String kfuncs

Simplifying string handling in eBPF programs

Viktor Malik
Principal Software Engineer @ Red Hat

January 31, 2026




Motivation: Why string handling?

® Many hooks (functions, LSMs, skb data) allow to access strings from eBPF programs
® Examples where string handling is useful:

® Matching filesystem paths (e.g., is the file inside /home /SUSER/ .. .?)

® Matching process names (e.g., does comm contain sy stemd?)

® Searching environment variables

® Parsing protocol (e.g. HTTP) headers

& RedHat



Motivation: String processing, the old way

® Copy string from kernel memory usingbpf_probe_read_str ()
® Manually implement all string operations

& RedHat



3/13

Motivation: String processing, the old way

® Copy string from kernel memory usingbpf_probe_read_str ()
Manually implement all string operations
Example:

SEC ("1lsm/bprm_check_security")

int BPF_PROG (path_check, struct linux_binprm *bprm) {
char path[32];
int path_len, last_slash = -1;

path_len = bpf_probe_read_str (path, sizeof (path), bprm->filename);
if (path_len < 0 path_len >= 32) return 0;
for (int i = 0; 1 < path_len; i++) {
if (path[i] == '/")
last_slash = i;

} & RedHat
(..



3/13

Motivation: String processing, the old way

® Copy string from kernel memory usingbpf_probe_read_str ()
Manually implement all string operations
Example:

SEC ("1lsm/bprm_check_security")

int BPF_PROG (path_check, struct linux_binprm *bprm) {
char path[32];
int path_len, last_slash = -1;

path_len = bpf_probe_read_str(path, sizeof (path), bprm->filename);
if (path_len < 0 path_len >= 32) return 0;

for (int i = 0; 1 < path_len; i++) {
if (path[i] == '/")
last_slash = i;

} & RedHat
(..



3/13

Motivation: String processing, the old way

® Copy string from kernel memory usingbpf_probe_read_str ()
Manually implement all string operations
Example:

SEC ("1lsm/bprm_check_security")

int BPF_PROG (path_check, struct linux_binprm *bprm) {
char path[32];
int path_len, last_slash = -1;

path_len = bpf_probe_read_str (path, sizeof (path), bprm->filename);
if (path_len < 0 path_len >= 32) return 0;

for (int i = 0; i < path_len; i++) {
if (path[i] == '/")
last_slash = i;

} & RedHat
(..



String kfuncs

® BPF Kernel Functions (kfuncs) are the modern way of exposing kernel functionality to eBPF
programs

® String kfuncs provide implementations of the most common string operations

4 /13

& RedHat



String kfuncs

® BPF Kernel Functions (kfuncs) are the modern way of exposing kernel functionality to eBPF
programs

® String kfuncs provide implementations of the most common string operations

® Main advantages:

® No need to reimplement the functions manually
® No need to copy the strings onto the stack (which is limited) or to maps (which bring overhead)
® Small performance benefit

4/13

& RedHat



Naive solution

{

® Firstidea: just call in-kernel implementations:

bpf_kfunc int bpf_ strlen(const char *s)

return strlen(s);

size_t strlen(const char *s)

{

const char *sc;

for (sc = s; *sc != '\0'; ++sc)
/* nothing */;
return sc - s;

& RedHat



Naive solution

® Firstidea: just call in-kernel implementations:

__bpf_kfunc int bpf_strlen (const char *s) size_t strlen(const char *s)
{ {
return strlen(s); const char *sc;
} for (sc = s; *sc != '"\0'; ++sc)
/* nothing */;
return sc - s;
}

® Not possible since we need to ensure:
® Safety

® \erifier is only able to check the first byte of the strings
® Cannot use naked dereference as the memory doesn’t have to be paged in

5/13

& RedHat



Naive solution

® Firstidea: just call in-kernel implementations:

__bpf_kfunc int bpf_strlen (const char *s) size_t strlen(const char *s)
{ {
return strlen(s); const char *sc;
+ for (sc = s; *sc != '\0'; ++sc)
/* nothing */;
return sc - s;
}

® Not possible since we need to ensure:
® Safety

® \erifier is only able to check the first byte of the strings
® Cannot use naked dereference as the memory doesn’t have to be paged in

® Termination

® Strings are not necessarily null-terminated so the common algorithms can loop forever

& RedHat



Better solution

® Open code the functions:

__bpf_kfunc int bpf_strlen(const char *s__ign)

{
guard (pagefault) ();
for (i = 0; 1 < XATTR_SIZE_MAX; i++) {
__get_kernel_nofault (&c, s__ign, char, err_out);
if (¢ == '\0') { return i; }
s__ign++;
I
return i == XATTR_SIZE_MAX ? -E2BIG : i;
err_out:
return -EFAULT;
}

6/13

& RedHat



Better solution

® Open code the functions:

__bpf_kfunc int bpf_strlen(const char *s__ign)
{
guard (pagefault) () ;
for (i = 0; 1 < XATTR_SIZE_MAX; i++) {
__get_kernel_nofault (&c, s__ign, char, err_out);

if (¢ == '\0') { return i; }
s__ign++;
I
return i == XATTR_SIZE_MAX ? -E2BIG : i;
err_out:

return -EFAULT;
}
® Features:
® page faults disabled

6/13

& RedHat



Better solution

® Open code the functions:

__bpf_kfunc int bpf_strlen(const char *s__ign)
{
guard (pagefault) () ;
for (i = 0; i < XATTR_SIZE_MAX; i++) {
__get_kernel_nofault (&c, s__ign, char, err_out);

if (¢ == '\0') { return i; }
s__ign++;
}
return i == XATTR_SIZE_MAX ? -E2BIG : i;
err_out:

return -EFAULT;
}

® Features:
® page faults disabled
6/13 ® get_kernel_nofault instead of plain dereference

& RedHat



Better solution

® Open code the functions:

__bpf_kfunc int bpf_strlen(const char *s__ign)
{
guard (pagefault) () ;
for (i = 0; i < XATTR_SIZE_MAX; i++) {
__get_kernel_nofault (&c, s__ign, char, err_out);

if (¢ == '\0') { return i; }
s__ign++;
I
return i == XATTR_SIZE_MAX ? -E2BIG : i;
err_out:

return -EFAULT;
}

® Features:
® page faults disabled
6/13 ® get_kernel_nofault instead of plain dereference
® upper limit on the string length @ RedHat



Verifier support

® String kfunc arguments:

® Null-terminated (not necessarily) strings located in eBPF or kernel memory — unsafe pointers
® Size arguments for bounded functions — general integers

7/13

& RedHat



Verifier support

® String kfunc arguments:

® Null-terminated (not necessarily) strings located in eBPF or kernel memory — unsafe pointers
® Size arguments for bounded functions — general integers

® Verifier supports “special suffices” for kfunc arguments

® _ str forstring literals

& RedHat



Verifier support

® String kfunc arguments:

® Null-terminated (not necessarily) strings located in eBPF or kernel memory — unsafe pointers
® Size arguments for bounded functions — general integers

® Verifier supports “special suffices” for kfunc arguments

o ot forstringd

® sz for buffer size literals

& RedHat



Verifier support

® String kfunc arguments:
® Null-terminated (not necessarily) strings located in eBPF or kernel memory — unsafe pointers
® Size arguments for bounded functions — general integers
® Verifier supports “special suffices” for kfunc arguments
« ‘ S
o __cnf torsizedi
® _ ign forignoring argument verification

7/13

& RedHat



Verifier support

® String kfunc arguments:

® Null-terminated (not necessarily) strings located in eBPF or kernel memory — unsafe pointers
® Size arguments for bounded functions — general integers

® Verifier supports “special suffices” for kfunc arguments

« ‘ S
o __cnf torsizedi
® _ ign forignoring argument verification

® We can afford ignoring verification since safety is ensured dynamically

7/13

& RedHat



API details

® Read-only functions for now
® |nitially added functions:

® bpf_strcmp
bpf_strlen,bpf_strnlen
bpf_strstr,bpf_strnstr
bpf_strchr,bpf_strnchr,bpf_strchrnul bpf_strrchr
bpf_strspn,bpf_strcspn

® Several new functions added after the initial patchset:

® bpf_strcasecmp, bpf_strncasecmp
® bpf_strcasestr, bpf_strncasestr

& RedHat



API details

Comparison with stdlib functions
® Return indices instead of pointers
__bpf_kfunc int bpf_strchr (const char *s__ign, char c)

® |nput pointers are unsafe — output pointers would also be unsafe
® Memory may not be there on successive reads — would still need explicit bounds check

9/13

& RedHat



API details

Comparison with stdlib functions

® Return indices instead of pointers

__bpf_kfunc int bpf_strchr (const char *s__ign, char c)

® |nput pointers are unsafe — output pointers would also be unsafe
® Memory may not be there on successive reads — would still need explicit bounds check

® Return negative error codes on errors

® _EFAULT when reading paged out memory

® _E2BIG when the strings are too big

® _ERANGE when the strings are outside of the kernel address space
® -ENOENT as “item not found”

9/13

& RedHat



Practical usage

Basic example

Manual implementation

SEC ("1lsm/bprm_check_security")

int BPF_PROG (path_check, struct linux_binprm *bprm) {
char path[32];
int path_len, last_slash = -1;

path_len = bpf_probe_read_str(path, sizeof (path),
bprm->filename) ;
if (path_len < 0 path_len >= 32)
return 0;

for (int i = 0; i < path_len; i++) {
if (path[i] == "'/")
last_slash = i;

}

// Basename is at path + last_slash + 1

10 /13

Using string kfuncs
SEC ("1lsm/bprm_check_security")

int BPF_PROG (path_check, struct linux_binprm *bprm) {
int last_slash;

last_slash = bpf_strrchr (bprm->filename, '/');
if (last_slash < 0)
return 0;

// Basename is at bprm->filename + last_slash + 1

& RedHat



Practical usage

bpftrace extensions

® Thanks to string kfuncs, bpftrace now has more built-in functions for string manipulation:

® bool strcontains(string haystack, string needle)
® int64 strstr(string haystack, string needle)

® yint64 strlen(string exp)

® And many more are coming!

® This allows complex in-kernel filtering and string processing directly in bpftrace scripts.

& RedHat



Future directions

® Adding more read-only functions - already happening
® Adding functions which manipulate memory (e.g. bpf_strncpy)

® Problem: source and destination cannot overlap (could be enforced by the verifier?)
® |s there a use-case for such functions?

® From bpftrace perspective:

® Avoid bpf_probe_read_str whennotnecessary
® Add wrappers for more functions

12/13

& RedHat



Thank you

Red Hat is the world’s leading provider of enterprise
open source software solutions. Award-winning support,
training, and consulting services make Red Hat a trusted

adviser to the Fortune 500.

y

linkedin.com/company/red-hat

youtube.com/user/RedHatVideos

facebook.com/redhatinc

twitter.com/RedHat



http://linkedin.com/company/red-hat
http://youtube.com/user/RedHatVideos
http://facebook.com/redhatinc
http://twitter.com/RedHat

