
Reverse Engineering the 
World's Largest Music 

Streaming Platform
@devgianlu - FOSDEM 2026



● Backend Software Developer
● Open Source enthusiast and contributor
● Software Security and Reverse Engineering enthusiast
● Hobbyist IoT researcher

○ CVE-2023-3741 and CVE-2024-3016
○ More fun with other stuff

● CTF player
○ Former TeamItaly member
○ ECSC 2024 organizer @ CybersecNatLab
○ ICC 2023 provider @ CybersecNatLab
○ DEFCON finalist w/ mhackeroni

Who am I?



The mandatory disclaimer ⚠
This talk expresses my opinion, not the one of my current, previous or future 
employer, not of my friends, colleagues or people I met online.

All the knowledge presented in this talk was acquired by me personally, work done 
by others has been intentionally left out.

All the work done here aims to enhance Spotify, not undermine it.

Please don’t use this work to do piracy, I don’t have anything to do with Anna’s 
Archive dump and won’t ever participate in this kind of activities. 

To Spotify, please don’t ban me again and please don’t sue me, let’s have a chat 
first. This talk was scheduled way before the recent events.



What is librespot?

librespot is a client library for Spotify, capable of playback via various backends.

The project is not:

● A bulk downloader
● A way to skip or bypass ads
● A wrapper around Spotify’s public 

APIs
● A control library
● An alternative GUI, TUI or CLI

The project is:

● An headless player
● An implementation based on 

reverse-engineering 
● A fully* capable Spotify Connect 

endpoint
● An alternative to old-time 

deprecated libspotify

* More on that later



Why librespot?

● Turn any device into a Spotify Connect device

● Headless operation, no desktop environment required

● Lightweight and low resource usage

● Open-source transparency and control, know what you are running

● Customization of audio pipelines or multi-room setups

● Home automation and integration

● DIY audio and Hi-Fi setups



The librespot family

Me



The Spotify infrastructure

ApResolve

AP

Spclient DealerLogin5Stored 
credentials

Audio AES 
key Connect state 

events

Spotify-Conn
ection-Id

REST APIs

Connect state 
PUT

Shannon + 
Mercury

REST + 
Protobuf

WebSocket + JSON

Infrastructure used by 
Spotify clients after 2019



The Spotify infrastructure

Shannon + 
Mercury

ApResolve

AP

Login5Stored 
credentials

Audio AES 
key

Retrieves list of 
endpoints for other 
services

A set of credentials that 
never expires, should be 
stored locally

The AES encryption 
key for decrypting 
audio files

The Accesspoint (AP) service

A custom protocol over TCP 
that uses a Diffie-Hellman key 
exchange and Shannon 
(SOBER) encryption to 
transport simple data packets. 

It was heavily used up until 
2019, now it used lightly.

Stored credentials are used to 
authenticate the newer Login5 
authentication system



The Spotify infrastructure

REST + 
Protobuf

SpclientLogin5

REST APIs

Connect state 
PUT

Authentication system to 
authenticate new services

Provides Bearer tokens for 
everyone.

The REST API service, uses 
mainly Protobuf payloads

Connect state APIs publish the 
state of the Connect cluster to 
the cloud



The Spotify infrastructure

DealerLogin5

Connect state 
events

Spotify-Conn
ection-Id

Connect state 
PUT

WebSocket + JSON

The WebSocket API service, uses Protobuf 
wrapped in JSON messages

Events about the Connect 
cluster and commands from 
other clients are received here

A special token is used to 
synchronize the Dealer connection 
with the Spclient requests



The technical challenges

● Intercepting HTTPS traffic ⬅

● Recovering C++ Protobuf classes in Ghidra

● Logging Shannon encrypted traffic 



We can do the following:

● Install and start       mitmproxy/mitmproxy
● Install the CA certificate for the system and for Chrome
● Specify the proxy URL in the Spotify Desktop client
● Voilà

Nowadays Spotify uses mainly HTTPS APIs, the traffic is encrypted and cannot be 
passively intercepted: we need a MITM approach. Luckily, Spotify doesn’t employ 
any sort of certificate pinning.

Intercepting HTTPS traffic



Intercepting HTTPS traffic

Retrieves list of 
endpoints

Login5 authentication

AP endpoint

Connect state PUT

Dealer endpoint



The technical challenges

● Intercepting HTTPS traffic ✅

● Recovering C++ Protobuf classes in Ghidra ⬅

● Logging Shannon encrypted traffic 



What is Protobuf

Protocol Buffers are language-neutral, platform-neutral extensible mechanisms for 
serializing structured data.

Think XML or JSON, but smaller.

Spotify has been using it for a while, at least since librespot was born.



The Protobuf wire format is binary. Serialized messages just use the field’s 
number as the key. The name for each field can only be determined by referencing 
the message type definition.

How Protobuf works



Using a tool like xx marin-m/pbtk against the Spotify desktop client binary 
extracts ~900 files and ~2400 messages.

Some of them also expose new features that haven’t been released yet 👀.

Recovering Protobuf definitions

We can recover some Protobuf definitions by looking for the type’s definition. What 
we are looking for is FileDescriptorProto, a special message that describes 
a .proto file.

When compiling Protobuf for C++, this message is embedded in the binary in its 
serialized form.



Recovering Protobuf definitions

google/protobuf/any.proto

Decoded 
FileDescriptorProto 

for 
google.protobuf.Any



What is Ghidra

Ghidra is a software reverse engineering framework created and maintained by the 
NSA Research Directorate. [...] Capabilities include disassembly, assembly, 
decompilation, graphing, and scripting, along with hundreds of other features.

Decompiling the entire Spotify 
binary produces roughly 6 million 
lines lines of C/C++ code. No 
meaningful function or variables 
names.

Where and how do we find the 
interesting stuff? 



Recovering C++ Protobuf symbols in Ghidra

There are multiple ways to find interesting code paths in big binaries: from looking 
up interesting strings to in-depth code flow analysis. The approach that worked 
well for me was to identify the usage of C++ Protobuf classes in the decompiled 
code. 

Each Protobuf message generates a C++ class which extends the virtual class  
google::protobuf::Message. This is good because virtual classes have 
virtual tables which are hardcoded in the binary and referenced in class 
constructors and destructors.

But how do we find VTABLEs, constructors and destructors and the Protobuf 
message they represent?



Recovering C++ Protobuf symbols in Ghidra

Serialized 
FileDescriptorProto 
as generated C++ code for 
google.protobuf.Any

Our objective is to recover symbols related to Protobuf messages completely 
deterministically and, possibly, automatically.  

We’ll look at some generated C++ code for the google.protobuf.Any 
message.



Recovering C++ Protobuf symbols in Ghidra

Generated internal C++ 
descriptor table for 

google.protobuf.Any

From previous slide



Recovering C++ Protobuf symbols in Ghidra

Generated C++ for 
google.protobuf.Any

From previous slide

Generated C++ for 
google.protobuf.Any



Recovering C++ Protobuf symbols in Ghidra

From previous slide Generated C++ for 
google.protobuf.Any

Luckily this method is virtual on google::protobuf::internal::Message, so it’ll 
end up in the VTABLE:



All the code for the Ghidra script is available at       devgianlu/GhidraProtobufCpp. 
This code is quite old, but still works fairly well against Spotify. 

It will not work with newer versions of the Protobuf generator as the generated 
C++ code has changed substantially.

Recovering C++ Protobuf symbols in Ghidra

We have identified a path to go from the FileDescriptorProto to the VTABLE 
of each Protobuf message class. However, there are ~2400 Protobuf messages in 
the Spotify binary.

Can we automate this? Yes.



Recovering C++ Protobuf symbols in Ghidra



The technical challenges

● Intercepting HTTPS traffic ✅

● Recovering C++ Protobuf classes in Ghidra ✅

● Logging Shannon encrypted traffic ⬅



Using GDB without debug symbols is a 
completely different experience, we can 
use tools like      pwndbg/pwndbg to 
facilitate reverse engineering.

We’ll use the GNU Debugger to go deeper than what we could with static analysis. 
This way we can make or confirm assumptions derived from analysing the 
decompiled code by checking what data is actually being processed by the code.

What is GDB



What is Frida

It’s a dynamic code instrumentation toolkit: it lets you inject snippets of 
JavaScript into native apps on Windows, macOS, GNU/Linux, iOS, watchOS, tvOS, 
Android, FreeBSD, and QNX.

Typically, you’ll use GDB to manually inspect the program and look around 
interactively while the program is running. Then, with Frida you can write some 
JavaScript code that does those things automatically for you. 

We’ll have a look at the Ghidra -> GDB -> Frida workflow to intercept Shannon 
traffic before it’s encrypted and sent and after it’s been received and decrypted.



What is the Shannon cipher

It is part of the SOBER family of stream ciphers initially designed by QUALCOMM 
Australia starting in 1997. The reference implementation is still available on 
QUALCOMM website through Wayback Machine.

The cipher performs encryption and message authentication simultaneously. 

void shn_key(shn_ctx *c, const uint8_t key[], int keylen); /* set key */
void shn_nonce(shn_ctx *c, const uint8_t nonce[], int nlen); /* set Init Vector */
void shn_encrypt(shn_ctx *c, uint8_t *buf, int nbytes); /* encrypt + MAC */
void shn_decrypt(shn_ctx *c, uint8_t *buf, int nbytes); /* decrypt + MAC */
void shn_finish(shn_ctx *c, uint8_t *buf, int nbytes); /* finalise MAC */

The reference implementation is quite simple to use and has just a few methods:

https://web.archive.org/web/20081010141647/http://www.qualcomm.com.au/Shannon.html


Finding Shannon code in Ghidra

We can search for the special constant 0x6996c53a used by the Shannon cipher 
and perform some additional static analysis to figure out where those functions 
reside in the binary.

Now we just need to verify that we found them in GDB.



Verifying with GDB

Let’s verify our assumptions with some dynamic analysis.

We’ll attach GDB to Spotify, set a breakpoint at the address of the shn_encrypt 
function and check its arguments.

          void shn_encrypt(shn_ctx *c, uint8_t *buf, int nbytes);



Setting up Frida

My setup uses a VM to run the Spotify binary, but that is no problem for Frida 
which can run a server that exposes a TCP port and is able to spawn executables 
while instrumenting them.

For example, we can launch the 
Spotify binary and get its base 
address from the REPL.

This is not really practical, we 
can do better.



The Frida script

We can use the Interceptor 
module to hook into the 
shn_encrypt and shn_decrypt 
functions and read the program 
registers and memory.

For decryption we are interested in 
the state at the end of the function, 
after decryption has been 
performed, thus we save the 
registers and use onLeave.



The Frida script

-> Login

<- APWelcome

<- CountryCode

<- ProductInfo

-> MercuryReq

<- MercuryEvent

<- MercuryReq



The technical challenges

● Intercepting HTTPS traffic ✅

● Recovering C++ Protobuf classes in Ghidra ✅

● Logging Shannon encrypted traffic ✅



The legal challenges

The projects are constantly at risk of getting deleted if we do something that 
makes Spotify angry. They could find a way to wipe everything because they have 
the legal strength and we don’t. 

For this reason, some features will never be available publicly across any of 
librespot projects:

● Listen reporting
● Lossless playback
● Ads playback (free accounts)



Listen reporting

Tracks played by any of the librespot projects are not accounted for and do not 
appear in the listening history. This is bad because artists will not be credited for 
listening to their tracks.

Spotify has a different set of APIs for reporting whether a track has been played 
and for how long; updating the Connect state or fetching the tracks does nothing.

Doing any work towards the reverse-engineering and implementation of listen 
reporting would make the project at risk because of the implications of having 
such code available publicly. For example, people trying to create listen bots to 
boost artists for money.



Spotify recently launched lossless playback giving users access to FLAC files, 
finally joining the game of HiFi streaming providers.

This is an heavily requested feature, especially in the DIY field, by those that are 
focused on building hardware to get the best audio quality, or by those that want 
to get the most out of their already quite expensive subscription.

Lossless playback

* More on that later

However, Spotify doesn’t want us to mess with it* as it’s protected by their new 
DRM, that we’ll call StopStop.

For context, other HiFi streaming providers don’t use DRMs for their audio files.



As mentioned in the beginning, the audio files are encrypted with AES-CTR where 
the key is provided by some backend service. Originally, the decryption key was 
served as-is and without much constraints. 

The StopStop DRM

The StopStop DRM adds a new endpoint serving an obfuscated decryption key. 
The de-obfuscation code contains some constants and procedures that they can 
claim for intellectual property infringement.

More recently they have started cracking down on the usage of this old API to 
prevent misuses. In doing so they started killing some of their own partner 
products.



All the librespot projects do not support free accounts. This choice makes us 
more free in the decisions that we make and less worried about Spotify:

● Relieves the pressure from Spotify since we are not stealing any revenue
● Doesn’t force us to reverse engineer code that Spotify tries to hide, wasting 

time that could be spent on new features
● We don’t need to implement additional and frequently changing logic for ads 

playback
● Keeps away contribution and interest from modders that will most likely bring 

problems

Ads playback



How I got temporarily banned from Spotify

● 29th October: Discord server is created to work on StopStop
● 3rd November: First working implementation of StopStop 
● 4th November: I add FLAC and StopStop support to go-librespot, no 

public de-obfuscation code. I start using it privately to stream FLAC 
files

● 5th November: Spotify sends an an email to the maintainers of the 
librespot projects intimating to stop working on StopStop

● 15th November: My account gets banned, I appeal to my suspension
● 17th November: I get my account back, have not used StopStop since



How you can help

There are multiple things you can do to support the projects:

● Give them a try, use them, let Spotify know
● Contribute with bug reports and feature requests
● Write some code for a bug or a new feature

If you work at Spotify:

● Get in touch
● Don’t ban me again



Thank you!
Questions?

@devgianlu - FOSDEM 2026


	Reverse Engineering the World's Largest Music Streaming Platform
	Reverse Engineering the World's Largest Music Streaming Platform
	Reverse Engineering the World's Largest Music Streaming Platform
	Reverse Engineering the World's Largest Music Streaming Platform

