
Reproducible XFS Filesystem Images

No Mount Required

Creating bit-for-bit identical filesystem images at mkfs time

Luca Di Maio

FOSDEM 2026

1

talk@fosdem:~$ whoami

Luca Di Maio

SWE @Chainguard

Open Source Enthusiast

 89luca89

 luca.dimaio1@gmail.com

2

mailto:luca.dimaio1@gmail.com

Why Reproducible Filesystems?

Supply Chain Security

Verify builds have not been tampered with:

if source is identical, output must be

identical

Auditability

Anyone can rebuild and verify: no trust

required in build infrastructure

Debugging

Reproduce exact conditions: bisect issues

across builds with confidence

Distribution Trust

Users can verify distro images match

published sources

3

The Problem

Traditional workflow:

mkfs.xfs /dev/sdX → mount → cp -a rootfs/* /mnt → umount

Requires root privileges for mounting

Timestamps vary with build time

Random seeds lead to different inode generation numbers

4

Failed Attempt: libfaketime

Good news: Empty filesystems CAN BE reproducible!

$ LD_PRELOAD=libfaketime.so FAKETIME="1970-01-01 01:00:00" \
 mkfs.xfs -m uuid=44444444-4444-4444-4444-444444444444 test1.img
$ LD_PRELOAD=libfaketime.so FAKETIME="1970-01-01 01:00:00" \
 mkfs.xfs -m uuid=44444444-4444-4444-4444-444444444444 test2.img
$ md5sum *.img
ed581f44068a6ab94062a65d5272e1f2 test1.img
ed581f44068a6ab94062a65d5272e1f2 test2.img # ← Identical!

Bad news: Populating via mount breaks reproducibility!

$ mount -o noatime,nodiratime test1.img /mnt
$ tar --no-atime -xf rootfs.tar -C /mnt && umount /mnt
... repeat for test2.img ...
$ md5sum *.img
a1b2c3d4... test1.img
e5f6g7h8... test2.img # ← Still different every time!

5

Failed Attempt: Why It Fails

The kernel ignores userspace tricks

LD_PRELOAD is userspace-only

Kernel syscalls bypass libfaketime

inode ctime set by kernel, not libc

AG allocation non-deterministic

which AG gets the inode

Parallel/async I/O leads to non-

deterministic allocation order

B+tree shape depends on order

6

What Others Do

reproducible-builds.org/docs/system-images/ documents filesystem support:

Filesystem Support

ext2/ext3/ext4 mkfs.ext{2,3,4} with -E hash_seed , -U and -d to populate

SquashFS mksquashfs has -repro flag

EroFS mkfs.erofs with -T for timestamps and -U for uuid

ISO xorriso supports SOURCE_DATE_EPOCH + --modification-date

XFS No support... until now!

Common pattern: populate filesystem at creation time, control all sources of non-

determinism, avoid mounting.

7

The Path Forward

Port the same approach to XFS:

1. Directory Population (-p)

Populate filesystem from directory tree at mkfs time

All file types, xattrs, hardlinks, timestamps

2. Deterministic Seed/Time

SOURCE_DATE_EPOCH : fixed timestamps

DETERMINISTIC_SEED=1 : fixed seed (0x53454544)

3. Tests

Verifies bit-for-bit reproducibility

Uses fsstress to generate realistic content

8

Patch 1 - Populating

9

Patch 1: Why Not Just Extend Protofile?

XFS already has protofile support (-p file). Extend it?

/
0 0
d--755 1000 1000
: Descending path test/
 a d--755 1000 1000
 file1 ---644 1000 1000 test/a/file1
 $
 b d--755 1000 1000
 file2 ---644 1000 1000 test/b/file2
 $
 c d--755 1000 1000
 d d--755 1000 1000
 $
 $
$

Problems:

Limited xattr support

regular files only

No timestamps

always using current time, not source

time

Backward compatibility

changing format might break existing

users

10

Patch 1: Architecture Overview

Idea: mkfs.xfs in userspace uses libxfs which allocates inodes sequentially.

Without kernel-level parallelism, allocation order becomes deterministic.

1. setup_proto()

Regular file → existing protofile logic

Directory → new populate_from_dir() logic

2. populate_from_dir()

Recursively traverse source dir and populate new FS

3. handle_direntry()

Dispatches on file type (st_mode):

S_IFDIR → create_directory_inode() → recurse

All others → create_nondir_inode() (files, symlinks, devices, fifos, sockets)

11

Patch 1: Timestamps

Files have multiple timestamps (atime, mtime, ctime, crtime).

Which ones should we preserve from the source, and which should

we set to "now" (potentially SOURCE_DATE_EPOCH)?

Timestamp Behavior Rationale

mtime Always copied Meaningful modification time

atime Optional (-p dir,atime=1) Usually noise

ctime/crtime current_time() New inode creation

Note: Most reproducible builds strip atime anyway; option exists for edge cases.

12

Patch 1: Attributes

File descriptor challenge: Different types need different open() flags:

Regular files: O_RDONLY | O_NOATIME (need to read content)

Symlinks/sockets/FIFOs: O_PATH only (can't open for reading)

fgetxattr() / flistxattr() fail with EBADF on O_PATH fds.

Fall back to lgetxattr() / llistxattr() (path-based) when errno == EBADF .

Symlinks have xattrs too (SELinux labels). Without this fallback, labels get

lost.

13

Patch 1: Hardlinks & Resource Management

Hardlink tracking: Maps src_ino → dst_ino in dynamic array.

First encounter (st_nlink > 1): Create file normally, store mapping

Subsequent: Look up dst_ino , create dir entry, call libxfs_bumplink()

Growth: 2x for small arrays, +25% for large (threshold: 1024)

Performance:

Linear O(n) — tested 1.3M inodes, 400k hardlinks in seconds. I/O bounded; good

enough.

14

Patch 2 - Determinism

15

Patch 2: Populating is not enough

Patch 1 populates from directory, but ctime / crtime use gettimeofday() and

inode generation comes from getrandom() → not reproducible

What about libfaketime?

~$ LD_PRELOAD=libfaketime.so \
 FAKETIME="1970-01-01 01:00:00" FAKERANDOM_SEED="0x12345678aaaabbbb" \
 mkfs.xfs \
 -m uuid=44444444-4444-4444-4444-444444444444 \
 -p ./rootfs disk.img

It works but there are problems

Fragile: LD_PRELOAD breaks with setuid binaries, static linking

Non-standard: doesn't follow SOURCE_DATE_EPOCH convention

Requires additional tooling for getrandom() interception

16

Patch 2: Reproducibility Environment Variables:

SOURCE_DATE_EPOCH

SOURCE_DATE_EPOCH - Fixed timestamps

Standard from reproducible-builds.org

Unix timestamp (seconds since 1970)

Used for ctime and crtime of all new

inodes

Example: SOURCE_DATE_EPOCH=1234567890

bool current_fixed_time(struct timespec64 *tv) {
[...]
 if (!read_env) {
 read_env = true;
 char *sde = getenv("SOURCE_DATE_EPOCH");
 if (sde && sde[0] != '\0') {
 errno = 0;
 epoch = strtoll(sde, &endp, 10);
[...]
 }
 }
[...]
 if (read_env && enabled) {
 tv->tv_sec = epoch;
 tv->tv_nsec = 0;
 return true;
 }
[...]
}

17

Patch 2: Reproducibility Environment Variables:

DETERMINISTIC_SEED

DETERMINISTIC_SEED=1 - Fixed random
seed

Replaces getrandom() with fixed value

0x53454544 ("SEED" in ASCII)

Affects inode generation numbers

Is it safe? Inode generation numbers

(di_gen) change when an inode number

is reused after deletion. At mkfs

time this is not relevant.

bool get_deterministic_seed(uint32_t *result) {
[...]
 if (!read_env) {
 read_env = true;
 seed_env = getenv("DETERMINISTIC_SEED");
 if (seed_env && strcmp(seed_env, "1") == 0)
 enabled = true;
 }
 if (read_env && enabled) {
 *result = deterministic_seed;
 return true;
 }
 return false;
}

18

Patch 3 - testing

19

Patch 3: testing

Function Purpose

_create_proto_dir()
fsstress -n 2000 -p 2 , mkfifo, mknod (blk/chr), af_unix

socket

_check_mkfs_xfs_options()
Check -m uuid= support, -p populate support, grep

SOURCE_DATE_EPOCH in binary

_mkfs_xfs_reproducible() {
 SOURCE_DATE_EPOCH=$FIXED_EPOCH \
 DETERMINISTIC_SEED=1 \
 $MKFS_XFS_PROG -f -m uuid=$FIXED_UUID -p "$PROTO_DIR" "$img"
}

Run 3 iterations, compare SHA256 hashes
hash1=$(_run_iteration 1)
hash2=$(_run_iteration 2)
hash3=$(_run_iteration 3)

["$hash1" = "$hash2"] && ["$hash2" = "$hash3"] # Must match!

20

In Action

21

In Action: usage examples

Basic: populate from directory

mkfs.xfs -p ./rootfs disk.img

Preserve access timestamps from source

mkfs.xfs -p ./rootfs,atime=1 disk.img

22

In Action: usage examples

Reproducible filesystem

avoid the use of libfaketime

~$ truncate -s 1G test{1,2}.img
~$ md5sum *.img
cd573cfaace07e7949bc0c46028904ff test1.img
cd573cfaace07e7949bc0c46028904ff test2.img
~$ SOURCE_DATE_EPOCH=1234567890 DETERMINISTIC_SEED=1 \
 mkfs.xfs -m uuid=12345678-1234-1234-1234-123456789abc test1.img
[...]
~$ SOURCE_DATE_EPOCH=1234567890 DETERMINISTIC_SEED=1 \
 mkfs.xfs -m uuid=12345678-1234-1234-1234-123456789abc test2.img
[...]
~$ md5sum *.img
1facbedb3391cddce08c30c576e8860c test1.img
1facbedb3391cddce08c30c576e8860c test2.img

Still required: -m uuid=...

UUID is still generated randomly by default

23

In Action - mkosi

#!/bin/sh

mkosi \
 -d debian -r bookworm \
 -p base-files \
 -p dbus \
 -p systemd \
 -t directory \
 -o rootfs\
 --seed aaaabbbb-aaaa-bbbb-aaaa-bbbbaaaabbbb \
 --source-date-epoch 1234567890 \
 --remove-files /var/cache/ldconfig/aux-cache \
 --remove-files /var/log/alternatives.log

truncate -s 1G rootfs.img

DETERMINISTIC_SEED=1 SOURCE_DATE_EPOCH=1234567890 \
 mkfs.xfs \
 -m uuid=12345678-1234-1234-1234-123456789abc \
 -p ./rootfs/ rootfs.img

24

In Action - mkosi

Run this script a couple of times

~$./build.sh
~$ ls
build.sh rootfs rootfs.img
~$ mv rootfs.img rootfs-og.img && rm -rf rootfs
~$ ls
build.sh rootfs-og.img
~$./build.sh
~$ ls
build.sh rootfs rootfs.img rootfs-og.img
~$ file *.img && md5sum *.img
rootfs-og.img: SGI XFS filesystem data (blksz 4096, inosz 512, v2 dirs)
rootfs.img: SGI XFS filesystem data (blksz 4096, inosz 512, v2 dirs)
715a2e67b66e5571b16fca715a70bc47 rootfs-og.img
715a2e67b66e5571b16fca715a70bc47 rootfs.img

25

Use Cases

Distributions -> Verifiable cloud/VM images, reproducible installation media

Embedded Systems -> Unprivileged rootfs generation, Yocto/Buildroot/CI friendly

Security -> Supply chain verification, SLSA compliance, build attestation

Testing -> Deterministic test fixtures, reproducible bug reports

26

Questions?

Luca Di Maio

luca.dimaio1@gmail.com

mkfs patches:

https://lore.kernel.org/linux-xfs/20250730161222.1583872-1-

luca.dimaio1@gmail.com/

https://lore.kernel.org/linux-xfs/20251108143953.4189618-1-

luca.dimaio1@gmail.com/

Test patches: https://lore.kernel.org/linux-xfs/20260108142222.37304-1-

luca.dimaio1@gmail.com/

Links

https://reproducible-builds.org/docs/system-images/

27

mailto:luca.dimaio1@gmail.com
https://lore.kernel.org/linux-xfs/20250730161222.1583872-1-luca.dimaio1@gmail.com/
https://lore.kernel.org/linux-xfs/20250730161222.1583872-1-luca.dimaio1@gmail.com/
https://lore.kernel.org/linux-xfs/20251108143953.4189618-1-luca.dimaio1@gmail.com/
https://lore.kernel.org/linux-xfs/20251108143953.4189618-1-luca.dimaio1@gmail.com/
https://lore.kernel.org/linux-xfs/20260108142222.37304-1-luca.dimaio1@gmail.com/
https://lore.kernel.org/linux-xfs/20260108142222.37304-1-luca.dimaio1@gmail.com/
https://reproducible-builds.org/docs/system-images/

