
String kfuncs
Simplifying string handling in eBPF programs
Viktor Malík

Principal Software Engineer @ Red Hat

January 31, 2026

1 / 13

Motivation: Why string handling?

• Many hooks (functions, LSMs, skb data) allow to access strings from eBPF programs
• Examples where string handling is useful:

• Matching filesystem paths (e.g., is the file inside /home/$USER/...?)
• Matching process names (e.g., does comm contain systemd?)
• Searching environment variables
• Parsing protocol (e.g. HTTP) headers

2 / 13

Motivation: String processing, the old way

• Copy string from kernel memory using bpf_probe_read_str()
• Manually implement all string operations

• Example:
SEC("lsm/bprm_check_security")
int BPF_PROG(path_check, struct linux_binprm *bprm) {

char path[32];
int path_len, last_slash = -1;

path_len = bpf_probe_read_str(path, sizeof(path), bprm->filename);
if (path_len < 0 path_len >= 32) return 0;

for (int i = 0; i < path_len; i++) {
if (path[i] == '/')

last_slash = i;
}
[...]

3 / 13

Motivation: String processing, the old way

• Copy string from kernel memory using bpf_probe_read_str()
• Manually implement all string operations
• Example:

SEC("lsm/bprm_check_security")
int BPF_PROG(path_check, struct linux_binprm *bprm) {

char path[32];
int path_len, last_slash = -1;

path_len = bpf_probe_read_str(path, sizeof(path), bprm->filename);
if (path_len < 0 path_len >= 32) return 0;

for (int i = 0; i < path_len; i++) {
if (path[i] == '/')

last_slash = i;
}
[...]

3 / 13

Motivation: String processing, the old way

• Copy string from kernel memory using bpf_probe_read_str()
• Manually implement all string operations
• Example:

SEC("lsm/bprm_check_security")
int BPF_PROG(path_check, struct linux_binprm *bprm) {

char path[32];
int path_len, last_slash = -1;

path_len = bpf_probe_read_str(path, sizeof(path), bprm->filename);
if (path_len < 0 path_len >= 32) return 0;

for (int i = 0; i < path_len; i++) {
if (path[i] == '/')

last_slash = i;
}
[...]

3 / 13

Motivation: String processing, the old way

• Copy string from kernel memory using bpf_probe_read_str()
• Manually implement all string operations
• Example:

SEC("lsm/bprm_check_security")
int BPF_PROG(path_check, struct linux_binprm *bprm) {

char path[32];
int path_len, last_slash = -1;

path_len = bpf_probe_read_str(path, sizeof(path), bprm->filename);
if (path_len < 0 path_len >= 32) return 0;

for (int i = 0; i < path_len; i++) {
if (path[i] == '/')

last_slash = i;
}
[...]

3 / 13

String kfuncs

• BPF Kernel Functions (kfuncs) are the modern way of exposing kernel functionality to eBPF
programs

• String kfuncs provide implementations of the most common string operations

• Main advantages:
• No need to reimplement the functions manually
• No need to copy the strings onto the stack (which is limited) or to maps (which bring overhead)
• Small performance benefit

4 / 13

String kfuncs

• BPF Kernel Functions (kfuncs) are the modern way of exposing kernel functionality to eBPF
programs

• String kfuncs provide implementations of the most common string operations
• Main advantages:

• No need to reimplement the functions manually
• No need to copy the strings onto the stack (which is limited) or to maps (which bring overhead)
• Small performance benefit

4 / 13

Naive solution
• First idea: just call in-kernel implementations:

__bpf_kfunc int bpf_strlen(const char *s)
{
return strlen(s);

}

size_t strlen(const char *s)
{
const char *sc;
for (sc = s; *sc != '\0'; ++sc)

/* nothing */;
return sc - s;

}

• Not possible since we need to ensure:
• Safety

• Verifier is only able to check the first byte of the strings
• Cannot use naked dereference as the memory doesn’t have to be paged in

• Termination
• Strings are not necessarily null-terminated so the common algorithms can loop forever

5 / 13

Naive solution
• First idea: just call in-kernel implementations:

__bpf_kfunc int bpf_strlen(const char *s)
{
return strlen(s);

}

size_t strlen(const char *s)
{
const char *sc;
for (sc = s; *sc != '\0'; ++sc)

/* nothing */;
return sc - s;

}

• Not possible since we need to ensure:
• Safety

• Verifier is only able to check the first byte of the strings
• Cannot use naked dereference as the memory doesn’t have to be paged in

• Termination
• Strings are not necessarily null-terminated so the common algorithms can loop forever

5 / 13

Naive solution
• First idea: just call in-kernel implementations:

__bpf_kfunc int bpf_strlen(const char *s)
{
return strlen(s);

}

size_t strlen(const char *s)
{
const char *sc;
for (sc = s; *sc != '\0'; ++sc)

/* nothing */;
return sc - s;

}

• Not possible since we need to ensure:
• Safety

• Verifier is only able to check the first byte of the strings
• Cannot use naked dereference as the memory doesn’t have to be paged in

• Termination
• Strings are not necessarily null-terminated so the common algorithms can loop forever5 / 13

Better solution
• Open code the functions:

__bpf_kfunc int bpf_strlen(const char *s__ign)
{
guard(pagefault)();
for (i = 0; i < XATTR_SIZE_MAX; i++) {
__get_kernel_nofault(&c, s__ign, char, err_out);
if (c == '\0') { return i; }
s__ign++;

}
return i == XATTR_SIZE_MAX ? -E2BIG : i;

err_out:
return -EFAULT;

}

• Features:

• page faults disabled
• __get_kernel_nofault instead of plain dereference
• upper limit on the string length

6 / 13

Better solution
• Open code the functions:

__bpf_kfunc int bpf_strlen(const char *s__ign)
{

guard(pagefault)();
for (i = 0; i < XATTR_SIZE_MAX; i++) {
__get_kernel_nofault(&c, s__ign, char, err_out);
if (c == '\0') { return i; }
s__ign++;

}
return i == XATTR_SIZE_MAX ? -E2BIG : i;

err_out:
return -EFAULT;

}

• Features:
• page faults disabled

• __get_kernel_nofault instead of plain dereference
• upper limit on the string length

6 / 13

Better solution
• Open code the functions:

__bpf_kfunc int bpf_strlen(const char *s__ign)
{
guard(pagefault)();
for (i = 0; i < XATTR_SIZE_MAX; i++) {

__get_kernel_nofault(&c, s__ign, char, err_out);
if (c == '\0') { return i; }
s__ign++;

}
return i == XATTR_SIZE_MAX ? -E2BIG : i;

err_out:
return -EFAULT;

}

• Features:
• page faults disabled
• __get_kernel_nofault instead of plain dereference

• upper limit on the string length

6 / 13

Better solution
• Open code the functions:

__bpf_kfunc int bpf_strlen(const char *s__ign)
{
guard(pagefault)();
for (i = 0; i < XATTR_SIZE_MAX; i++) {

__get_kernel_nofault(&c, s__ign, char, err_out);
if (c == '\0') { return i; }
s__ign++;

}
return i == XATTR_SIZE_MAX ? -E2BIG : i;

err_out:
return -EFAULT;

}

• Features:
• page faults disabled
• __get_kernel_nofault instead of plain dereference
• upper limit on the string length

6 / 13

Verifier support

• String kfunc arguments:
• Null-terminated (not necessarily) strings located in eBPF or kernel memory→ unsafe pointers
• Size arguments for bounded functions→ general integers

• Verifier supports ”special suffices” for kfunc arguments

• __str for string literals
• __sz for buffer size literals
• __ign for ignoring argument verification

• We can afford ignoring verification since safety is ensured dynamically

7 / 13

Verifier support

• String kfunc arguments:
• Null-terminated (not necessarily) strings located in eBPF or kernel memory→ unsafe pointers
• Size arguments for bounded functions→ general integers

• Verifier supports ”special suffices” for kfunc arguments
• __str for string literals

• __sz for buffer size literals
• __ign for ignoring argument verification

• We can afford ignoring verification since safety is ensured dynamically

7 / 13

Verifier support

• String kfunc arguments:
• Null-terminated (not necessarily) strings located in eBPF or kernel memory→ unsafe pointers
• Size arguments for bounded functions→ general integers

• Verifier supports ”special suffices” for kfunc arguments
• __str for string literals
• __sz for buffer size literals

• __ign for ignoring argument verification

• We can afford ignoring verification since safety is ensured dynamically

7 / 13

Verifier support

• String kfunc arguments:
• Null-terminated (not necessarily) strings located in eBPF or kernel memory→ unsafe pointers
• Size arguments for bounded functions→ general integers

• Verifier supports ”special suffices” for kfunc arguments
• __str for string literals
• __sz for buffer size literals
• __ign for ignoring argument verification

• We can afford ignoring verification since safety is ensured dynamically

7 / 13

Verifier support

• String kfunc arguments:
• Null-terminated (not necessarily) strings located in eBPF or kernel memory→ unsafe pointers
• Size arguments for bounded functions→ general integers

• Verifier supports ”special suffices” for kfunc arguments
• __str for string literals
• __sz for buffer size literals
• __ign for ignoring argument verification

• We can afford ignoring verification since safety is ensured dynamically

7 / 13

API details

• Read-only functions for now
• Initially added functions:

• bpf_strcmp
• bpf_strlen, bpf_strnlen
• bpf_strstr, bpf_strnstr
• bpf_strchr, bpf_strnchr, bpf_strchrnul, bpf_strrchr
• bpf_strspn, bpf_strcspn

• Several new functions added after the initial patchset:
• bpf_strcasecmp, bpf_strncasecmp
• bpf_strcasestr, bpf_strncasestr

8 / 13

API details
Comparison with stdlib functions

• Return indices instead of pointers

__bpf_kfunc int bpf_strchr(const char *s__ign, char c)

• Input pointers are unsafe→ output pointers would also be unsafe
• Memory may not be there on successive reads→ would still need explicit bounds check

• Return negative error codes on errors
• -EFAULT when reading paged out memory
• -E2BIG when the strings are too big
• -ERANGE when the strings are outside of the kernel address space
• -ENOENT as ”item not found”

9 / 13

API details
Comparison with stdlib functions

• Return indices instead of pointers

__bpf_kfunc int bpf_strchr(const char *s__ign, char c)

• Input pointers are unsafe→ output pointers would also be unsafe
• Memory may not be there on successive reads→ would still need explicit bounds check

• Return negative error codes on errors
• -EFAULT when reading paged out memory
• -E2BIG when the strings are too big
• -ERANGE when the strings are outside of the kernel address space
• -ENOENT as ”item not found”

9 / 13

Practical usage
Basic example

Manual implementation
SEC("lsm/bprm_check_security")
int BPF_PROG(path_check, struct linux_binprm *bprm) {

char path[32];
int path_len, last_slash = -1;

path_len = bpf_probe_read_str(path, sizeof(path),
bprm->filename);

if (path_len < 0 path_len >= 32)
return 0;

for (int i = 0; i < path_len; i++) {
if (path[i] == '/')

last_slash = i;
}

// Basename is at path + last_slash + 1
}

Using string kfuncs
SEC("lsm/bprm_check_security")
int BPF_PROG(path_check, struct linux_binprm *bprm) {

int last_slash;

last_slash = bpf_strrchr(bprm->filename, '/');
if (last_slash < 0)

return 0;

// Basename is at bprm->filename + last_slash + 1
}

10 / 13

Practical usage
bpftrace extensions

• Thanks to string kfuncs, bpftrace now has more built-in functions for string manipulation:
• bool strcontains(string haystack, string needle)
• int64 strstr(string haystack, string needle)
• uint64 strlen(string exp)
• And many more are coming!

• This allows complex in-kernel filtering and string processing directly in bpftrace scripts.

11 / 13

Future directions

• Adding more read-only functions – already happening
• Adding functions which manipulate memory (e.g. bpf_strncpy)

• Problem: source and destination cannot overlap (could be enforced by the verifier?)
• Is there a use-case for such functions?

• From bpftrace perspective:
• Avoid bpf_probe_read_str when not necessary
• Add wrappers for more functions

12 / 13

Thank you
Red Hat is the world’s leading provider of enterprise

open source software solutions. Award-winning support,

training, and consulting services make Red Hat a trusted

adviser to the Fortune 500.

linkedin.com/company/red-hat

youtube.com/user/RedHatVideos

facebook.com/redhatinc

twitter.com/RedHat

13 / 13

http://linkedin.com/company/red-hat
http://youtube.com/user/RedHatVideos
http://facebook.com/redhatinc
http://twitter.com/RedHat

