Reverse Engineering the
World's Largest Music

Streaming Platform
@devgianlu - FOSDEM 2026

O

Who am I?

Backend Software Developer
Open Source enthusiast and contributor
Software Security and Reverse Engineering enthusiast

Hobbyist loT researcher
o CVE-2023-3741 and CVE-2024-3016
o More fun with other stuff
CTF player
o Former Teamltaly member
o ECSC 2024 organizer @ CybersecNatLab
o ICC 2023 provider @ CybersecNatLab
o DEFCON finalist w/ mhackeroni

mHACKeroni

The mandatory disclaimer 1\

This talk expresses my opinion, not the one of my current, previous or future
employer, not of my friends, colleagues or people | met online.

All the knowledge presented in this talk was acquired by me personally, work done
by others has been intentionally left out.

All the work done here aims to enhance Spotify, not undermine it.

Please don't use this work to do piracy, | don't have anything to do with Anna's
Archive dump and won't ever participate in this kind of activities.

To Spotify, please don't ban me again and please don't sue me, let's have a chat
first. This talk was scheduled way before the recent events.

What is librespot?

librespot is a client library for Spotify, capable of playback via various backends.

The project is:

e An headless player

e Animplementation based on
reverse-engineering

e A fully* capable Spotify Connect
endpoint

e An alternative to old-time
deprecated libspotify

* More on that later

The project is not:

A bulk downloader

A way to skip or bypass ads

A wrapper around Spotify’s public
APIs

A control library

An alternative GUI, TUI or CLI

Why librespot?

e Turn any device into a Spotify Connect device

e Headless operation, no desktop environment required

e Lightweight and low resource usage

e Open-source transparency and control, know what you are running
e Customization of audio pipelines or multi-room setups

e Home automation and integration

e DIY audio and Hi-Fi setups

The librespot family

Project Activity Timeline

© High activity weeks (top 10%)
librespot-python -

go-librespot M e

librespot-golang -

librespot {J 0 e «eo oo

2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026

The Spotify infrastructure

ApResol Infrastructure used by
presove Spotify clients after 2019
AP
WebSocket + JSON
Stored . .
credentials Logins Spclient Dealer
Audio AES
key REST APls Cong\?:r':tztate
REST +
Shannon + Protobuf '
Mercury Connect state Spotify-Conn
PUT ection-1Id

The Spotify infrastructure

Retrieves list of

endpoints for other

services

A set of credentials that

stored locally

never expires, should be \

The AES encryption
key for decrypting
audio files

/

ApResolve

AP

Stored
credentials

Login5

]

Audio AES
key

Shannon +
Mercury

The Accesspoint (AP) service

A custom protocol over TCP
that uses a Diffie-Hellman key
exchange and Shannon
(SOBER) encryption to
transport simple data packets.

It was heavily used up until
2019, now it used lightly.

Stored credentials are used to
authenticate the newer Login5
authentication system

The Spotify infrastructure

Authentication system to
authenticate new services

Provides Bearer tokens for

everyone.

The REST API service, uses
mainly Protobuf payloads

~— |

LoginS Spclient
REST APls
REST +
Protobuf :

Connect state
PUT

Connect state APIs publish the
state of the Connect cluster to
the cloud

The Spotify infrastructure

The WebSocket API service, uses Protobuf
wrapped in JSON messages

WebSocket + JSON

Login5 { Dealer - Events about the Connect

cluster and commands from

other clients are received here

Connect state
events

A special token is used to

Connect state | Spotify-Conn J synchronize the Dealer connection

PUT ection-Id with the Spclient requests

The technical challenges

e Intercepting HTTPS traffic &

Intercepting HTTPS traffic

Nowadays Spotify uses mainly HTTPS APIs, the traffic is encrypted and cannot be
passively intercepted: we need a MITM approach. Luckily, Spotify doesn't employ

any sort of certificate pinning.

We can do the following:

Install and start) mitmproxy/mitmproxy
Install the CA certificate for the system and for Chrome

Specify the proxy URL in the Spotify Desktop client
Voila

Intercepting HTTPS traffic

Capture Flow List Options

M Resume All

Method Status Size

Path Time |
—| https://apresolve.spotify.com/?time=1765990766&type=accesspoint GET 93
j https://apresolve.spotify.com/?time=1765990766&type=accesspoint&type=spclient&type=dealer 200 152b 75m
—| https://login5.spotify.com/v3/login <g—— POST 200 829b 102ms
g’ 127.0.0.1:47688 ~ ap-gew4.spotify.com:443 <€— TCP 8.0kb

7 https://gew4-spclient.spotify.com/connect-state/v1/devices/c959cf6f2d6f03b3fa75226cc6f4ebsF51ba3e23 PUT 200 6.9kb 123ms
A’ https://apresolve.spotify.com/?type=dealer&type=spclient GET 200 111b 43ms
1008b 8min

‘iﬂ https://gew4-dealer.spotify.com/?access_token=BQBxc-FJ-He_TQtzFBCSEjFDc-nY72DWE_cqXH5_PgRfxG1s... WSS 101

Retrieves list of
endpoints

Login5 authentication

AP endpoint

Connect state PUT

Dealer endpoint

_/

The technical challenges

e Intercepting HTTPS traffic

e Recovering C++ Protobuf classes in Ghidra

What is Protobuf (prgotw(;)uﬂguf\

message Person { // Java code // C++ code

optional string name = 1; Person john = Person.newBuilder() Person john;

optional int32 id = 2; .setld(1234) fstream input(argv[1],

optional string email = 3; .setName("John Doe™) ios::in | ios::binary);
} .setEmail (" jdoe@example.com™) john.ParseFromIstream(&input);

.build(); id = john.id();
A proto definition. output = new FileQutputStream(args[@]); name = john.name();
john.writeTo(output); email = john.email();
Using a generated class to persist data. Using a generated class to parse persisted data.

Protocol Buffers are language-neutral, platform-neutral extensible mechanisms for
serializing structured data.

Think XML or JSON, but smaller.

Spotify has been using it for a while, at least since librespot was born.

How Protobuf works

otobuf ' §

(Protocol Buffers

The Protobuf wire format is binary. Serialized messages just use the field's
number as the key. The name for each field can only be determined by referencing

the message type definition.

fieldtag =1 type 2 (string)
00001010

fieldtag =2 type O (varint)
00010000

message User {
string name = 1;

field tag = 3 type 2 (string)
repeated string hobbies = 3; 20011010

}

int32 favorite_number = 2;

field tag = 3 type 2 (string)
00011010

lenghe M a r t 1 n

@a 06 4d 61 72 74 69 Ge

10 b9 Qa 1le111001 [0locoo1010

length11 d a y d r e

la @b 64 61 79 64 72 65 61 6d 69 6e 67

length 7 h a ¢ k 1 n

la 07 68 61 63 6b 69 6e 67

1337
0001010011

am i n g

g

total: 33 bytes

1001

Recovering Protobuf definitions (prgigguf\

We can recover some Protobuf definitions by looking for the type’'s definition. What
we are looking for is FileDescriptorProto, a special message that describes
a .protofile.

When compiling Protobuf for C++, this message is embedded in the binary in its
serialized form.

Using a tool like) marin-m/pbtk against the Spotify desktop client binary
extracts ~900 files and ~2400 messages.

Some of them also expose new features that haven't been released yet ¢%).

Recovering Protobuf definitions

message FileDescriptorProto {

optional string name = 1;
optional string package = 2;
repeated string dependency = 3;

repeated DescriptorProto message_type = 4;

optional FileOptions options = 8;

optional string syntax = 12;

google/protobuf/any.proto

protobuf ' §

"syntax": "proto3",

"name": "google/protobuf/any.proto",
"package": "google.protobuf",
"dependency": [],

package google.protobuf;

option
option
option
option
option
option

go_package = "google.golang.org/protobuf/types/known/anypb";

java_package = "com.google.protobuf";
java_outer_classname = "AnyProto";
java_multiple_files = true;

objc_class_prefix = "GPB";

csharp_namespace = "Google.Protobuf.WellKnownTypes";

"messageType": [{
"name": "Any",
"field": [{
"name": "type_url",
"number": 1,
"label": "LABEL_OPTIONAL",

"type": "TYPE_STRING"
L |
"name": "value",

"number": 2,
"label": "LABEL_OPTIONAL",
"type": "TYPE_BYTES"

Protocol Buffers

Decoded

FileDescriptorProto

for

google.protobuf.Any

message Any {
string type_url = 1;
bytes value = 2;

}H
FE;
"options": {
"javaPackage": "com.google.protobuf",
"javaOuterClassname": "AnyProto",

"javaMultipleFiles": true,

"goPackage": "google.golang.org/protobuf/types/known/anypb",

"objcClassPrefix": "GPB",

"csharpNamespace": "Google.Protobuf.WellKnownTypes"

What is Ghidra

Ghidra is a software reverse engineering framework created and maintained by the
NSA Research Directorate. [..] Capabilities include disassembly, assembly,
decompilation, graphing, and scripting, along with hundreds of other features.

Decompiling the entire Spotify
binary produces roughly 6 million
lines lines of C/C++ code. No
meaningful function or variables
names.

Where and how do we find the
interesting stuff?

Recovering C++ Protobuf symbols in Ghidra

There are multiple ways to find interesting code paths in big binaries: from looking
up interesting strings to in-depth code flow analysis. The approach that worked
well for me was to identify the usage of C++ Protobuf classes in the decompiled
code.

Each Protobuf message generates a C++ class which extends the virtual class
google: :protobuf::Message. This is good because virtual classes have
virtual tables which are hardcoded in the binary and referenced in class
constructors and destructors.

But how do we find VTABLESs, constructors and destructors and the Protobuf
message they represent?

Recovering C++ Protobuf symbols in Ghidra

Our objective is to recover symbols related to Protobuf messages completely
deterministically and, possibly, automatically.

We'll look at some generated C++ code for the google.protobuf.Any
message.

const char descriptor_table_protodef_google_2fprotobuf_2fany_2eproto[] ABSL_ATTRIBUTE_SECTION_VARIABLE(

protodesc_cold) = {
"\n\831g00gle/protobuf/any.proto\822\817g00gle.prot"
"obuf\"&\n\003Any\022\020\n\010type_ur1\030\001 \001(\t\022\r\n\0O5Vvalue\030\002"
" \001(\014Bv\n\B23com.google.protobufB\010AnyProtoP\001Z"

" google.golang.org/protobuf/types/known/"
"anypb\242\002\0036PB\252\002\036600g1le.Protobuf.WellKnownT"
"ypesb\BB4proto3"

Serialized
FileDescriptorProto
as generated C++ code for

}: google.protobuf.Any

Recovering C++ Protobuf symbols in Ghidra

const ::_pbi::DescriptorTable descriptor_table_google_2fprotobuf_2fany_2eproto = {
Jds_initialized: false,
Is_eager: false, From previous slide

Ssize: 212, k_J
(descriptor: descriptor_table_protodef_google_2fprotobuf_2fany_2eproto,

filename: "google/protobuf/any.proto”,

once: &descriptor_table_google_2fprotobuf_2fany_2eproto_once,

deps: nullptr,

.num_deps: 0,

.num_messages: 1, Generated internal C++
SafiaRa descriptor table for
google.protobuf.Any

defaultinstances: file_default_instances,

.offsets: TableStruct_google_2fprotobuf_2fany_2eproto::offsets,
file_level_metadata: file_level_metadata_google_2fprotobuf_2fany_2eproto,
file_level_enum_descriptors: file_level_enum_descriptors_google_2fprotobuf_2fany_2eproto,
file_level_service_descriptors: file_level_service_descriptors_google_2fprotobuf_2fany_2eproto,

Recovering C++ Protobuf symbols in Ghidra

This function exists to be marked as eak
nits see a Generated C++ for
builds. Without google.protobuf.Any

] all the
thro 7h
the

hark intn +he decerintor 1
i1nto The daescriptoi taot

PROTOBUF_ATTRIBUTE_WEAK const ::_pbi::DescriptorTable* descriptor_table_google_2fprotobuf_2fany_2eproto_getter() {

return &descriptor_table_google_2fprotobuf_2fany_2eproto;

naiviguatl vtaoles pack

From previous slide

Recovering C++ Protobuf symbols in Ghidra

From previous slide

Generated C++ for
google.protobuf.Any
::google: :protobuf::Metadata Any::GetMetadata() const {

return ::_pbi::AssignDescriptors(table: &descriptor_table_google_2fprotobuf_2fany_2eproto_getter,
once: &descriptor_table_google_2fprotobuf_2fany_2eproto_once,
metadata: file_level_metadata_google_2fprotobuf_2fany_2eprotol[8]);

Luckily this method is virtual on google: :protobuf::internal: :Message, soit'll
end up in the VTABLE:

- ~ 5 BT S s i oo gl WU i = C s Mocconao wharh ‘e 11CD N . P
{ ruct containing the metadata for the Message, which 1is vused in turn

-~ -

- S Rl s e e b NaarnmenEzanl’) @ PR SRY_ TORDOC TN SIIOLY Ty St
/ To 1mplement Getlescriptor() and GetReflection() above.

virtual Metadata GetMetadata() const = 0;

Recovering C++ Protobuf symbols in Ghidra

We have identified a path to go from the FileDescriptorProto to the VTABLE
of each Protobuf message class. However, there are ~2400 Protobuf messages in
the Spotify binary.

Can we automate this? Yes.

All the code for the Ghidra script is available at () devgianlu/GhidraProtobufCpp.
This code is quite old, but still works fairly well against Spotify.

It will not work with newer versions of the Protobuf generator as the generated
C++ code has changed substantially.

Recovering C++ Protobuf symbols in Ghidra

L] RS

a3a Symbol Tree

E» Labels
[£3= VTABLE_
(5= VTABLE__spotify_
[E5= VTABLE_spotify_c
(5= VTABLE_spotify_co
[£5& VTABLE_spotify_con
® VTABLE_spotify_connectstate_PutStateRequest
@ VTABLE spotify_connectstate_PutStateRequestWrapper
[ZI3 Classes
B=rp
&= Pu
@ PutStateRequest
§f ~PutStateRequest
@ PutStateRequestWrapper
§ ~PutStateRequestWrapper
[£4) Namespaces
B=s
(&= spotify
{t spotify
{+ ads
{} connectstate
@ PutStateRequest
§f ~PutStateRequest
@ PutStateRequestWrapper
§f ~PutStateRequestWrapper

Filter: = PutStateRequest x &)

ProtoDescriptorTable_connect

02235268 00000000 Descripto...
c9 1b 00 00
00418400...

02a35268 00 bool FALSE

02a35269 00 bool FALSE

02a3526a 00 undefined1 00h

02a3526b 00 undefined1 00h

02a3526¢ ¢91b 0000 int 1BC%h

02a35270 004184000000 char* DAT_00844100
0000

02a35278 12950000000 char* s_connect.proto_005029f1
0000

02a35280 a4ff06 030000 wvoid* DAT_0306ffad
0000

02a35288 50ff9c 020000 Descripto... PTR_ProtoDescriptorTable_devices_...
0000

02235290 03000000 int 3h

02a35294 13000000 int 13h

02235298 d05c 84000000 void* DAT_00845cd0
0000

02a352a0 70ff9c 020000 wvoid** PTR_PTR_029cff70
0000

02a352a8 503b84000000 uint* DAT_00843b50
0000

02a352b0 50fe 06 030000 void* DAT_0306fe50
0000

02a352b8 80ff06 030000 wvoid** DAT_0306ff80
0000

02a352c0 000000000000 void** 00000000
0000

is_initialized
is_eager
field2_0x2
field3_0x3

size

descriptor
filename

once

deps

num_deps
num_messages
schemas
default_instances
offsets
file_level_metadata

file_level_enum_descriptors

file_level_service_descriptors

The technical challenges

e Intercepting HTTPS traffic
e Recovering C++ Protobuf classes in Ghidra

e Logging Shannon encrypted traffic

What is GDB

WEe'll use the GNU Debugger to go deeper than what we could with static analysis.
This way we can make or confirm assumptions derived from analysing the
decompiled code by checking what data is actually being processed by the code.

Using GDB without debug symbols is a
completely different experience, we can S ——
use tools like) pwndbg/pwndbg to SEP——
facilitate reverse engineering. '

emporary break i O
LEGEND: STACK | HEAP | CODE | DATA | WX | RODATA
[LAST SIGNAL }.

[REGISTERS / show-Flags off / sh t-regs off]

__do_global_dtors_aux) «=
sr/share/: /var/1ib/snapd/desktop

-» Bx555555555100 (__do_global_dtors_aux)
555555554000 <~ 0x10102464cASTf

late on

64 / set enul
RAX => Bx555555556004 «- 'Hello World!'
RDI => 8x555555556004 « 'Hello World!'
EAX => 8

o

» Ox55555:
BX555555555158 <
Bx55555555515b <nains18>
x555555555160 <nains23>

6555555555165

(gdb) start mass e
Temporary breakpoint 1 at ©x1151 onsssssssssi

Starting program: /home/devgianlu/Downloads/a.out Gussssssassire <
[Thread debugging using libthread_db enabled] “i:fitff
Using host libthread_db library "/lib/x86_64-1linux-gnu/libthread_db.so.1". oo W]

62:6018 4610 array_entr:
63:0018 4618 one/devgianlu/Downloads/a.out"
64:0020+620
65:0028(+628

Temporary breakpoint 1, ©x0000555555555151 in main () 06:0038 1630

67:0038|+038

95 <= ' /hone/devgianlu/Dounloads/a.out

[BACKTRACE

»© 0x555555555151 ma
1 ex7ffffrc2alca __libc_start
2 ex7ffff7c2a28b _Libc_start_main
3 Bx555555555085 _starts37

What is Frida

It's a dynamic code instrumentation toolkit: it lets you inject snippets of
JavaScript into native apps on Windows, macOS, GNU/Linux, iOS, watchQOS, tvOS,
Android, FreeBSD, and QNX.

Typically, you'll use GDB to manually inspect the program and look around
interactively while the program is running. Then, with Frida you can write some
JavaScript code that does those things automatically for you.

WEe'll have a look at the Ghidra -> GDB -> Frida workflow to intercept Shannon
traffic before it's encrypted and sent and after it's been received and decrypted.

What is the Shannon cipher

It is part of the SOBER family of stream ciphers initially designed by QUALCOMM
Australia starting in 1997. The reference implementation is still available on
QUALCOMM website through Wayback Machine.

The cipher performs encryption and message authentication simultaneously.

The reference implementation is quite simple to use and has just a few methods:

void shn_key(shn_ctx *c, const uint8_t key[], int keylen); /* set key */

void shn_nonce(shn_ctx *c, const uint8_t nonce[], int nlen); /* set Init Vector */
void shn_encrypt(shn_ctx *c, uint8_t *buf, int nbytes); /* encrypt + MAC */

void shn_decrypt(shn_ctx *c, uint8_t *buf, int nbytes); /* decrypt + MAC */

void shn_finish(shn_ctx *c, uint8_t *buf, int nbytes); /* finalise MAC */

https://web.archive.org/web/20081010141647/http://www.qualcomm.com.au/Shannon.html

Finding Shannon code in Ghidra

We can search for the special constant 8x6996c53a used by the Shannon cipher
and perform some additional static analysis to figure out where those functions

reside in the binary.

Search Memory: "6996c53a" (tmp) - (3 entries) B ‘ f b2 EE = Eﬂ X l

|
v | | NewsSearch |+

Hex v | 6996c53a
Byte Sequence: |3ac59669 Selection Only
Locati..B Match Bytes ~ Match Value Code Unit Function Name
0284df55 3ac596 69 MOV dword ptr [RDI + 0xc0],0x6996c53a FUN_0284df20
0284e2a5 3a c596 69 MOV dword ptr [RDI + 0xc0],0x6996c53a FUN_0284e270
0284fd28 3ac596 69 XOR EAX,0x6996¢53a FUN_0284fbd0
Filter: 8=

Now we just need to verify that we found them in GDB.

Verifying with GDB

Let's verify our assumptions with some dynamic analysis.

We'll attach GDB to Spotify, set a breakpoint at the address of the shn_encrypt
function and check its arguments.

void shn_encrypt(shn_ctx *c, uint8_t *buf, int nbytes);

Thread 60 "Network Thread" hit Breakpoint 2, ©x8000555557ca22d@ in ?? ()
pwndbg> p/x S$rsi

S$1 = ex7fff40009710 4

pwndbg> vmmap 0x7fff40009710

LEGEND: STACK | HEAP | CODE | DATA | WX | RODATA

Start End Perm Size Offset File (set vmmap-prefer-relpaths on)
Ox7fff3c021000 0x7fff40000000 ---p 3fdfoee 0 [anon_7fff3c021]
> Ox7fff40000000 0x7fff40021000 rw-p 21000 ® [anon_7fff40000] +0x9710
Ox7fff40021000 0x7fff44000000 ---p 3fdfeee 0 [anon_7fff40021]
pwndbg> p Sedx
52 = 398 <+

pwndbg> p/x (char[398])*0x7fff40009710

$3 = {@xab, Ox1, 0x8b, 0x52, O6xcO, Ox1, 0x52, Oxb, 0x31, 0x31, 0x31, O0x34, O0x35, 0x30, Ox38, O6x39, 0x30, 0x31, 0x39, 0xad, 0x1, 0x1, Oxf2, Ox1, Oxac, Ox1, 0x41, 0x67, 0x42, Ox6f,
0x35, 0x36, 0x78, 0x54, O0x57, Ox69, Ox6c, Ox6b, Ox75, Ox6b, Ox64, Ox6a, O0x4d, Ox67, O0x36, Ox4b, Ox7a, ©0x38, Ox4b, Ox48, O0x79, 0x47, Ox56, O0x44, 0x49, 0x72, Ox73, Ox78, 0x43, 0x45,
0x2d, 0x31, 0x57, O0x4b, 0x49, 0x46, 0x61, 0x47, Ox78, Ox68, Ox5a, Ox6b, 0x48, Ox41, 0x43, 0x6b, 0x58, Ox51, 0x32, Ox56, O0x37, Ox73, Ox71, 0x52, 0x70, Ox5a, 0x30, 0x36, Ox77, Ox5f,
0x70, Ox6a, Ox68, Ox61, Ox78, Ox74, 0x64, Ox75, Ox4a, Ox6e, O0x63, 0x43, Ox7a, Ox6f, Ox72, Ox77, Ox69, 0x70, 0x73, O0x32, Ox66, Ox6b, 0x45, Ox6a, O0x54, 0x30, Ox47, 0x36, Ox4c, 0x48,
Ox6d, Ox6f, Ox63, Ox41, Ox34, 0x49, Ox57, Ox30, O0x2d, Ox5a, Ox4c, 0x37, Ox76, Ox68, Oxd4c, Ox73, Ox56, Ox77, Ox30, Ox6d, Ox6a, Ox46, Ox59, 0x49, Ox67, Ox58, Ox75, Ox69, Ox30, O0x72,
0x66, Ox78, Ox62, 0x59, Ox6a, Ox58, Ox39, Ox65, 0x36, Ox7a, Ox33, Ox58, Ox7a, 0x73, Ox55, Ox7a, Ox6a, 0x37, 0x63, Ox54, Ox76, Ox63, 0x58, Ox4a, Ox6e, Ox62, 0x2d, Ox6c, Ox69, Ox6b,
0x44, 0x7a, 0x69, 0x33, Ox66, 0x66, 0x38, 0x77, Ox74, 0x48, 0x74, O0x7a, Ox75, 0x42, O0x45, O0x4b, 0x4c, 0x47, Ox5a, 0x0...}

Setting up Frida

My setup uses a VM to run the Spotify binary, but that is no problem for Frida
which can run a server that exposes a TCP port and is able to spawn executables

while instrumenting them.

For example, we can launch the
Spotify binary and get its base
address from the REPL.

This is not really practical, we
can do better.

@home-fedora ~> frida -H 192.168.100.140 --kill-on-exit /usr/bin/spotify

FAN | Frida 16.5.9 - A world-class dynamic instrumentation toolkit
Il

> | Commands:
7 25 A I | help -> Displays the help system
object? -> Display information about 'object’

exit/quit -> Exit
More info at https://frida.re/docs/home/

i Connected to 192.168.100.140 (id=socket@192.168.100.140)
Spawned " /usr/bin/spotify’. Resuming main thread!
[Remote: :spotify]-> Module.getBaseAddress("spotify")
"ex5ff5fc676000"
[Remote::spotify]-> I

The Frida script

const baseAddr :NativePointer = Module.getBaseAddress(name: "spotify")

console.log(base addr = ${baseAddr}’)

Interceptor.attach(baseAddr.add(0x274e2d0),
const ctx = this.context

= ctx.rdx.toUInt32()
const data :Uint8Array<ArrayBuffer>

callbacksOrProbe: function () :void

const 1len :number
= readUint8Array(ctx.rsi, len)

console.log(shn_encrypt(${ellipse(u8hex(data))}, ${1en}));
b

{

Interceptor.attach(baseAddr.add(0x0274ef70),
onEnter: function () :void {

callbacksOrProbe: {

this.originalRsi = this.context.rsi
this.originalRdx = this.context.rdx
o
onLeave: function () :void {
= this.originalRdx.toUInt32()
const data :Uint8Array<ArrayBuffer>

const len :number
= readUint8Array(this.originalRsi, len)
if (len > 0) console.log(shn_decrypt(${ellipse(u8hex(data))}, ${1en})’);
}
b

We can use the Interceptor
module to hook into the
shn_encrypt and shn_decrypt
functions and read the program
registers and memory.

For decryption we are interested in
the state at the end of the function,
after decryption has been
performed, thus we save the
registers and use onLeave.

The Frida script

Spawning " /usx/bin/spotify’...
base addr = @x5f6fob873000
Spawned " /usr/bin/spotify’. Resuming main thread!

[Remote: :spotify 1-> [shn_encrypt(ab@18b52c001520b3131313435303839303139a001017201ac014167426¥3536..., 398)| —~ Login
shn_decrypt(aceef3, 3)

shn_decrypt(520b3131313435303839303139a00101c80100T00101c202ac01416742613536..., 243) <- APWe 1C0me
shn_encrypt(0f0014 » 23)

shn_decrypt (040004, 3)

shn_decrypt (69692699, 4)

shn_decrypt (020150, 3)

shn_decrypt(696926996969971900cadf@4abd2d928 000000 00000000000..., 336)
shn_decrypt (760002, 3)

shn_decrypt (0000, 2)

shn_decrypt(1beee2, 3)| <- CountryCode
shn_decrypt (4954, 2)

shn_decrypt(5012a9, 3)

shn_decrypt(3c3f786d6c2076657273696T6e3d27312e302720656e636T64696e673d277574..., 4777) <= P rOdUCtInfO
shn_decrypt(1feell, 3)

shn_decrypt(0000 2000, 17)

shn_decrypt (690000, 3)

<hn_encrypt (D200e90008000000000000000101000200570a1c686d3a2F276576656e742d73. .., 236) | —> MercuryReq
shn_decrypt(b501c7, 3)

shn_decrypt (000803df4e000000000001000101b802d901686d3a22f7075736865722f7631. .., 455) | <- MercuryEvent
shn_decrypt(100014, 3)

shn_decrypt (00000000c81d59e8284303caeacadf8491a6faba, 20)

shn_decrypt(b20030, 3)

shn_decrypt (0008 101000100210a1c686d3a2f2f6576656e742d73657276..., 48) <= Me rcu ryReq

[Remote: :spotify]-> I

The technical challenges

e Intercepting HTTPS traffic
e Recovering C++ Protobuf classes in Ghidra

e Logging Shannon encrypted traffic

The legal challenges

The projects are constantly at risk of getting deleted if we do something that

makes Spotify angry. They could find a way to wipe everything because they have
the legal strength and we don't.

For this reason, some features will never be available publicly across any of
librespot projects:

e Listen reporting
e Lossless playback
e Ads playback (free accounts)

Listen reporting

Tracks played by any of the librespot projects are not accounted for and do not
appear in the listening history. This is bad because artists will not be credited for
listening to their tracks.

Spotify has a different set of APIs for reporting whether a track has been played
and for how long; updating the Connect state or fetching the tracks does nothing.

Doing any work towards the reverse-engineering and implementation of listen
reporting would make the project at risk because of the implications of having

such code available publicly. For example, people trying to create listen bots to
boost artists for money.

Lossless playback
Spotify recently launched lossless playback giving users access to FLAC files,
finally joining the game of HiFi streaming providers.

This is an heavily requested feature, especially in the DIY field, by those that are
focused on building hardware to get the best audio quality, or by those that want
to get the most out of their already quite expensive subscription.

However, Spotify doesn't want us to mess with it* as it's protected by their new
DRM, that we'll call StopStop.

For context, other HiFi streaming providers don't use DRMs for their audio files.

* More on that later

The StopStop DRM

As mentioned in the beginning, the audio files are encrypted with AES-CTR where
the key is provided by some backend service. Originally, the decryption key was
served as-is and without much constraints.

More recently they have started cracking down on the usage of this old API to
prevent misuses. In doing so they started killing some of their own partner
products.

The StopStop DRM adds a new endpoint serving an obfuscated decryption key.
The de-obfuscation code contains some constants and procedures that they can
claim for intellectual property infringement.

Ads playback

All the librespot projects do not support free accounts. This choice makes us
more free in the decisions that we make and less worried about Spotify:

e Relieves the pressure from Spotify since we are not stealing any revenue

e Doesn't force us to reverse engineer code that Spotify tries to hide, wasting
time that could be spent on new features

e We don't need to implement additional and frequently changing logic for ads
playback

e Keeps away contribution and interest from modders that will most likely bring
problems

How | got temporarily banned from Spotify

e 29th October: Discord server is created to work on StopStop

e 3rd November: First working implementation of StopStop

e 4th November: | add FLAC and StopStop support to go-librespot, no
public de-obfuscation code. | start using it privately to stream FLAC
files

e 5th November: Spotify sends an an email to the maintainers of the
librespot projects intimating to stop working on StopStop

e 15th November: My account gets banned, | appeal to my suspension

e 17th November: | get my account back, have not used StopStop since

How you can help

There are multiple things you can do to support the projects:

e Give them a try, use them, let Spotify know
e Contribute with bug reports and feature requests
e Write some code for a bug or a new feature

If you work at Spotify:

e Getintouch
e Don't ban me again

Thank you!

Questions?
@devgianlu - FOSDEM 2026

O

	Reverse Engineering the World's Largest Music Streaming Platform
	Reverse Engineering the World's Largest Music Streaming Platform
	Reverse Engineering the World's Largest Music Streaming Platform
	Reverse Engineering the World's Largest Music Streaming Platform

