC stack baked in

23

Self-Sufficient Nodes: ansible-init Service

1. Power On

2. Network Up

3. ansible-init triggers

4. Playbooks run

5. Node ready

The Problem

How do nodes configure themselves on first boot without
manual intervention?

 The Solution

● A systemd service runs ansible playbooks on first boot
● This service configures the node using ansible locally
● If the run is successful, we write a sentinel file that will

prevent another run on next boot

● This service specifically runs `configure` tasks
● Which playbooks should run is either controlled through

○ a passed ansible inventory
○ metadata (from curl or config drive)

● The configuration playbooks themselves are baked into the image

Our Implementation

Props for this idea go to StackHPC

24

Architecture Overview: The Zero-Touch Pipeline
From "just racked" to "running SLURM jobs" with zero manual intervention

1. Source of Truth
NetBox DCIM: IPAM, device inventory, rack locations

3. Infrastructure Code
OpenTofu + Terragrunt: Declare bare metal nodes, network config

4. Bare Metal Provisioning
OpenStack Ironic: Power on, inspect, deploy OS image

5. Node Bootstrap
ansible-init service: Self-configuration on first boot

6. Secrets & Config
Vault (short-lived creds): Dynamic secrets, no static passwords

7. Cluster Ready
SLURM nodes join cluster: Nodes auto-register, ready for jobs

2. Immutable Images
Packer + Ansible: Pre-built OS with HPC stack baked in

25

Secret Management: Short-Lived Credentials

 The Problem

● Long-lived credentials to vault applications pose
security risks

● If leaked, attackers have persistent access
● Difficult to audit who accessed what

The Solution

● Credentials to vault generated on-demand with short
TTL

● Each node gets unique credentials
● Automatic expiration minimizes blast radius

Our implementation:
OpenStack

2. Node boots; secrets access token provided in metadata

ansible-init
3. Secret access in ansible code is scoped to correct vault

Terraform
1. Create nodes and related credentials to vault

Node queries Vault
4. Node uses token to fetch secrets

● The vault that nodes access is generated by OpenTofu

● This vault itself fetches secrets from another vault

26

Architecture Overview: The Zero-Touch Pipeline
From "just racked" to "running SLURM jobs" with zero manual intervention

1. Source of Truth
NetBox DCIM: IPAM, device inventory, rack locations

3. Infrastructure Code
OpenTofu + Terragrunt: Declare bare metal nodes, network config

4. Bare Metal Provisioning
OpenStack Ironic: Power on, inspect, deploy OS image

5. Node Bootstrap
ansible-init service: Self-configuration on first boot

6. Secrets & Config
Vault (short-lived creds): Dynamic secrets, no static passwords

7. Cluster Ready
SLURM nodes join cluster: Nodes auto-register, ready for jobs

2. Immutable Images
Packer + Ansible: Pre-built OS with HPC stack baked in

27

Acknowledgements

Questions?
We'd love to discuss your HPC automation challenges

Contact Us
Ümit Seren

uemit.seren@vbc.ac.at

Leon Schwarzäugl

leon.schwarzaeugl@imba.oeaw.ac.at

Resources
github.com/clip-hpc

clip.science

Thank you!

HPC Team

Erich Birngruber
Leon Schwarzäugl
Ümit Seren
Felix Schmitt
Alexander Bindeus

28

