Reproducible XFS Filesystem Images

No Mount Required

Creating bit-for-bit identical filesystem images at mkfs time

Luca Di Maio

FOSDEM 2026

talk@fosdem:~$ whoami

Luca Di Maio

« SWE @Chainguard
« Open Source Enthusiast

.0 @ %W @ g9lucas9

« ™ Tluca.dimaiol@gmail.com

mailto:luca.dimaio1@gmail.com

Why Reproducible Filesystems?

.

Supply Chain Security

Verify builds have not been tampered with:

if source is identical, output must be
identical

Debugging

Reproduce exact conditions: bisect issues
across builds with confidence

Auditability

Anyone can rebuild and verify: no trust
required in build infrastructure

Distribution Trust

Users can verify distro images match
published sources

The Problem

Traditional workflow:

mkfs.xfs /dev/sdX - mount - cp -a rootfs/* /mnt - umount
« Requires root privileges for mounting

« Timestamps vary with build time
« Random seeds lead to different inode generation numbers

Failed Attempt: libfaketime

Good news: Empty filesystems CAN BE reproducible!

$ LD_PRELOAD=1ibfaketime.so FAKETIME="1970-01-01 01:00:00" \
mkfs.Xxfs -m uuid=44444444-4444-4444-4444-444444444444 testl.img

$ LD_PRELOAD=1ibfaketime.so FAKETIME="1970-01-01 01:00:00" \
mMkTs.xfs -m uuid=44444444-4444-4444-4444-444444444444 test2.1img

$ md5sum *.img

ed581f44068a6ab94062a65d5272el1f2 testl.img

ed581f44068a6ab94062a65d5272e1f2 test2.img # ~ Identical!

Bad news: Populating via mount breaks reproducibility!

$ mount -o noatime,nodiratime testl.img /mnt

$ tar --no-atime -xf rootfs.tar -C /mnt && umount /mnt
... repeat for test2.img

$ md5sum *.img

alb2c3d4... testl.img

e5f6g7h8... test2.img # ~ Still different every time!

Failed Attempt: Why It Fails

The kernel ignores userspace tricks

LD PRELOAD is userspace-only

« Kernel syscalls bypass libfaketime
e inode ctime set by kernel, not libc

AG allocation non-deterministic

e which AG gets the inode

« Parallel/async I/0 leads to non-
deterministic allocation order

« B+tree shape depends on order

What Others Do

reproducible-builds.org/docs/system-images/ documents filesystem support:

Filesystem Support

ext2/ext3/ext4d mkfs.ext{2,3,4} with -E hash_seed, -U and -d to populate
SquashFS mksquashfs has -repro flag

EroFS mkfs.erofs with -1 for timestamps and -u for uuid

IS0 xorriso SUPPOrts SOURCE_DATE_EPOCH + --modification-date
XFS No support... until now!

Common pattern: populate filesystem at creation time, control all sources of non-
determinism, avoid mounting.

The Path Forward

Port the same approach to XFS:

1. Directory Population (-p)

« Populate filesystem from directory tree at mkfs time

« ALL file types, xattrs, hardlinks, timestamps

2. Deterministic Seed/Time

e SOURCE_DATE_EPOCH : fixed timestamps

e DETERMINISTIC SEED=1 : fixed seed (0x53454544)

3. Tests

« Verifies bit-for-bit reproducibility
« Uses fsstress to generate realistic content

Patch 1 - Populating

Patch 1: Why Not Just Extend Protofile?

XFS already has protofile support (-p file).

/
00
d--755 1000 1000
: Descending path test/
a d--755 1000 1000
filel ---644 1000 1000 test/a/filel
$
b d--755 1000 1000
file2 ---644 1000 1000 test/b/file2
$
c d--755 1000 1000
d d--755 1000 1000
$
$
$

Extend it?

Problems:

o Limited xattr support
regular files only

« No timestamps

always using current time, not source
time

« Backward compatibility

changing format might break existing
users

10

Patch 1: Architecture Overview

Idea: mkfs.xfs in userspace uses libxfs which allocates inodes sequentially.
Without kernel-level parallelism, allocation order becomes deterministic.

1. setup_proto()

Regular file - existing protofile logic

Directory -» new populate_from_dir() logic

2. populate_from dir()

Recursively traverse source dir and populate new FS
3. handle_direntry()

Dispatches on file type (st_mode):
o S_IFDIR - <create_directory_inode() - recurse

o ALl others - create_nondir_inode() (files, symlinks, devices, fifos, sockets)

11

Patch 1: Timestamps

Files have multiple timestamps (atime, mtime, ctime, crtime).

Which ones should we preserve from the source, and which should
we set to "now" (potentially SOURCE_DATE_EPOCH)?

Timestamp Behavior Rationale

mtime Always copied Meaningful modification time
atime Optional (-p dir,atime=1) Usually noise

ctime/crtime current_time() New inode creation

Note: Most reproducible builds strip atime anyway; option exists for edge cases.

12

Patch 1: Attributes

File descriptor challenge: Different types need different open() flags:

« Regular files: 0_RDONLY | 0_NOATIME (need to read content)

« Symlinks/sockets/FIFOs: o_PATH only (can't open for reading)
o fgetxattr() / flistxattr() fail with EBADF on o_pPATH fds.

o Fall back to 1getxattr() / llistxattr() (path-based) when errno == EBADF .

Symlinks have xattrs too (SELinux labels). Without this fallback, labels get

lost.

13

Patch 1: Hardlinks & Resource Management

Hardlink tracking: Maps src_ino - dst_ino in dynamic array.

« First encounter (st_nlink > 1): Create file normally, store mapping
« Subsequent: Look up dst_ino , create dir entry, call 1libxfs_bumplink()
e« Growth: 2x for small arrays, +25% for large (threshold: 1024)

Performance:

e Linear 0(n) — tested 1.3M inodes, 400k hardlinks in seconds. I/0 bounded; good
enough.

14

Patch 2 - Determinism

15

Patch 2: Populating is not enough

Patch 1 populates from directory, but ctime / crtime uSe gettimeofday() and
inode generation comes from getrandom() - not reproducible

What about libfaketime?

~$ LD_PRELOAD=1ibfaketime.so \
FAKETIME="1970-01-01 01:00:00" FAKERANDOM_SEED="0x12345678aaaabbbb" \

mkfs.xfs \
M UUid=44444444-4444-4444-4444- 444444444444 \

-p ./rootfs disk.img

It works but there are problems

« Fragile: Lbp_PRELOAD breaks with setuid binaries, static linking
e Non-standard: doesn't follow SOURCE_DATE_EPOCH convention

« Requires additional tooling for getrandom() interception

16

Patch 2: Reproducibility Environment Variables:
SOURCE_DATE EPOCH

bool current_fixed_time(struct timespec64 *tv) {

SOURCE_DATE_EPOCH - Fixed timestamps [...]

if ('read_env) {

o« Standard from reproducible-builds.org read_env = true;
. _ . char *sde = getenv("SOURCE_DATE_EPOCH");
e« Unix timestamp (seconds since 1970) if (sde && sde[0] != '"\0') {
errno = 0;
e Used for ctime and crtime of all new epoch = strtoll(sde, &endp, 10);
inodes L])
o« Example: SOURCE_DATE_EPOCH=1234567890 ¥

e]
if (read_env && enabled) {

tv->tv_sec = epoch;
tv->tv_nsec = 0;
return true;

“r—

Patch 2: Reproducibility Environment Variables:
DETERMINISTIC SEED

. bool t_det inisti d int32 t * 1t
DETERMINISTIC_SEED=1 - Fixed random p00% gtdeterministic seed(uintazt - fresult) {

if ('read_env) {
seed read_env = true;
seed_env = getenv("DETERMINISTIC_SEED");

. Replaces getrandom() with fixed value if (seed_env && strcmp(seed_env, "1") == 0)
" (T bled = t ’
0x53454544 ("SEED" in ASCII)) enabte rue
. Affects inode generation numbers 1t (read_env & enabled) {

*result = deterministic_seed;
return true;
Is 1t safe? Inode generation numbers }

t false;
(di_gen) change when an inode number e TAaee
is reused after deletion. At mkfs
time this is not relevant.

(U

18

Patch 3 - testing

19

Patch 3: testing

Function Purpose

fsstress -n 2000 -p 2 , mkfifo, mknod (blk/chr), af unix

_Ccreate _proto_dir
s 0 socket

Check -m uuid= support, -p populate support, grep

_check_mkfs_xfs_options()) ,
SOURCE_DATE_EPOCH 1N blnary

_mkfs_xfs_reproducible() {
SOURCE_DATE_EPOCH=$FIXED_EPOCH \
DETERMINISTIC_SEED=1 \
$MKFS_XFS_PROG -f -m uuid=$FIXED_UUID -p "$PROTO_DIR" "$img"

}

Run 3 iterations, compare SHA256 hashes
hash1=$(_run_iteration 1)
hash2=$(_run_iteration 2)
hash3=$(_run_iteration 3)

["$hashl" = "$hash2"] && ["$hash2" = "$hash3"] # Must match!

20

In Action

21

In Action: usage examples

Basic: populate from directory

mkfs.xfs -p ./rootfs disk.img

Preserve access timestamps from source

mkfs.xfs -p ./rootfs,atime=1 disk.img

22

In Action: usage examples

Reproducible filesystem

avold the use of libfaketime

~$ truncate -s 1G test{1,2}.img
~$ md5sum *.img
cd573cfaace07e7949bc0c46028904ff testl.img
cd573cfaace07e7949bc0c46028904ff test2.img
~$ SOURCE_DATE_EPOCH=1234567890 DETERMINISTIC_SEED=1 \

mkfs.xfs -m uuid=12345678-1234-1234-1234-123456789abc testl.img
[...]
~$ SOURCE_DATE_EPOCH=1234567890 DETERMINISTIC_SEED=1 \

mkfs.xfs -m uuid=12345678-1234-1234-1234-123456789abc test2.img
[...]
~$ md5sum *.img
1facbedb3391cddce08c30c576e8860c testl.img
1facbedb3391cddced8c30c576e8860c test2.img

Still required: -m uuid=...
UUID is still generated randomly by default

23

In Action - mkosi

#!/bin/sh

mkosi \
-d debian -r bookworm \
-p base-files \
-p dbus \
-p systemd \
-t directory \
-0 rootfs\
--seed aaaabbbb-aaaa-bbbb-aaaa-bbbbaaaabbbb \
--source-date-epoch 1234567890 \
--remove-files /var/cache/ldconfig/aux-cache \
--remove-files /var/log/alternatives. log

truncate -s 1G rootfs.img

DETERMINISTIC_SEED=1 SOURCE_DATE_EPOCH=1234567890 \
mkfs.xfs \
-m uuld=12345678-1234-1234-1234-123456789abc \
-p ./rootfs/ rootfs.img

24

In Action - mkosi

Run this script a couple of times

~$./build.sh

~$ 1s

build.sh rootfs rootfs.img

~$ mv rootfs.img rootfs-og.img && rm -rf rootfs

~$ 1s

build.sh rootfs-o0g.img
~$./build.sh

~$ 1s

build.sh rootfs rootfs.img rootfs-og.img

~$ file *.img && md5sum *.img

rootfs-og.img: SGI XFS filesystem data (blksz 4096, inosz 512, v2 dirs)
rootfs.img: SGI XFS filesystem data (blksz 4096, inosz 512, v2 dirs)
715a2e67b66e5571b16fca715a70bc47 rootfs-o0g.img
715a2e67b66e5571b16fca715a70bc47 rootfs.img

B

25

Use Cases

Distributions -> Verifiable cloud/VM images, reproducible installation media

Embedded Systems -> Unprivileged rootfs generation, Yocto/Buildroot/CI friendly

Security -> Supply chain verification, SLSA compliance, build attestation

Testing -> Deterministic test fixtures, reproducible bug reports

26

Questions?

Luca D1 Maio

luca.dimaiol@gmail.com

mkfs patches on linux-xfs@vger.kernel.org
Test patches on fstests@vger.kernel.org

27

mailto:luca.dimaio1@gmail.com
mailto:linux-xfs@vger.kernel.org
mailto:fstests@vger.kernel.org

